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Abstract

In multiple target systems, the signal factor is varied based on the signal-response
relationship to achieve different targets for the response specified by the customer.
Robust parameter design aims at making the signal-response relationship insensitive
to the noise variation by choosing appropriate levels for the control factors. Taguchi’s
dynamic signal-to-noise ratio has several limitations for the optimization in multiple
target systems. We give a theoretical formulation of the problem and develop a prac-
tical approach for optimization that overcomes these limitations. The methodology is

illustrated using a temperature controller example.
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1. INTRODUCTION

Robust parameter design aims at finding the levels of control factors that will make the
effect of noise factors on the performance of the system as small as possible. When the
customer puts forth different requirements on the system performance, all of the control
factors cannot be kept at a constant level. In such cases a factor known as signal factor
is selected from the set of control factors and is changed continuously depending on the
customer intent to meet his requirements (see Figure (1)). For examples, different turning
radius for a car can be achieved by changing the steering wheel angle, different hole diameters
on a job can be obtained by using different drill bit sizes in a drilling operation; different
line widths for a circuitry in a printed circuit board can be produced by giving different
line widths in the art work used in the image transfer process. The user of the system
has to specify a value for the signal factor to achieve a specific customer intent and hence
he/she needs to know the relationship between the signal factor and the output response.
The system will work well if this relationship is robust to the noise factors. The approach of
making the signal-response relationship insensitive to noise was introduced by Taguchi and is
known as dynamic parameter design (Taguchi, 1987) or parameter design in signal-response
systems (Miller and Wu, 1996). The recent developments in this area can be found in Miller
and Wu (1996), Wu and Hamada (2000) and Wu and Wu (2000). The increasing competition
in the market and changing demands from the customers have forced the manufacturer to
design and produce products with varied functional requirements. It became a necessity
not only to meet the current requirements but also to develop the process anticipating the
future requirements. Dynamic parameter design has emerged as an important engineering-
statistical tool in this technology development process. Many interesting case studies from
industries can be found in Taguchi, Chowdhury, and Taguchi (2000).

Taguchi (1987, 1993) uses a linear relationship between signal (M) and response (Y)
given by

Y =06M +e, (1)

where € has mean 0 and variance 0?. The 8 and o are evaluated for different control factor



settings and a setting is selected that will optimize a performance measure of variation from

the linear relationship. He uses the (dynamic) signal-to-noise (SN) ratio given by
SN = log 3 /0? (2)

as the performance measure. Miller and Wu (1996) confirms the suitability of this measure
for optimization in measurement systems but comments on its inadequacy for dealing with
multiple target systems. They propose a response function modeling approach for the anal-
ysis. Lunani, Nair, and Wasserman (1997) advocates the use of a generalized signal-to-noise

ratio

GSN = log 8" /o? (3)

as the performance measure and gives some graphical methods for obtaining y from the data.
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Figure 1: Multiple Target System

In an engineered system, the actual relationship between Y and M need not be lin-
ear. Taguchi (1990) treats the nonlinearity as undesirable, considering it a “distortion in
engineering fields”. The o calculated from model (1) is a combined measure of variation
due to noises and departure from linearity. There are many situations in which a system
can work well with a nonlinear relationship as long as the relationship is well understood
and is easily implementable in the system. Hence forcing a system to behave with a linear
signal-response relationship can result in a sub-optimal design of the system. But modeling

a non-linear relationship in an experiment can be expensive as the data need to be collected



for many levels of signal factor for every control factor setting. It will be shown that the
optimization procedure is very complex with a nonlinear relationship. We will develop some
methods to address the nonlinearity while keeping the optimization simple to perform.

In model (1) we see that as M is reduced to zero, the mean of Y is also reduced to zero.
If Y is allowed to take only non-negative values, then the variation in Y will also reduce
to zero. The statistical model in (1) does not capture this property, leading to inefficient
estimates of 8 and 0. We stress the importance of modeling variation in Y as a function of
the signal factor as it is crucial in obtaining the right performance measure for robust design
optimization.

The article is organized as follows. In Section 2 we give some typical examples to show
that variance will usually be a function of the signal factor. In Section 3 we describe a
general approach to the robust design optimization of multiple target systems. In Section
4 we develop two practical approaches to modeling. In Section 5 the underlying statistical
model for signal-to-noise ratio is identified. The proposed methodology is illustrated with

an example in Section 6. Conclusions are given in Section 7.
2. VARIANCE FUNCTION

A signal factor can be used to cause large change in the mean of a response. Changes
in the variation is bound to happen when the mean is varied a lot and hence the variance
of the response is a function of the signal factor. This is illustrated with the following two
examples.

A temperature controller example: Phadke (1989) describes the robust design of a temper-
ature controller. The function of the controller is to maintain the desired room temperature
by turning a heating element on and off to control the heat input. The target for the room
temperature is set by the user and therefore the temperature controller is a multiple target

system. The thermistor resistance at which the heater will be turned on is given by
R3Ry(Rs+ R1Ey/Ey) (@)
Ri(Ry — Ry(Eo/Ez — 1))

where Ry, Ry, R3, and R4 are the resistances and Ey and E, are the voltages in the controller

RT—on -

circuit. More details about the functioning of this circuit can be found in Phadke (1989) and
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McCaskey and Tsui (1997). The resistance R3 can be set to achieve a desired value for the
Rr_,, and therefore Rj is taken as the signal factor. The nominal values of Ry, R, R4, Ey,
and FE, are the control factors and the variation in them within their manufacturing tolerance
is the noise in the system. From (4), Var(Rr_o,) < R%. An approximate statistical model

for this system is

RT_,m == ﬁRg + €,

where E(e) = 0 and Var(e) = 0?R3. The (8 and o? are functions of the nominal values
of Ry, Ry, Ry, Ey, and E,. We will use a modified version of this example in Section 6 to
illustrate the approach of this paper.

An electro plating example: Consider an electro plating process used to deposit metal onto
another metallic substrate. The plating time can be varied to achieve different thicknesses
of the plated metal. By Faraday’s law the plating thickness (mean) is proportional to the
plating time. Let V(7) represents the variability in thickness during time 7. Divide the
interval (0, 7) into n equal parts of length 7/n as (0,7/n),...,((n—1)7/n, 7). The amount of
metal deposited in each of these intervals can be assumed to be independently and identically
distributed. Then V(1) = nV (7/n) for alln = 1,2, 3, .... This is true if and only if V(7) x 7.

Hence the statistical model for this system can be written as,
Y =37 +¢,

where E(¢) = 0 and Var(e) = o?r. The variability V(7) is caused by the fluctuations in
some of the noise factors during time 7. If we absorb the other noise factors also into the
variance term, the variation can be modeled as 0?7 + o272, which can be approximated as
o27*. The « is a constant between 1 and 2, depending on the magnitudes of 02 and o2 in

the experimental region.
3. GENERAL FORMULATION

Two types of systems are usually encountered in dynamic parameter design problems:

measurement systems and multiple target systems. In a measurement system, the true value



is to be estimated with minimum variability based on the measured value. This is a problem
of inverse regression. Using the concept of Fieller interval, Miller and Wu (1996) proved that
the SN ratio in (2) is an appropriate performance measure for optimization. In a multiple
target system, the signal factor is to be adjusted depending on the target for the response.
The objective is to design the system so that the signal-response relationship is robust to
noise factors. In this section, we describe a general approach to the robust design of multiple
target systems.

Let Ez(Y) = f(X, M) and Varz(Y) = V(X, M), where X is the set of control factors.
The expectation and variance are taken over the distribution of the noise factors Z. The

expected quality loss assuming a quadratic loss function is proportional to
L(X, M,t) = (f(X, M) —t)* + V(X, M),

where ¢ is the customer intent. Given ¢, the signal factor can be adjusted to minimize the
loss. Cost considerations or system limitations may require the value of M to be between
M and Mpg. Let

min  L(X, M,t) = L(X, M*,t). (5)

Me(Myg,Mgy)
Let (a,b) be the range of values of ¢t and W (t) the probability distribution function. Because
X cannot be varied with ¢, the expected loss at M = M™* with respect to the customer intent
can be used as a measure to evaluate the control factor settings. Thus the performance
measure for a given X is

PM = /abL(X,M*,t) dW (t). (6)

Our objective is to find an X € D minimizing PM, where D is the feasible region for X.
The minimization of the loss in (5) need not result in a value of M to get the expected
value of the response at target £. But in engineering applications an unbiased adjustment
strategy makes more sense. Therefore we can simplify (6) by avoiding the minimization over
M. Let h(X,t) be the solution of M from f(X, M) = t. A unique solution exists because
the signal-response relationship is assumed to be a continuous monotonic function. Now the

PM can be viewed as the average variability in Y after adjustment. This simplification is



possible only if the evaluation of the mean and variance functions at h(X,t) is meaningful.
The h(X,t) need not lie in (M, Mg) for all X. So we need to search for an X satisfying

this requirement. Thus the optimization problem becomes

b

)1?61% PM = i V(X, h(X,t)) dW(t) (7)
subject to
max h(X,t) < My, (8)
and
trer(llizg)h(X,t) > M. 9)

Because the objective function and constraints are not given explicitly as functions of X,
the optimization is difficult to perform. Therefore it is required to recast the formulation into
a more tractable form. Also the approach has some practical limitations because in general
the mean and variance functions are not known and are estimated from the experimental
data. If f(X,M) is a nonlinear function in M, then data need to be collected at many
levels of M. Because in most experiments the number of runs is a multiple of the signal
factor levels, the experiment becomes expensive to conduct. From the cost point of view it
is beneficial to have few signal factor levels and therefore few parameters in the mean and
variance function models. We will show that this can be done and still achieve the stated
objectives.

It is important to note that in our formulation the performance measure in (7) is obtained
by integrating the variance over the distribution of ¢. Tsui (1998) formulates the dynamic
parameter design problem by considering integration over signal values. In multiple target
systems the distribution of M is induced from the distribution of ¢ and is dependent on
the control factor setting X. Therefore in multiple target systems it is more appropriate to
consider integrating over the distribution of ¢. The integration over the signal values may
be considered for the problem of functional response which can be treated as a third type
of dynamic parameter design problems. Here the objective is to minimize the variations in
the functional response from an ideal function over a range of signal values. See Nair, Taam,

and Ye (2001) for details on the analysis of functional response.
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4. MODELING

In this section we develop two different approaches to modeling. In mean-variance modeling
we will separately model mean and variance functions. This modeling is ideal when the
noise levels are randomly chosen for every observation. In response modeling the response is
directly modeled in terms of the control, noise, and signal factors. This approach is suitable

when the noise factors have fixed levels in an experiment.
4.1 Mean-Variance Modeling

We explain the ideas behind mean-variance modeling by choosing some special functional
forms for both mean and variance. Consider an additive noise model Y = f(X, M) + ¢,
where E(¢) = 0 and Var(e) = V(X,M). Assume that the response and signal factor
are nonnegative variables and f(X,0) = 0. Also assume that the mean and variance are
increasing functions of M, perhaps after a suitable transformation of the signal factor. Based

on the discussions in Section 2,
V(X, M) = o*(X)M*~ (10)

is a reasonably good approximation for the variance function.
We will first consider a special form of f(X, M) and develop the optimization procedure.
As will be seen later, this form is helpful to deal with a more general case using lack of fit.

Let
f(X’ M) = fG(ﬁ(X)M)’ (11)

where fy is a known function up to a set of parameters . Because the mean and variance
functions are meaningful only for nonnegative values of M, we must assume that £, '(a) > 0
to ensure unbiased adjustments for ¢ € (a,b). Typically f3(0) = 0 and hence this will be
automatically satisfied. From (10) and (11), the PM in (7) becomes

o (O )
Pt = ['or0) (B 0) aw = S5 [t wyraw) (12




With the selected mean function in (11), the X and ¢ are separated in the PM, thus simpli-
fying the procedure. From (12), we define the performance measure as

*(X)

n(X) =log X)

(13)

to be consistent with the form of the SN ratio in (2). Note that we no longer need to specify
the probability distribution of the customer intent to get the performance measure. Thus

the optimization problem is reduced to

max7(X) (14)

subject to B(X) > B, where

Br = fo ' (b)/ M, (15)

which is obtained from the constraint in (8). The constraint (9) is trivially satisfied for
My, = 0. The above problem can be solved using a mathematical programming algorithm.
See, for example, Luenberger (1989). The two-step optimization procedure is found to work
well in many practical situations. It will succeed if there exists an adjustment parameter.
An adjustment parameter in this case refers to a variable that has an effect on 8 but not on
1. The two-step optimization procedure in our formulation can be stated as follows.

Two-step Procedure for Multiple Target Systems:
1. Find X € D to maximize n(X).

2. Use one or more adjustment parameters to adjust 8 to the desired range.
(16)

Note that in the formulation (3 is not bounded above. A very high sensitivity can become
undesirable if there is error in the signal factor settings. However if the error is also treated
as a noise factor, it will be mitigated by parameter design technique.

Now we will consider the issue of estimation. Assume that the data is obtained using

a cross array design which is a product of the control array, noise array, and signal factor

9



levels. Discussion on the choice of experimental plans for signal-response systems can be
found in Wu and Hamada (2000, Section 11.6). Let y;;, denote the response value at run 3,

signal level j, and noise level k. Then
Yijk = f(Xs, M) + €ix, (17)

where €;;;;’s are independently distributed as N (0,07 M. j"‘) Suppose we do not know the true
functional form of the mean. Then 7,; is an obvious estimate of f(X;, M;). Hence o7 M
can be estimated from

1 K

i = = > (Yizr — Ui;)*. (18)
J K—-1 = J J

The estimation of ¢ and « can be done using a log-linear model,
log afj = log o7 + alog M;, (19)

where (K — 1)s3;/0% ~ x%_;. The fitting can be done using gamma GLM with a log-
link or using the quasi-likelihood estimation (McCullagh and Nelder, 1989). Thus we can
compute the noise variability without actually knowing the exact mean function. To find
the variability after adjustment, we have to know the value of M to get the response at ¢ on
average. Instead of using f(X, M), an approximate value of M can be obtained by fitting
fo(B(X)M) to the data. The model Y ~ fp(8M) is to be fitted using weighted least squares
with weights (02M2)~1. Note that

33 i — folB:M;))2 /oI ME = K 3 LOF/o? + (K = 1) Y. 3 8% /02 Mg, (20)

where the lack of fit sum of squares is
LOF; = (5. — fo(B:M;))* /M5
J

In Taguchi’s approach, the o2 in model (1) includes both the lack of fit and the noise vari-
ation. Here we separate these two components and try to minimize only the noise variation.

The cause for lack of fit is not random and therefore the robustness should not be sacrificed
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to reduce the lack of fit. The minimization of LOF' is not important because in most cases
it can be eliminated at the optimal setting by fitting a more elaborate signal-response rela-
tionship. The signal-response relationship is usually restricted to be a monotonic function.
Therefore, if the lack of fit cannot be completely eliminated with elaborate modeling, the
cause behind it needs to be identified and removed from the system. This approach helps
us to avoid the need of fitting elaborate signal-response models to each run, thereby making
the experiment less expensive. In situations where specific functional forms such as linearity
is preferred in a system, the LOF can be separately modeled and minimized. The decom-
position like (20) was used in Miller and Wu (1996) in the analysis of an injection molding
experiment. Our approach is more general as the separation of lack of fit from the residual

variation is introduced as a strategy to deal with nonlinear signal-response systems.

Summary: The steps in modeling and optimization are summarized as follows.

1. Estimate o? and « by fitting a log-linear model in (19) using a gamma GLM, where

2

s;; is estimated from (18).

2. Estimate f; and 6 from y;;, ~ fo(B8:M;) by using weighted least squares with weights
(672M2) "
3. Fit 7 = log %/62 and log 3 in terms of X.

4. Use a mathematical programming algorithm for (14) or the two-step optimization

procedure in (16) to find the optimal X.

5. Collect more data at the optimal X for different values of the signal factor and fit a

more elaborate signal-response model.

The models used in steps 1 and 2 work only under assumptions as previously discussed.
More general models could be used, but it will make the computations of the performance
measure and the optimization more complicated. In many cases it would suffice to choose

fo(BM) = BM. It should be noted that even with this choice our approach is different from
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Taguchi’s approach. He uses the linear signal-response relationship as an ideal function and
tries to minimizes the deviations from it, whereas we separate the lack-of-fit term and use
the linear signal-response relationship only as an approximation to the true signal-response

relationship.
4.2 Response Modeling

When the noise factors have fixed settings in an experiment, the ¢;;;’s in (17) are not
independent and therefore an approach that takes into account of this structure is more
appropriate. See the discussions in Bérubé and Nair (1998). Tsui (1998, 1999) has shown
that mean-variance modeling can lead to bias in the control factor effects. Modeling the
response as a function of the noise factors will avoid this problem.

Let N be the set of observable noise factors. Then for a given N, let Y = f(X, N, M) +e,
where E(e) = 0, Var(e) = ¢(X,N, M) and € is the random error caused by the unobserv-
able noise factors. As an approximation to the true signal-response relationship, consider a

polynomial model

In the response function modeling suggested by Miller and Wu (1996), the parameters
in (21) are estimated for each control and noise combinations and then they are modeled
with respect to X and N. An alternative approach is to fit (21) directly from the data. See
Miller (1993) and Tsui (1998, 1999). An important issue not considered in the literature
is that the signal-response relationship should be monotonic. Polynomial models do not
posses the monotonicity property. Therefore the estimation procedure should ensure that
the fitted response is monotonic in M in the desired range. Most of the research in monotonic
regression is on non-parametric methods. See Robertson, Wright, and Dykstra (1988). The
estimation problem can be avoided if the regression function is chosen from a monotone class
of functions.

As in the Section 4.1, choose an appropriate model for the variance term and estimate
from replicates. Then (21) can be fitted with weights 1/¢(X, N, M) using monotonic regres-

sion. It is not necessary to reestimate ¢(X, N, M) from the residuals if we decided to throw
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out the lack of fit component. The mean and variance functions are then obtained using the
conditional expectation and variance formulas. This requires explicit knowledge about the
distribution of noise factors and may need to use Monte Carlo methods. Most often the PM
in (7) has to be obtained using numerical integration for different control factor settings.
The PM can then be modeled with respect to X and optimized.

For a special case with f(X,N, M) = 8,(X,N)M and ¢(X,N, M) = ¢(X,N)M?2, the
PM in (7) can be explicitly obtained as

VCW’NBI (Xa N) + EN¢(Xa N)

PM =
E12\TB1 (X) N)

which can be viewed as the reciprocal of the signal-to-noise ratio. Consider the case of a
single noise factor with mean 0 and variance o7. If we further assume §;(X, N) = B1o(X) +

B11(X)Ny and ¢(X,N) = ¢o(X) + ¢1(X) Ny, then the optimization problem becomes

B82%(X)
XD B2 (X)o? + go(X

subject to MLH < Bro(X) <

)
My
which can be easily solved using a standard nonlinear programming algorithm.
Compared to Miller and Wu (1996) and Tsui (1998, 1999), we focus on minimizing
the variation in the response after adjusting for the mean. This is important because the
variance is a function of the signal factor and can change while adjusting the mean to a

specified target.
4.3 Discussion

The performance of the SN ratio in (2) is comparable to the 1 in (13) when a = 2 and
with a linear signal-response relationship. Because of the importance of SN ratio, a more
rigorous treatment will be given in the next section. For estimating the SN ratio, Taguchi
(1993) uses an unbiased estimate of 32. Because the performance measure is used only for
comparing different control factor settings, the bias is not of much concern as long as it does
not change greatly with X. In the Appendix we show that the bias in maximum likelihood

estimate can be neglected.
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Transformations on both signal factor and response should be used to enhance the mod-
eling described in the previous subsections. There are several experiments reported that use
transformations based on engineering knowledge to linearize the signal-response relation-
ship. See, for example, Fowlkes and Creveling (1995). The robust setting obtained using
the transformed response can be considered to be an approximation to the robust setting for
the original response under the unbiased strategy. It is also possible to introduce unknown
parameters in the transformations. In such a case the estimation of the parameters should
be done using the iteratively re-weighted least squares method. See McCullagh and Nelder
(1989) and Engle and Huele (1996).

Although the performance measure in (13) resembles the generalized signal-to-noise ratio
in (3), they are entirely different. The 7 in (3) is obtained by assuming Var(Y) o< 87 while
we assume Var(Y) o« M®. Hence the value of v will be different from «, depending on how
the control factors affect § and Var(Y). As we have seen, the minimization of variability
demands a performance measure depending on how the signal factor affect the mean and
variance and not on the overall slope-variance relationship exhibited in the data. Because
the static characteristics (i.e. response with a single target value) is a special case of dynamic
characteristics, similar comments apply to the static parameter design optimization. As will
be shown in the next section, the best non-informative choice of a is 2 and therefore the

static SN ratio analysis is justifiable in many linear systems.
5. SIGNAL-TO-NOISE RATIO

In this section we will identify the underlying statistical model for the signal-to-noise
ratio analysis. The explanation of the signal-to-noise ratio given here is different from those
in the literature. Taguchi (1993) assumes that when a scaling factor (same as the adjustment
parameter) is used to adjust the 3 to its ideal value 37, the variance will change to o2(8;/3)?
and therefore uses the SN ratio in (2) for optimization. Phadke and Dehnad (1988) extends
the same idea in their derivation. Leon, Shoemaker, and Kacker (1987) justifies the SN
ratio as a performance measure independent of adjustment (PerMIA) under a model with

Var(Y) o< 2. See also Lunani, Nair, and Wasserman (1997) and Wu and Hamada (2000).
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We will show that it is not required to assume the existence of a scaling factor and will derive
a version of the signal-to-noise ratio under some assumptions.

Assume that Y and M are nonnegative variables and the signal-response relationship
passes through the origin. We will also assume that the response is not the end result of an
additive process to avoid situations like the electro-plating example given in Section 2. Let
Z be the set of noise factors. Then the relationship between the response and other factors

can be written as

Y =f(X,Z,M).
Using Taylor’s theorem and series expansion,

of :Mlﬁ

Y:Mla_M oM

0% f
oM?

+M(H—M0)l +oe

]M:M ]M:Mo ]MZMO
where 0 < M < M and M, is chosen so as to get a good linear fit through the origin in
the region of interest. Using only the first term in the expansion, we get the following two

approximate formulas

of

Ez(Y)= M Eg l—] , (22)
OM | 1/_ a1,
0
Varz(Y) = M*Varg l—f] . (23)
OM | s
Thus an approximate statistical model under the stated assumptions is
Y =68M +e, (24)

where E(e) = 0 and Var(e) = 02 M?. Following the approach of Section 4.1, the performance
measure to maximize can be derived as 32/0?. Now 3?/0* = E*(Y)/Var(Y), which can be
viewed as a signal-to-noise ratio. The performance measure from model (1) is o2 and is not
the SN ratio. Thus the underlying statistical model of the signal-to-noise ratio is different
from (1).

In the mean-variance modeling, using fp(8M) for the mean function will improve the
approximation in (22), whereas using « instead of 2 and separating lack of fit from the

residuals were aimed at improving the approximation in (23) and to relax some of the
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assumptions. Also the dependence of variance with M necessitates the use of weighted least
squares estimation. Hence we can expect an overall improvement in the analysis by using
the performance measure in (13) compared to the SN ratio. We will substantiate this claim

with an example in the next section.

6. AN EXAMPLE

We will illustrate the proposed methodology using the temperature controller example.
For the purpose of illustration we will treat R, as the signal factor instead of R3 so that we
have a nonlinear signal-response relationship. We will assume no knowledge about the exact
form of the transfer function in (4) for the analysis and then evaluate the performance of our
approach based on the transfer function. The factors and their levels are given in Table. 1.

Suppose the customer requirement on Rr_,, is uniformly distributed in (1,5) and the
maximum value for M that can be used to achieve this range is 4. Select three levels for
M as 1, 2, and 3.5. Assume that the deviations in the factors from their nominal values
are normally distributed with standard deviation 5% of their nominal values. Two levels of
compounded noise factor is selected as

N1 (low Rr_on) : 1.05A4/0.95B/1.05C/0.95D

N2 (high Ry ,,): 0.95A4/1.056B/0.95C/1.05D,
where A, B,C, and D are the nominal values of the 4 factors. A 2* design is used for the
control factors. The response Rr_,, is generated from the transfer function in (4). For each
run there are 6 values of Ry ,, corresponding to the 3 levels of the signal factor and 2 levels
of the noise factor.

For comparison we will use both mean-variance modeling and response modeling for
analysis. The Rr_,, values are plotted against the signal factor for each control and noise
combination and is given in Figure 2. We see that the mean and variance of Ry_,, increases
with M. Assume the experimenter knows that the Rp_,, is zero when M = 0. Using
gamma GLM, « is estimated from the log-linear model in (19) as 2.58. An approximate
95% confidence interval for « is (2.45, 2.72), which clearly shows a value more than 2 should

be used in the analysis. Let fo(BM) = (BM)°?. Now fit Ry o, ~ (BM)? using nonlinear
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Table 1: Factors and levels

Sl.No. | Factors | Notation | Levels
1 2
1 R, A 2 4
2 R; B 2 4
3 Ry C 15 25
4 Ey/E, D 1.5 25

regression with weights (62M%)~!. This gives the value of 6 as 1.111. The half-normal plot of
the effects of n = log B& /6% is given in Figure 3a. It shows that the four main effects and the
CD interaction are significant. The optimum levels are A; BoC5D;. The lower bound for
can be calculated from (15) as 1.06. The value of 8 at the optimum combination (run no. 7)
is 2.04 which satisfies the constraint and hence the adjustment step in (16) is not required.
At the optimum setting an approximate range of M to get Rr_,, in (1,5) is obtained as
(0.49,2.08). So generate data by taking M between 0.25 and 2.5 with an increment of 0.25.
One model that fits this data well is

Ry_on = 2.24M + 0.0447M? + 0.00099M3,

which can be used to design the adjustment system in the temperature controller.

For the response modeling a quadratic polynomial with no intercept term is fitted. The
error in the model is solely due to the lack of fit and therefore it is omitted from analysis.
The performance measure in (7) is obtained through numerical integration and is denoted
by PMpg. The half-normal plot of log PMg given in Figure 3b shows that the four main
effects are significant.

Now we will see the results of exact analysis based on the transfer function. Introduce A

so that
B(C + AD)
A(C — (D —-1)M)

ERp_opn = A M. (25)
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Figure 2: Plot of Ry_,, against M

To get ERr_,, = t, the value of M should be

ACt
M= (D —1)At + ABC + AABD’ (26)

Starting with A = 1 and using simulations to compute ERr_,,, M can be iteratively solved
from (25) and (26). This value of M is then used to compute Var(Rr—o.,) based on 10,000
simulations. The variance is computed for ¢ =1, 2, 3, 4, and 5 and is numerically integrated
using a 5-point rule to get the PM in (7). The half-normal plot of the effects of log PM given
in Figure 3c shows that only the main effects are important. The optimum combination is
A1 BsC5D; which is the same setting as obtained earlier.

We also analyze this problem using the SN ratio in (2). For each run, § and o are
estimated based on model (1) using least squares and the SN ratio is calculated. The 7
values and SN values are plotted against log(1/PM) and is given in Figure 4. As expected,
n is more correlated with the exact performance measure than SN, the R? values being 81.3%

and 37.4% respectively. The half-normal plot of the effects of SN is shown in Figure 3d.
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We see that the SN ratio analysis completely missed the most important effect of B and
barely identifies A as significant. The analysis of 1 and log PMp did not detect the effects
in the exact order of importance (compare Figures 3 a,b, and c) but succeeded in capturing

the important effects.
7. CONCLUSIONS

In this paper we have formulated the robust parameter design of multiple target systems
as a mathematical programming problem. We have defined the performance measure to
evaluate a control factor setting as the average variability in the response after adjusting
for the mean through the signal factor. We have explained two practical approaches for the
estimation of the performance measure. The signal-response relationship in many multiple-
target systems can be nonlinear. Some methods to address the nonlinearity are proposed.
The usefulness of the approach is demonstrated using an example.

The statistical model underlying the signal-to-noise ratio analysis is shown to be (24),
which is different from the widely used model in (1). It is believed that the signal-to-noise
ratio is justified only when Var(Y) oc 32 which requires the existence of a scaling/adjustment
factor. We have shown that this is not true. It is how the signal factor affects the mean and
variance that leads to the signal-to-noise ratio or a related performance measure. Through-
out the article we have emphasized the importance of modeling variation in the response
as a function of the signal factor to get the right performance measure for robust design

optimization.
ACKNOWLEDGMENTS

We thank the associate editor, two referees, and Vijay Nair for helpful comments. The

research was supported by NSF DMS-0072489.
APPENDIX: BIAS IN ESTIMATION
Consider the signal-to-noise ratio model,
Yijki = Bi M + €ijm
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where y;;1; is the observation at control level ¢, signal level J, noise level k, and replicate [
and €;j ~ N(0,07M;). We want to estimate 7; = log . The MLEs of 3; and o2 are,
1 L

5 X Yijkl
P — Y — 7.
Bi 7 LE > > = ;...

j=1k=11=1

ﬁ

and
1

J K L
>0 D (i —
~ JKL j=1k=11=1
where ;i = Yijr/M;. Then the MLE of 7; is given by #; = log f—z The bias in the estimate

can be obtained using Taylor’s series expansion as

E(n; —n;) = —B(n;) + ¢

where
Z e_n"h n — 1)
n(JKL)"
and
JKL &8 n (JKL +2m — 3)!
_ log —o _ym
e=log pp 1 T2 2V e UKL - 1)

The notation n!! means 1.3.5---n when n is odd and 2.4.6 - - - n when 7 is even. Because ¢
is a constant, we need to consider only the term B(7;). In typical experiments J > 2, K > 2,
and L > 1. Also ; >> 20; for the normality assumption to be valid. B(7;) decreases with
increase in JKL and ;/0;. Hence the maximum value of B(7;) can be obtained by setting
JKL =4 and B;/0; = 2. We obtain that it accounts for only 5% of the 7; and therefore the

bias can be neglected.
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Figure 3: Half-normal plots
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