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Abstract

An effort is made to systematically investigate the best process conditions that

ensures synthesis of different types of one dimensional cadmium selenide nanostruc-

tures with high yield and reproducibility. Through a designed experiment and rigorous

statistical analysis of experimental data, models linking the probabilities of obtaining

specific morphologies to the process variables are developed. A new iterative algorithm

for fitting a multinomial GLM is proposed and used. The optimum process conditions,

which maximize the above probabilities and make the synthesis process robust (i.e.,

less sensitive) to variations of process variables around set values, are derived from the

fitted models using Monte-Carlo simulations.

Cadmium Selenide (CdSe) has been found to exhibit one-dimensional morpholo-

gies of nanowires, nanobelts and nanosaws, often with the three morphologies being

intimately intermingled within the as-deposited material. A slight change in growth

condition can result in a totally different morphology. In order to identify the optimal
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process conditions that maximize the yield of each type of nanostructure and, at the

same time, make the synthesis process robust (i.e., less sensitive) to variations of pro-

cess variables around set values, a large number of trials were conducted with varying

process conditions. Here, the response is a vector whose elements correspond to the

numbers of appearance of different types of nanostructures. The fitted statistical mod-

els would enable nano-manufacturers to identify the probability of transition from one

nanostructure to another when changes, even of the slightest order, are made in one

or more process variables. Inferential methods associated with the modeling procedure

help in judging the relative impact of the process variables and their interactions on

the growth of different nanostructures. Owing to the presence of internal noise, i.e.,

variation around the set value, each predictor variable is a random variable. Using

Monte-Carlo simulations, the mean and variance of transformed probabilities are ex-

pressed as functions of the set points of the predictor variables. The mean is then

maximized to find the optimum set values of the process variables, with the constraint

that the variance is under control.

KEY WORDS: Nanotechnology, Statistical modeling, Robust Design, Cadmium

Selenide nanostructures, Multinomial, Generalized Liner Model.

1 Introduction

Nanotechnology is the construction and use of functional structures designed from atomic

or molecular scale with at least one characteristic dimension measured in nanometers (one

nanometer = 10−9 meter, which is about 1/50,000 of the width of human hair). The size

of these nanostructures allows them to exhibit novel and significantly improved physical,

chemical, and biological properties, phenomena, and processes. Nanotechnology can provide

unprecedented understanding about materials and devices and is likely to impact many fields.

By using structure at nanoscale as a tunable physical variable, scientists can greatly expand

the range of performance of existing chemicals and materials. Alignment of linear molecules

in an ordered array on a substrate surface (self-assembled monolayers) can function as a

new generation of chemical and biological sensors. Switching devices and functional units

2



at nanoscale can improve computer storage and operation capacity by a factor of a million.

Entirely new biological sensors facilitate early diagnostics and disease prevention of cancers.

Nanostructured ceramics and metals have greatly improved mechanical properties, both in

ductility and strength.

Current research by nanoscientists typically focuses on novelty, discovering new growth

phenomena and new morphologies. However, within the next five years there will likely

be a shift in the nanotechnology community towards controlled and large-scale synthesis

with high yield and reproducibility. This transition from laboratory-level synthesis to large

scale, controlled and designed synthesis of nanostructures necessarily demands systematic

investigation of the manufacturing conditions under which the desired nanostructures are

synthesized reproducibly, in large quantity and with controlled or isolated morphology. This

investigation must be systematic and complete, which is possible only by using statistical

modeling and analysis of data obtained from carefully designed experiments. The imple-

mentation of statistical techniques offers the unique advantage of observing and quantifying

subtle changes in the growth of a particular nanostructure as a function of the process vari-

ables. Such slight changes in the growth can easily be overlooked in the current methodology

of nanomaterial characterization, possibly leading to inaccurate conclusions and missed op-

portunities regarding the control of growth mechanism. This is one of the reasons that

make this statistical approach to nanomaterial synthesis potentially important; the other

important reason being the need of making the synthesis process robust, i.e., insensitive to

uncontrollable or noise factors.

Research in synthesizing semiconducting nanostructures is a forefront area in nanotech-

nology due to their applications in nanoelectronics, photonics, data storage, and sensing

(Tolbert and Alivisatos 1994; Ma, Moore, Ding, Li and Wang 2004; Tran, Goldman, Ander-

son, Mauro and Mattoussi 2002). In particular, one-dimensional (1D) nanostructures present

the ability to experimentally address the fundamental issues of reduced dimensionality and

quantum confinement in one dimension (Lieber 1998; Alivisatos, Levinos, Steigerwald and

Brus 1988). Cadmium selenide (CdSe) has been investigated over the past decade for ap-

plications in optoelectronics (Hodes, Albu-Yaron, Decker and Motisuke 1987), luminescent
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materials (Bawendi, Kortan, Steigerwald and Brus 1989), lasing materials (Ma, Ding, Moore,

Wang and Wang 2004) and biomedical imaging. It is the most extensively studied quantum-

dot material and is therefore regarded as the model system for investigating a wide range of

nanoscale processes. CdSe is found to exhibit 1D morphologies of nanowires, nanobelts and

nanosaws (Ma and Wang 2005), often with the three morphologies being intimately inter-

mingled together within the as-deposited material. This article reports a systematic study

on the growth of 1D CdSe nanostructures through statistical analysis techniques, which are

applied for modeling and optimizing the experimental parameters required for synthesizing

desired nanostructures. This work has been done based on the experimental data presented

in this paper and research published in Ma and Wang (2005).

Three types of nanostructures, viz. nanosaws, nanowires and nanobelts, are observed in

the synthesis process. Images of these three nanostructures obtained using scanning electron

microscope are shown in Figure 1. In this experiment, the response is a vector whose elements

correspond to the numbers of appearance of different types of nanostructures and hence is

a multinomial random variable. Thus a multinomial generalized linear model (GLM) is the

appropriate tool for analyzing the experimental data and expressing the multinomial logits

as functions of the predictor variables (McCullagh and Nelder 1989; Faraway 2006). A new

iterative algorithm for fitting multinomial GLM that has certain advantages over the existing

methods is proposed and implemented. The probability of obtaining each nanostructure is

expressed as a function of the predictor variables. Owing to the presence of inner noise, i.e.,

variation around the set value, each predictor variable is a random variable. Using Monte-

Carlo simulations, the expectation and variance of transformed probabilities are expressed

as functions of the set points of the predictor variables. The expectation is then maximized

to find the optimum set values of the process variables, ensuring at the same time that the

variance is under control. The idea is thus similar to the two-step robust parameter design

for larger-the-better responses (Wu and Hamada 2000, chap. 10).

The article is organized as follows. In Section 2, we give a brief account of the synthesis

process. The experimental design and collection of data are described in Section 3. Section 4

is devoted to fitting of appropriate statistical models to the experimental data. This section
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consists of two subsections. In Section 4.1 a preliminary analysis using a binomial GLM

is shown. Estimates of the parameters obtained here are used as initial estimates in the

iterative algorithm for multinomial GLM, which is developed and described in Section 4.2.

In Section 5, we study the optimization of the process variables to maximize the expected

yield of each nanostructure. The impact of this research and some concluding remarks are

discussed in Section 6.

2 The synthesis process

The CdSe nanostructures were synthesized through a thermal evaporation process in a sin-

gle zone horizontal tube furnace (Thermolyne 79300). A 30-inch polycrystalline Al2O3 tube

(99.9% purity) with an inner diameter of 1.5 inches was placed inside the furnace. Commer-

cial grade CdSe (Alfa Aesar, 99.995% purity, metal basis) was placed at the center of the

tube as use for a source material. Single-crystal silicon substrates with a 2-nanometer ther-

mally evaporated non-continuous layer of gold were placed downstream of the source in order

to collect the deposition of the CdSe nanostructures. Water-cooled aluminum endcaps were

used to seal the system as a mechanical roughing pump purged the system of oxygen. After

the chamber had maintained a pressure of 2×10−2 torr for an hour, the system temperature

was raised to a designated set point at a rate of 200 C/min and a nitrogen carrier gas was

sent through the system at a rate of 50 sccm. Although the primary function of the carrier

gas was to transport the sublimated vapor to cooler regions of the furnace, the secondary

function of the gas was to build up the initial pressure of the system as well as controlling

the partial pressure of the vaporized source material. This ensured that the pressure of the

system was constant throughout the entire synthesis process. The system was held at the

set temperature and pressure for a period of 60 minutes and cooled to room temperature

afterwards. The as-deposited products were characterized and analyzed by scanning elec-

tron microscopy (SEM) (LEO 1530 FEG), transmission electron microscopy (TEM) (Hitachi

HF-2000 FEG at 200 kV). 180 individual nanostructures were counted from the deposition

on each substrate.
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A schematic diagram of the synthesis process is shown in Figure 2.

3 Design of experiment and data collection

The two key process variables affecting morphology of CdSe nanostructures are temperature

and pressure. A 5 × 9 full factorial experiment was conducted with five levels of source

temperature (630, 700, 750, 800, 8500 C) and nine levels of pressure (4, 100, 200, 300, 400,

500, 600, 700, 800 mbar). For a specific combination of source temperature and pressure, 4-6

substrates were placed downstream of the source to collect the deposition of nanostructures.

The distance of the mid-point of the substrate from the source was measured and treated as

a covariate.

Three experimental runs were conducted with each of the 45 combinations of temperature

and pressure. However, these three runs cannot be considered to be replicates, since the

number and location of substrates were not the same in the three runs. Consider, for

example, the three runs performed with a temperature of 6300 C and pressure of 4 mb. In

the first run, six substrates were placed at distances of 1.9, 4.2, 4.9, 6.4, 8.1, 10.2 cm from

the source. In the second run, four substrates were placed at distances of 1.7, 4.6, 7.1, 8.9

cm from the source. Seven substrates were placed at distances of 2.0, 4.3, 4.9, 6.4, 8.5, 10.6,

13.0 cm from the source in the third run. Therefore 17 (=6+4+7) individual substrates were

obtained with the temperature and pressure combination of (6300 C, 4 mb). Each of these

17 substrates constitute a row in Table 1. The total number of substrates obtained from

the 135 (=45× 3) runs was 415. Note that this is not a multiple of 45 owing to an unequal

number of substrates corresponding to each run.

Considering each of the 415 substrates as an experimental unit, the design matrix can

thus be considered to be a 415 × 3 matrix, where the three columns correspond to source

temperature (TEMP ), pressure(PRES) and distance from the source (DIST ). Each row

corresponds to a substrate, on which a deposition is formed with a specific combination of

TEMP, PRES and DIST (see Table 1).

Recall that from the deposition on each substrate, 180 individual nanostructures were
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counted using SEM images. The response was thus a vector Y = (Y1, Y2, Y3, Y4), where

Y1, Y2, Y3, and Y4 denote respectively the number of nanosaws, nanowires, nanobelts and

no morphology, with
∑4

j=1 Yj = 180. For demonstration purposes, the first 29 rows of

the complete data are shown in Table 1. These rows correspond to the temperature-

pressure combinations (630,4) and (630,100). The complete data can be downloaded from

www.isye.gatech.edu/∼roshan.

It was observed that, at a source temperature of 8500 C, almost no morphology was

observed. Therefore, results obtained from the 67 experimental units involving this level of

temperature were excluded and the data for the remaining 348 units were considered for

analysis.

Henceforth, we shall use the suffixes 1,2,3 and 4 to represent quantities associated with

nanosaws, nanowires, nanobelts and no growth respectivly.

4 Model fitting

4.1 Individual modeling of the probability of obtaining each nanos-

tructure using binomial GLM

Here, the response is considered binary, depending on whether we get a specific nanos-

tructure or not. Let p1, p2 and p3 denote respectively the probabilities of getting a nano-

saw/nanocomb, nanowire and nanobelt. Then, for j = 1, 2, 3, the marginal distribution of

Yj is binomial with n = 180 and probability of success pj. The log-odds ratio of obtaining

the jth type of morphology is given by

ζj = log
pj

1− pj

.

Our objective is to fit a model that expresses the above log-odds ratios in terms TEMP ,

PRES and DIST .

From the main effects plot of TEMP , PRES and DIST against observed proportions

of nanosaws, nanowires and nanobelts (Figures 3a, 3b and 3c), we observe that a quadratic

7



model should be able to express the effect of each variable on pj adequately. The interaction

plots (interaction plots for nanosaws shown in Figures 4a-4c) give a preliminary impression

that all the three two-factor interactions are likely to be important. We therefore decide to

fit a quadratic response model to the data.

For each process variable X, we use the transformation Y = 2
(
X −min(X

)
/
(
max(X)−

min(X)
)
− 1, so that the range of each transformed process variable is [−1, 1]. Let T, P

and D denote the scaled variables obtained by transforming TEMP , PRES and DIST

respectively.

Using a binomial GLM with a logit link (McCullagh and Nelder, 1989), we obtain the

following models that express the log-odds ratios of getting a nanosaw/nanocomb, nanowire

and nanobelt as functions of T, P,D :

ζ̂1 = − 0.99− 0.29 T − 1.52 P − 2.11 D − 0.95 T 2 − 1.30 P 2 − 5.64 D2

− 0.18 TP − 1.03 PD + 4.29 TD, (1)

ζ̂2 = − 0.56 + 0.82 T − 2.53 P − 1.59 D − 0.58 T 2 − 2.04 P 2 − 2.62 D2

+ 1.17 TP − 1.44 PD + 0.87 DT, (2)

ζ̂3 = − 1.68 + 0.19 T − 1.88 P − 0.58 D − 1.69 T 2 − 0.34 P 2 − 3.20 D2

+ 0.87 TP − 0.94 PD − 2.58 TD. (3)

All the terms are seen to be highly significant. The residual plots for all the three models

do not exhibit any unusual pattern.
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4.2 Simultaneous modeling of the probability vector using multi-

nomial GLM

Denoting the probability of not obtaining any nanostructure by p4, we must have
∑4

j=1 pj =

1. Although the results obtained by using the binomial GLM are easily interpretable and

useful, the method suffers from the inherent drawback that, for specific values of T, P and

D, the fitted values of the probabilities may be such that
∑3

j=1 pj > 1. This is due to the

fact that the correlation structure of Y is completely ignored in this approach.

A more appropriate modeling strategy is to utilize the fact that the response vector Y

follows a multinomial distribution with n = 180 and probability vector p = (p1, p2, p3, p4).

In this case, one can express the multinomial logits ηj = log(
pj

p4
), j = 1, 2, 3 as functions of

T, P and D. Note that ηj can be easily interpreted as the logg-odds ratio of obtaining the

jth morphology as compared to no nanostructure, with η4 = 0.

One method for fitting such nominal response models (Aitkin, Anderson, Francis and

Hinde 1989) is to create a pseudo factor with a level for each data point, and use a Pois-

son GLM with log link. This method, although appropriate for small data sets, becomes

cumbersome when the number of data points is large. In the presence of a large number

of levels of the pseudo factor, a large part of the output generated by standard statistical

softwares like R becomes redundant, because only the terms involving interaction between

the categories and the predictor variables are of interest. Faraway (2006) points out some

practical inconveniences of using this method. Its application to the current problem clearly

becomes very cumbersome owing to the large number (348) of data points.

An alternative method is to obtain the parameter estimates by direct maximization of

the multinomial likelihood function. One such algorithm provided by Venebles and Ripley

(2002), and implemented in statistical softwares R and S-PLUS, optimizes the likelihood

function using a neural network model.

We propose a new iterative method of fitting multinomial logit models. The method is

very intuitive and is based on an iterative application of binomial GLM. Owing to some

simple properties, testing significance of terms included in the model and, consequently,

variable selection becomes a very simple task. We develop the method in the next few
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paragraphs.

Let Yi = (Yi1, . . . , Yi4) denote the response vector corresponding to the ith data point,

i = 1 to N . Let ni =
∑4

j=1 Yij. Here, N = 348 and ni = n = 180 for all i. We have,

P (Yi1 = yi1, . . . , Yi4 = yi4) =
ni!

yi1! . . . yi4!
pyi1

i1 . . . pyi4

i4 .

Thus the likelihood function is given by

L(Y1, . . . ,YN) =
N∏

i=1

ni!

yi1! . . . yi4!
pyi1

i1 . . . pyi4

i4

=
N∏

i=1

ni!

yi1! . . . yi4!

3∏
j=1

(
pij

pi4

)yij

p
∑4

j=1 yij

i4 .

Defining ηij = log
pij

pi4
, we have

pij =
ηij

1 +
∑3

j=1 exp (ηij)
j = 1, 2, 3, (4)

and

pi4 =
1

1 +
∑3

j=1 exp (ηij)
. (5)

Therefore the log-likelihood can be written as

log(L) =
N∑

i=1

(
log ni!−

4∑
j=1

log yij! +
3∑

j=1

yij log
pij

pi4

+ ni log pi4

)

=
N∑

i=1

(
log ni!−

4∑
j=1

log yij! +
3∑

j=1

yijηij − ni log
(
1 +

3∑
j=1

exp (ηij)
))

. (6)

Let xi = (1, Ti, Pi, Di, T
2
i , P 2

i , D2
i , TiPi, PiDi, TiDi)

′, i = 1, . . . , N . The objective is to express

the η’s as functions of x. Substituting ηij = x′
iβj in (6) and successively differentiating with

respect to each βj, we get the maximum likelihood (ML) equations as

N∑
i=1

xi

(
yij − ni

exp(ηij)

1 +
∑3

j=1 exp (ηij)

)
= 0, j = 1, 2, 3, (7)

N∑
i=1

xi

(
y14 − ni

1

1 +
∑3

j=1 exp (ηij)

)
= 0, (8)
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where 0 denotes a vector of zeros having length 10. Writing exp(γil) =

(
1+

∑
l 6=j exp(ηij)

)−1

,

we obtain from (7)

N∑
i=1

xi

(
yij − ni

exp(ηij + γij)

1 + exp(ηij + γij)

)
= 0, j = 1, 2, 3. (9)

Note that each equation in (9) is the ML equation of a binomial GLM with logit link.

Thus, if some initial estimates of β2, β3 are available, and consequently γi1 can be computed,

then β1 can be estimated by fitting a binomial GLM of Y1 on x. Similarly, β2 and β3 can

be estimated. The following algorithm is thus proposed.

Binomial GLM-based iterative algorithm for fitting a multinomial GLM :

Let β
(k)
j be the estimate of βj, j = 1, 2, 3, at the end of the kth iteration.

Step 1. Using β
(k)
2 and β

(k)
3 , compute η

(k)
i2 = x′

iβ
(k)
2 and η

(k)
i3 = x′

iβ
(k)
3 for i = 1, . . . , n.

Step 2. Compute γ
(k)
i1 = log 1

1+exp(η
(k)
i2 )+exp(η

(k)
i3 )

, i = 1, . . . , n.

Step 3. Treating Y1 as the response and using the same design matrix, fit a binomial GLM

with logit link. The vector of coefficients thus obtained is β
(k+1)
1 .

Step 4. Repeat steps 1-3 by successively updating γi2 and γi3 and estimating β
(k+1)
2 and β

(k+1)
3

Repeat steps 1-4 until convergence. A proof of convergence is given in Appendix 1. Note that

we use the ‘offset’ command in statistical software R to separate the coefficients associated

with η1 from those with γ1.

To obtain the initial estimates η̂
(0)
i2 and η̂

(0)
i3 , we use the results obtained from the binomial

GLM as described in Section 4.1. Let

log
p̂ij

1− p̂ij

= x′
iδ̂j, (10)

where δ̂j is obtained by using binomial GLM. Recalling the definition of ηij, the initial

estimates are obtained as

η̂
(0)
ij = log

p̂ij

1−
∑3

l=1 p̂il

, j = 2, 3, (11)
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where p̂il, l = 1, 2, 3 are estimated from (10). It is possible, however, that for some i,∑3
l=1 p̂il = πi ≥ 1. For those data points, we provide a small correction as follows:

p̂il(corrected) =


p̂il

πi
(1− 1

2ni
) , l = 1, 2, 3

1
2ni

, l = 4
.

To justify the correction, we note that it is a common practice to give a correction of 1
2ni

(Cox 1970, chap. 3) in estimation of probabilities from binary data. The correction given

to category 4 is adjusted among the other three categories in the same proportion as the

estimated probabilities. This ensures that p̂il > 0 for all i and
∑4

l=1 p̂il = 1

In this example, there were 18 data points (out of 348) corresponding to which we had∑3
l=1 p̂il ≥ 1. Following the procedure described above to obtain the initial estimates,

convergence was achieved after the 27th iteration. The fitted models are given below:

η̂1 = 0.42− 0.12 T − 3.08 P − 3.68 D − 1.84 T 2 − 1.52 P 2 − 9.09 D2

+ 0.60 TP − 2.31 PD + 5.75 TD, (12)

η̂2 = 0.54 + 0.88 T − 3.85 P − 3.13 D − 1.21 T 2 − 2.28 P 2 − 5.26 D2

+ 1.83 TP − 2.62 PD + 2.07 TD, (13)

η̂3 = − 0.10 + 0.39 T − 3.67 P − 2.51 D − 2.51 T 2 − 1.12 P 2 − 7.07 D2

+ 1.72 TP − 2.38 PD + 4.47 TD. (14)

Inference for the proposed method:

To test the significance of the terms in the model, one can use the asymptotic normality

of the maximum likelihood estimates. Let Hβ denote the 30 × 30 matrix consisting of the

negative expectations of second-order partial derivatives of the log-likelihood function in (6),

the derivatives being taken with respect to the components of β1, β2 and β3. Denoting

the final estimator of β as β∗, the estimated asymptotic variance-covariance matrix of the

estimated model coefficients is given by Σβ∗ = Hβ∗
−1. For a specific coefficient βl, the null

hypothesis H0 : βl = 0 can be tested using the test statistic z = β̂l/s(β̂l), where s2(β̂l) is the

lth diagonal element of Σβ∗ .
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Let β
(k)
l denote the estimate of βl obtained after the kth iteration of the proposed algo-

rithm. Let s2(β
(k)
l ) denote the estimated asymptotic variance of β

(k)
l . It can easily be seen

(Appendix 2) that s2(β
(k)
l ) converges to s2(β∗

l ). Thus, as the parameter estimates converge

to the maximum likelihood estimates, their standard errors also converge to the standard

error of the MLE. More generally, if Σβ(k) denotes the asymptotic covariance matrix of the

parameter estimates at the end of the kth iteration, then Σβ(k) −→ Σβ∗ .

The above property of the proposed algorithm ensures that one does not have to spend

any extra computational effort in judging the significance of the model terms. The binomial

GLM function in R used in every iteration automatically tests the significance of the model

terms, and the p-values associated with the estimated coefficients after convergence can be

used for inference. Thus, the inferential procedures and diagnostic tools of the binomial

GLM can easily be used in the multinomial GLM model. This is clearly an advantage of

the proposed algorithm over existing methods. Further, the three models for nanosaws,

nanobelts and nanowires can be compared using these diagnostic tools. Such facilities are

not available in the current implementation of the R and S-plus based algorithms (Faraway

2006).

The z values corresponding to the 30 coefficients are presented in Table 2. The p values are

not included in the table as each of them is of the order 10−6 or less. All the 30 terms are seen

to be highly significant. To check the model adequacy, we use the generalized R2 statistic de-

rived by Naglekerke (1991) defined as R2 =
(
1− exp ((D −Dnull)/n)

)
/
(
1− exp (−Dnull/n)

)
,

where D and Dnull denote the residual deviance and the null deviance respectively. The

R2 associated with the models for nanosaws, nanowires and nanobelts are obtained as 61%,

50% and 76% respectively. This shows that that the prediction error associated with the

model for nanowires is the largest. This finding is consistent with the observation made by

Ma and Wang (2005) that growth of nanowires is less restrictive compared to nanosaws and

nanowires, and can be carried out at wide ranges of temperature and pressure.
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5 Optimization of the synthesis process

In the previous subsections, the three process variables have been treated as non-stochastic.

However, in reality, none of these variables can be controlled precisely and each of them

exhibits certain fluctuations around the set (nominal) value. Such fluctuation is a form of

noise, called internal noise (Wu and Hamada 2000, chap. 10) associated with the synthesis

process and needs to be considered in performing optimization.

It is therefore reasonable to consider TEMP , PRES and DIST as random variables.

Let µTEMP , µPRES, µDIST denote the set values of TEMP , PRES and DIST respectively.

Then we assume

TEMP ∼ N(µTEMP , σ2
TEMP ),

PRES ∼ N(µPRES, σ2
PRES),

DIST ∼ N(µDIST , σ2
DIST ).

where σ2
TEMP , σ2

PRES, σ2
DIST are the respective variances of TEMP , PRES and DIST

around their set values and are estimated from process data (Section 5.1). The task now is

to determine the optimal nominal values µTEMP , µPRES and µDIST so that the expected

yield of each nanostructure is maximized subject to the condition that the variance in yield

is acceptable.

5.1 Measurement of internal noise in the synthesis process

Some surrogate process data collected from the furnace were used for estimation of the above

variance components. Temperature and pressure were set at specific levels (those used in

the experiment), and their actual values were measured repeatedly over a certain period of

time. The range of temperature and pressure corresponding to each set value was noted.

The variation in distance, which is due to repeatability and reproducibility errors associated

with the measurement system, was assessed separately. The summarized data in Table 3

show the observed ranges of TEMP , PRES and DIST against different nominal values.

Under the assumption of normality, the range can be assumed to be approximately equal to

six times the standard deviation.
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We observe from Table 3 that, for the process variable DIST , the range of values around

the nominal µDIST is a constant (2× 0.02 = 0.04 mm) and independent of µDIST . Equating

this range to 6σDIST , we obtain an estimate of σDIST as 0.04/6 = 0.067 mm.

Similarly, for TEMP , the range can be taken to be almost a constant. Equating the

mean range of 12.8 (=2 × (2 × 7 + 3 × 6)/5) degrees to 6σTEMP , an estimate of σTEMP is

obtained as 12.8/6 = 2.13 degree C.

The case of PRES is, however, different. The range, and hence σPRES is seen to be an

increasing function of µPRES. Corresponding to each value of µPRES, an estimate of σPRES

is obtained by dividing the range by 6. Using these values of σPRES, the following regression

line is fitted through the origin to express the relationship between σPRES and µPRES

σPRES = 0.025µPRES. (15)

Recall that all the models are fitted with the transformed variables T, P, D. Each trans-

formed variable Y was obtained from the original variable X by a transformation of the form

a + bX, where a = 2X/
(
max(X) − min(X)

)
and b = −

(
max(X) + min(X)

)
/
(
max(X) −

min(X)
)
. Hence, µY = a + bµX and σY = |b|σX . Thus, we have,

T ∼ N(µT , σ2
T ), where µT = −8.4 + 0.012µTEMP and σT = 0.012σTEMP ,

P ∼ N(µP , σ2
P ), where µP = −1.01 + 0.0025µPRES, and σP = 0.0025σPRES,

D ∼ N(µD, σ2
D), where µD = −23.6 + 0.0154µDIST and σD = 0.0154σDIST .

5.2 Obtaining the mean and variance functions of p1, p2, p3

From (4), we have the estimated probability functions as p̂j = exp(η̂j)/
(
1 +

∑3
j=1 exp(η̂j)

)
,

where η̂j are given by (12)-(14).

Expressing E(pj) and V ar(pj) in terms of µT , µP , µD is not a straightforward task. To do

this, we use Monte Carlo simulations. For each of the 180 combinations of µTEMP , µPRES, µDIST

(µTEMP = 630, 700, 750, 800; µPRES = 4, 100, 200, . . . , 800; µDIST = 12, 14, 16, 18, 20) the fol-

lowing are done:

1. µT , µP and µD are obtained by appropriate transformation.
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2. 5000 observations on T, P and D are generated from the respective normal distributions

and ηj is obtained using equation (12), (13) or (14).

3. From the ηj values thus obtained, pj’s are computed using (4) and transformed to

ζj = log
pj

1−pj
.

4. The mean and variance of those 5000 ζj values (denoted by ζj and s2(ζj) respectively)

are computed.

5. Using linear regression, ζ̄j and log s2(ζj) are expressed in terms of µT , µP and µD.

5.3 Maximizing the average yield

Since the response here is of larger-the-better type, maximizing the mean is more important

than minimizing the variance in the two-step optimization procedure (Wu and Hamada 2000,

chap. 10) associated with robust parameter design.

The problem can thus be formulated as :

maximize ζj subject to

−1 ≤ µT ≤ 1, −1 ≤ µP ≤ 1, −1 ≤ µD ≤ 1 for j = 1, 2, 3.

Physically, this would mean maximizing the average log-odds ratio of getting a specific

morphology.

The following models are obtained from the simulated data:

ζ1 = − 0.75 + 0.20µT − 1.02µP − 1.39µD − 1.50µ2
T − 3.54µ2

P − 11.02µ2
D

+ 1.58µT µP − 2.22µP µD + 8.41µT µD, (16)

ζ2 = − 0.40 + 0.80µT − 2.96µP − 1.43µD − 0.98µ2
T − 2.45µ2

P − 6.05µ2
D

+ 1.87µT µP − 3.41µP µD + 2.13µT µD, (17)

ζ3 = − 1.25 + 0.26µT − 2.6µP − 0.42µD − 2.36µ2
T − 1.24µ2

P − 8.03µ2
D

+ 1.74µT µP − 3.32µP µD + 4.57µT µD. (18)
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Maximizing these three functions using the optim command in R, we get the optimal

conditions for maximizing the expected yield of nanosaws, nanowires and nanobelts in terms

of µT , µP and µD. These optimal values are transformed to the original units (i.e., in terms

of µTEMP , µPRES, and µDIST ) and are summarized in Table 4.

Contour plots of average and variance of the yield probabilities of nanosaws, nanowires

and nanobelts against temperature and pressure (at optimal distances) are shown in Figures

5a to 5e. The pink regions on the left (average) panels and the blue regions on the right

(variance) panels are robust regions that promote high yield with minimal variation. On

the basis of these contour plots and the optimization output summarized in Table 4, the

following conclusions can be drawn:

1. For nanosaws and nanowires, robustness of the synthesis process depends more on the

choice of pressure than on the temperature. The process is seen to be fairly robust at

a pressure below 400 mb, irrespective of source temperature.

2. For nanobelts, temperature affects robustness strongly, and for a pressure of less than

400 mb, the process is very robust only when the temperature is in close proximity of

7000 C.

3. A temperature of around 630 degrees and pressure of 310 mb simultaneously maximizes

the average and minimize the variance of probability of obtaiining nanosaws.

4. A temperature of around 700 degrees and pressure of around 120 degrees results in

highest average yield for nanowires. Low variance is also observed in this region.

5. Highest yield of nanobelts is achieved at a temperature of 680 degrees and pressure of

4 mb for nanobelts. This is also a low-variance region.

6. There is a large temperature-pressure region (pink in Fig 5c) that promotes high and

consistent yield of nanowires.

7. Highest yields of nanobelts and nanowires are achieved at higher distance (i.e., lower

local temperature) as compared to nanosaws.
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Except for the robustness-related conclusions, most of the above findings are summarized

and discussed by Ma and Wang (2005). They also provide plausible and in-depth physical

interpretations of some of the above phenomena.

6 Summary and concluding remarks

In this article, we report an early application of statistical techniques in nanotechnology

research. In terms of reporting results of nanotechnology experiments, this methodology can

be considered a significant advancement over the rudimentary data analysis methods using

simple graphs, charts and summary statistics (e.g., Song, Wang, Riedo and Wang 2005; Ma

and Wang 2005) that have been reported in the nanotechnology literature so far.

Apart from the advantages discussed earlier in this paper and mentioned by Ma and Wang

(2005), this study demonstrates how statistical techniques can help in identifying important

higher-order effects (like quadratic effects or complex interactions among process variables)

and utilize such knowledge in fine-tuning the optimal synthesis conditions. This work is also

an important step towards large-scale controlled synthesis of CdSe nanostructures, since in

addition to determining conditions for high yield, it also identifies robust settings of the

process variables that are likely to guarantee consistent output.

Here we discuss the specific features of the data arising from a specific nanotechnology

experiment and use a multinomial model to express the probabilities of specific morphologies

as functions of process variables. A new iterative algorithm which is more appropriate than

conventional methods for the present problem, is proposed for fitting the multinomial model.

Inner noise is incorporated into the fitted models and robust settings of process variables

that maximize the expected yield of each type of nanostructure are determined.

Future research may consist of determining more efficient statistical designs for conduct-

ing experiments in nanotechnology research and using latent variable techniques to explore

the mechanism of transition from one nanostructure to another.
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Appendices

Appendix-1: Proof of Convergence of the proposed algorithm:

For simplicity, consider a single predictor variable and assume that ηij = βjxi, where βj

is a scalar (i = 1, 2, . . . , N, j = 1, 2, 3). Let Q(β1, β2, β3) =
∑N

i=1

( ∑3
j=1 yijηij − ni log

(
1 +∑3

j=1 exp (ηij)
))

. Recall that β
(k)
j denotes the estimate of βj obtained after the kth iteration.

Then, it suffices to show that

(i) Q(β1, β2, β3) is a concave function of βj, j = 1, 2, 3, and

(ii) Q(β
(k+1)
1 , β

(k)
2 , β

(k)
3 ) ≥ Q(β

(k)
1 , β

(k)
2 , β

(k)
3 ).

It is easy to see that for l = 1, 2, 3,

∂2Q

∂β2
l

= −
N∑

i=1

nix
2
i e

βlxi(1 +
∑

j 6=l e
βjxi)

(1 +
∑3

j=1 eβjxi)2
≤ 0,

which proves the concavity of Q.

To prove (ii), we note that for given β
(k)
2 , β

(k)
3 the solution for β1 to the equation

N∑
i=1

(
yi1 − ni

eβ1xi

1 + eβ1xi +
∑3

j=2 eβ
(k)
j xi

)
xi = 0

maximizes Q(β1, β
(k)
2 , β

(k)
3 ).

From the first equation of (9) and steps 1-3 of the algorithm, we have

N∑
i=1

(
yi1 − ni

eβ
(k+1)
1 xi

1 + eβ
(k+1)
1 xi +

∑3
j=2 eβ

(k)
j xi

)
xi = 0,

which means β
(k+1)
1 = arg max Q(β1, β

(k)
2 , β

(k)
3 ). Therefore (ii) holds.
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Appendix-2: Proof of convergence of the estimated covariance matrix

Again, for simplicity, consider a single predictor variable and assume that ηij = βjxi

where βj is a scalar (i = 1, 2, . . . , N, j = 1, 2, 3). Let β
(k)
j denote the estimate of βj obtained

after steps 1-3 of the kth iteration and β∗
j denote the final estimate of βj obtained by the

proposed algorithm.

The estimated asymptotic variance of β
(k)
1 , denoted by s2(β

(k)
1 ), is given by the nega-

tive expectation of ∂2 log Lb1

∂β2
1

|
β

(k)
1 ,β

(k−1)
2 ,β

(k−1)
3

, where log Lb1 denotes the binomial log-likelihood

function of yi1(i = 1, . . . N) that corresponds to the first of the three equations in (9) and is

given by

log Lb1 =
N∑

i=1

log

(
n

yi1

)
+

N∑
i=1

yi1(ηi1 + γi1)− ni

N∑
i=1

log

(
1 + exp(ηi1 + γi1)

)
.

Now, s2(β∗
1), the estimated asymptotic variance of β∗

1 , is given by the negative expectation

of ∂2 log L
∂β2

1
|βj=β∗j ,j=1,2,3, where log L is the multinomial likelihood given by (6).

It can easily be seen that

∂2 log Lb1

∂β2
1

= −
N∑

i=1

nix
2
i

1 + exp(ηi2) + exp(ηi3)(
1 + exp(ηi1) + exp(ηi2) + exp(ηi3)

)2 =
∂2 log L

∂β2
1

.

By convergence of β
(k)
j to β∗

j for j = 1, 2, 3, it follows that s2(β
(k)
1 ) −→ s2(β∗

1).

Similarly, each component in the covariance matrix Σβ(k) can be proven to converge to

each component of Σβ∗ .
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Table 1: Partial data (29 rows out of 415) obtained from the nano-experiment

Temperature Pressure Distance Nanosaws Nanowires Nanobelts No growth

630 4 12.4 0 0 0 180

630 4 14.7 74 106 0 0

630 4 15.4 59 121 0 0

630 4 16.9 92 38 50 0

630 4 18.6 0 99 81 0

630 4 20.7 0 180 0 0

630 4 12.2 50 94 36 0

630 4 15.1 90 90 0 0

630 4 17.6 41 81 58 0

630 4 19.4 0 121 59 0

630 4 12.5 49 86 45 0

630 4 14.8 108 72 0 0

630 4 15.4 180 0 0 0

630 4 16.9 140 40 0 0

630 4 19.0 77 47 56 0

630 4 21.1 0 88 92 0

630 4 23.5 0 0 0 180

630 100 12.1 0 0 0 180

630 100 15.8 92 74 0 14

630 100 18.4 0 180 0 0

630 100 20.1 0 0 0 180

630 100 12.3 0 92 88 0

630 100 15.0 14 144 22 0

630 100 17.1 31 113 36 0

630 100 19.5 0 0 0 180

630 100 12.1 85 59 36 0

630 100 15.4 65 74 41 0

630 100 18.0 0 180 0 0

630 100 19.9 0 0 0 180
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Table 2: Computed values of the test statistic for each estimated coefficient

Nanosaws (η̂1) Nanowires (η̂2) Nanobelts(η̂3)

Term β̂ S.E. z-val. β̂ S.E. z-val. β̂ S.E. z-val.

Intercept 0.42 0.03 15.82 0.54 0.02 23.97 -0.10 0.03 -3.22

T -0.12 0.03 -3.65 0.88 0.03 34.89 0.39 0.05 7.89

P -3.08 0.04 -68.66 -3.85 0.04 -86.37 -3.67 0.07 -56.20

D -3.68 0.07 -49.53 -3.13 0.05 -62.62 -2.51 0.08 -29.67

T 2 -1.84 0.04 -49.29 -1.21 0.02 -50.36 -2.51 0.04 -57.94

P 2 -1.52 0.05 -31.02 -2.28 0.05 -49.55 -1.12 0.07 -16.18

D2 -9.09 0.11 -82.71 -5.26 0.06 -90.73 -7.07 0.10 -71.75

TP 0.60 0.05 13.01 1.83 0.04 50.39 1.72 0.07 25.51

PD -2.31 0.09 -25.21 -2.62 0.06 -42.03 -2.38 0.11 -22.28

TD 5.75 0.09 65.28 2.07 0.04 51.65 4.47 0.09 50.86

24



Table 3: Fluctuation of process parameters around set values

Temperature Pressure Distance

Nominal value Observed range Nominal value Observed range Nominal value Observed range

(µT ) (≈ ±3σT ) (µP ) (≈ ±3σP ) (µD) (≈ ±3σD)

630 ±7 4 ±10 11 ±0.02

700 ±7 100 ±10 13 ±0.02

750 ±6 200 ±20 15 ±0.02

800 ±6 300 ±20 17 ±0.02

850 ±6 400 ±20 19 ±0.02

500 ±40 21 ±0.02

600 ±40

Table 4: Optimal process conditions for maximizing expected yield of nanostructures

Nanostructure Temperature Pressure Distance

Nanosaws 630 307 15.1

Nanowires 695 113 19.0

Nanobelts 683 4 17.0
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Figure 1 : SEM images of nanostructures

(From the left : Nanosaws, nanowires and nanobelts)

Cooling 
Water

Cooling 
Water

Source Material

Pump

Substrate

Carrying 
Gas

Figure 2 : The synthesis process
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