Operating Window Experiments:
A Novel Approach to Quality and Reliability
Improvement

V. Roshan Joseph! and C. F. J. Wu?
University of Michigan
Ann Arbor, MI 48109 -1285

To appear in Journal of Quality Technology, October, 2002

Abstract

The operating window method is a novel tool in quality engineering. It has been practiced
in some industrial sectors but has received scant attention in academic research. If a critical
factor for competing failure modes can be identified, the probability of failures can be reduced by
widening the operating window of this factor, thus improving the system’s quality and reliability.
A rigorous foundation is given for some existing practice, particularly the operating window SN
ratio. A new strategy is given for design, analysis and system optimization, which improves
over existing practice. Illustration is given with the analysis of a wave soldering experiment.

Introduction

The performance of a product/process is often evaluated based on failure rate or defect rate.
This metric has the advantage that it can be easily converted into monetary units and therefore
is useful for managerial decision making. The failures can be thought of as extremities of certain
continuous functional characteristics of the system. Measuring a functional characteristic is thus
more appropriate for assessing the system performance. Statistically, the information contained
in a continuous variable is much more than observing some of its categories. Looking at the
extremities only can be misleading too. The importance of using a functional characteristic for
system optimization was emphasized by Taguchi and was supported by many researchers. See the
discussions in Nair (1992). Though this is the case in many real applications, it is difficult to
identify the right functional characteristic. Even after identifying it, sometimes it is difficult to
measure due to an expensive or inadequate measurement system. Operating window response is
introduced as an alternative in such circumstances.

The operating window is defined as the boundaries of a critical parameter at which certain
failure modes are excited. See Figure 1 for a paper feeder example. The concept of operating
window was first developed by Don Clausing in the late 70’s when he was working at the Xerox
corporation. He used an operating window response for the design of a friction-retard paper feeder
in a copier machine. Later the concept found applications in diverse areas such as wave soldering,
printed circuit board manufacturing, imaging, resistance welding, and drug dose studies. Details
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about the operating window can be found in Clausing (1994), Taguchi (1993), La Vallee (1992),
Parks (1992), Peace (1993), Mori (1995), Fowlkess and Creveling (1995), and Wu and Wu (2000)
among others.
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Figure 1: Operating window for a paper feeder

The concept of operating window is best explained using the paper feeder example. The function
of the feeder is to transport a single sheet of paper from the paper stack to a desired position. Two
failure modes are usually encountered. The feeder may fail to feed the sheet, which is known as
misfeed. On the other hand, the feeder may pickup more than one sheet of paper, which is known
as multifeed. The objective is to design the feeder to minimize both failure modes. A natural
way to do the optimization is to observe the occurence of the two failure modes by feeding, say
1000 sheets at different design settings and choosing a design that minimizes the total failure rate.
This is not a good metric for experimentation because a very large sample size would be needed to
distinguish between two design settings particularly when the probability of failure is small. The
total failure rate can also introduce spurious interactions among control factors. See Taguchi (1987,
Section 2.1) and Phadke (1989, Section 6.2) for some examples. This problem can be alleviated to
some extent by doing separate optimizations for each of the failure modes. It is difficult to obtain
a unique optimum with this approach because of the conflicting nature of the failures.

It is possible to think about some functional characteristics for optimization. The time of
arrival of the sheet at the output is a possibility (Clausing, 1994, page 204). If the sheet arrives
late, the feeder is tending towards a misfeed; if the sheet arrives early, it is tending towards a
multifeed. Another possibility is the friction force. If the feed roller-to-paper friction is less, it
leads to misfeed. If the paper-to-paper friction is large, it leads to multi feed. Unfortunately these
continuous variables are rather difficult to measure.

An alternative is to construct an operating window response. Stack force is a critical parameter
of the paper feeder and is easy to measure. A small force leads to misfeed and a large force leads
to multifeed. We can find two threshold values of the force at which the misfeed stops () and at
which the multifeed starts (u). Then (/,u) forms the operating window. See Figure 1. We call the
stack force an operating window factor. In the literature it is sometimes referred to as an operating
window signal factor. Since signal factor refers to a factor that is used to express an intent to a
system in order to achieve it, it is not an appropriate terminology in the present context. Some
examples of operating window factor are given in Table 1.

In reality there are no clear boundaries separating failure modes. So the boundaries are defined



Table 1: Examples of operating window factor

Process/Product Failure or defect type | Operating window factor
1 2
Paper feeder misfeed multifeed stack force
Wave soldering voids bridges temperature
Resistance welding | under weld expulsion time
Image transfer opens shorts exposure energy
Threading loose tight depth of cut
Picture printing black blur water quantity
Medication no effect  side effect dosage

with respect to a threshold failure rate. In customer’s view point the threshold rate should be very
small, such as 0.01% or 0.001%. In experiments values such as 50% are used in order to reduce the
experimentation time. Then [ is the value of the force at which 50% misfeed occurs and u is the
force at which 50% multifeed occurs.

Figure 2 shows the effect of noise factors on operating window. Because the noise factors are
uncontrollable during the production/usage conditions, the available operating window for reliable
operation reduces to (max;[;, min;u;). Intuitively, the two failure modes can be minimized by
keeping the operating window factor at the center of the operating window. A large operating
window then corresponds to a robust system. Thus the objective of achieving a robust design is
translated as mazximizing the operating window.
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Figure 2: Noise factors reduce the operating window

There are several control factors in a paper feeder such as wrap angle, belt tension, radius of
retard roll, width of feed belt, take away roll velocity, etc. The noise factors include paper weight
and type, environment, alignment errors, etc. The [ and u are then determined for several control
and noise factor settings. The optimization is done in two steps:



1. Find a control factor setting to maximize the signal-to-noise ratio

n

SN = —log <%il?%zu‘) (1)

=1 i=1

2. Adjust the operating window factor to the middle of the operating window.

The SN ratio in (1) was developed at the Fuji Xerox corporation. It is derived as follows (see
Taguchi, 1993). The two failure modes can be eliminated if { is reduced to 0 and w is increased
to 0o. Therefore [ is a smaller-the-better characteristic and u is a larger-the-better characteristic.
Using Taguchi’s SN ratios for smaller-the-better and larger-the-better problems

1S, 131
SN, = —log (ﬁ§l> and SN, = —log (5;?>

where the summation is taken over different noise levels (¢ = 1,2,---,n), the SN ratio for the
operating window is then defined as the sum of the SN ratios of [ and w, i.e.,

1 1S 1
N=—log[=Y 2] -1og|=) = ].
s = (1 228) s ()

At this point of discussion it may not be clear that why the SN ratio is defined as in (1) instead
of a more straight forward definition like log (% So(u; — li)2). It may not even be clear how the
maximization of operating window is related to the robustness of the system. In this article we
attempt to answer these questions and provide a statistical foundation and theory for operating
window experiments.

The article is organized as follows. In the following section we derive the SN ratio as a per-
formance measure independent of adjustment. We discuss some modeling strategies and develop a
two-step optimization procedure. A generalized performance measure using a more flexible model
is derived. Then the estimation of the operating window factor thresholds is considered. We sug-
gest an efficient sequential design to find the operating window factor thresholds. The analysis of
operating window experiments is illustrated with an example on wave soldering. Some concluding

remarks are given in the end.
Performance Measure and SN Ratio

In this section we derive the SN ratio in (1) as a performance measure independent of adjust-
ment (PerMIA). See Leon, Shoemaker, and Kacker (1987) and Leon and Wu (1992) for details on
PerMIA.

Let X be the set of control factors, N the set of noise factors, and M the operating window
factor. Then for a given N, the probability of failure due to defect type 1 (say, misfeed) p; and the
probability of failure due to defect type 2 (say, multifeed) py are functions of X, N, and M. Let
p1 = f1i(X,N, M) and p2 = fo(X, N, M). A typical behavior of these functions with respect to M
are shown in Figure 3. Let v be the failure threshold, such as 50%. The lower and upper operating
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Figure 3: Probability of failure curves against operating window factor

window factor thresholds can be solved from f;(X,N,l) = v and fo(X,N,u) = 4. Thus [ and u
are functions of X and N.
Consider the following one-parameter family of functions to approximate f; and fo,

1

= Tra (2)

p1 d p2

T 1yem2 "

At M =1 we have py = v and at M = u we have pp = . Solving for 6; and 603, we get
61 = (1 —7)/vI% and 62 = (1 — v)u?/v. Substituting in (2), we have

1 1
pp=——>+——andpp = —F+—. 3)
M2 (1-7) 2 (1—7)
L+ Ltam 5"

To evaluate the performance of a control factor setting, we need to define a loss function. In the
case of fraction defective data, Taguchi (1987) suggests to use L = ¢p/(1 — p) as the loss function,
where p is the fraction defective and c is a cost-related constant. This is because the extra number
of units to be produced to get a non-defective unit has a geometric distribution with mean p/(1—p).
The loss can be considered to be proportional to the expected number of extra units. In the case
of two types of failures, we can similarlly define the loss function as

y4! D2
L=c +c2 . 4
1—-p1 1—po )



Substituting (3) in (4) we get

l2 v M2

5
1—'7M2+c21—'y u?’

L=c

The expected loss taken over the distribution of N is

v o1 2 v 2 L
—E(l M E(—).
11—y M2 ( )+c21—'y (u2)

EL=c

We can set the value of M to minimize the expected loss. Solving for M from

0 B Y -2, 0 L,
8MEL = 011 —’)’M3E(l )+021 —’)/2ME(U2) =0,
we get
B2 1/4
c2 E(1/u?)

Then EL at the M*,

2
EL* = 1—7 c1esE(12)E(1/u?)
-7

can be used to evaluate a control factor setting X. The EL* is a PerMIA by definition. Thus the
objective is to find an X € D minimizing EL*, where D is the feasible region of X. In experiments
using fractional factorial designs or orthogonal arrays ( Wu and Hamada, 2000) D will usually be
a cuboid representing the experimental region. An equivalent performance measure to maximize is

PM = —log | E(1®)E(1/u?)| . (6)

When the noise factors have random levels in an experiment, the PM can be estimated using its
sample analog, which is the same as the SN ratio in (1).

It is interesting to note that PM does not depend on < or c¢;/ce. Thus PM can be used
irrespective of the failure threshold value chosen for determining ! and uw. The cost ratio ¢1/co
plays a role only in the adjustment step in (5). If ¢; > ca, then M is adjusted towards the upper
boundary and vice versa, which make intuitive sense. This is similar in the spirit of optimization
to the asymmetric loss function discussed in Moorhead and Wu (1998). For the case of single noise
level with ¢; = c2, the adjustment step in (5) reduces to adjusting the operating window factor
to vIlu. Thus in our formulation the adjustment in (5) is closer to a geometric mean of the two
thresholds than to the arithmetic mean discussed in Clausing (1994).

Note that E(I2) = E%(I) + Var(l) and E(1/u?) =~ 1/E*(u) + 3Var(u)/E*(u). Therefore PM
is a composite measure for doing the following jobs: (i) minimize E(I), (ii) minimize Var(l), (iii)
maximize F(u), and (iv) minimize Var(u). Thus operating window optimization is much more than
just widening the operating window. This suggests that a performance measure like Y (u; — I;)?
cannot be used for evaluating the robustness of a system.

For the two-step optimization discussed in the introduction, two models, one on SN and another
on the midpoint of the operating window have to be fitted. Based on the developments in this



section, we suggest a different modeling and optimization strategy. For each control factor setting,
compute

. 1 . 1
PM; = —log (; Zl?) and PM, = —log (; > 1/u?) :

We prefer this notation to SN; and SN, because we consider that signal-to-noise ratio is a misnomer
for smaller-the-better and larger-the-better cases as no ratios are involved.

Fit two linear models for PM; and PM,, in terms of the X. Now the two-step optimization
can be stated as follows:

1. Find X* € D to maximize PM(X) = PM;(X) + PM,(X).

2. Adjust M to (g—;)l/4 exp { (PM,(X*) — PM(X*)) /4}.

The approach will be explained with an example in a later section.
Generalized Performance Measure

The discussion in the previous section immediately motivates us to consider more flexible models
for p; and p2 such as

! and ! (8)
p1 = ar (q_ na p2 = w2 (1—7)
1_,_(%) % 1+(M)2(77)

where a1 and ay are some positive constants. The «; and ag control the rate at which p; and pa
change with M. See Figure 4. The models in (3) are special cases of (8) with a; = ag = 2. There
is no reason to believe that this choice is the best for every process. Using the loss function in (4),
the PerMIA can be similarly derived as

GPM = —log | B/ (1) BY/*2 (1 /u®?)] . (9)

where GPM denotes generalized performance measure. The GPM is very similar to the PM in
(6) as they differ only in the norms for [ and w. In the case of random noise levels, the GPM can

n 1/oa n 1/aa
G5 (54 2

=1 "t

be estimated by

GPM = —log

By considering the limiting case of GPM when a1 — 0o and ay — 0o, we have
GPMy, = log (mjn ul> — log <max li> .
(2 1

The interval
<max li,minui> (11)
7 (2
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Figure 4: Probability of failure curves for different o values

is the resultant operating window obtained by the superposition of the operating windows at several
noise levels. See Figure 2. Thus in the limiting case the robustness objective becomes maximizing
the logarithmic width of the resultant operating window. An important consequence of this result
is that we may not need to estimate the operating window factor thresholds at many noise levels.
We may be able to find a compound noise factor level favoring failure type 1 and estimate [, and
another compound noise factor level favoring failure type 2 and estimate u, which would suffice to
compute GPM . This approach can be used efficiently if we can choose an appropriate compound
noise factor and also assume a; and oz to be large.

Estimation

The [ and u are estimated by observing the number of failures at different levels of the operating
window factor. We use the example in Clausing (1994, page 216) to explain the approach. Suppose
the failure threshold is 50%. Then, for a particular control and noise factor setting, the following

experiments are conducted:

. set the stack force to 0.5 pound and make 10 attempts to feed, with seven misfeeds.
At 0.6 pound there are five misfeeds, and at 0.7 pound there are two misfeeds. We
conclude that 0.6 pound is the threshold force for misfeed ...

A similar experiment is performed to obtain the threshold force for multifeed.



The number of failures observed in a given sample is random. Therefore observing five misfeeds
out of 10 attempts does not ensure that we will observe again 50% misfeeds at the same level of
force. A better estimate of the threshold can be obtained by using all the data collected. Assume
that the model (2) is true. Then using logistic regression ( McCullagh and Nelder, 1989), we get

D1
1-pm

log = —1.1763 — 21log M.
From which [ = exp(—1.1763/2) = 0.555. Using the standard error of estimate, an approximate
90% confidence interval for [ can be obtained as (0.41,0.75). If we use only the data at M = 0.6,
then the confidence interval would be (0.33,0.93), which is almost twice as wide as the previous one.
Therefore the complete data should be used for estimating the operating window factor thresholds.
If we use the model in (8), then we get [ = 0.585 and &; = 11.05. We see that the value of o is
very different from 2. We should use the complete data set in the experiment to estimate a; and
a2. Unfortunately most of the experiments reported in the literature that we have come across do
not give the complete data set. The data are either not recorded or possibly thrown away after
getting [ and u in some manner. The complete data contains valuable information that will help
us to fit more elaborate models. Analysis of operating window experiments with the complete set
of data is a research topic under investigation. For the rest of the discussions in this article we will
work with model (3).

Sequential Design

As in the example given in the previous section, usually a trial and error method is used to find
the operating window factor thresholds. We can make use of sequential designs for binary data
available in the statistical literature to obtain the thresholds in a more systematic and efficient way.
Here we adapt the logit-MLE method of Wu (1985) to this problem.

Suppose we want to find the misfeed threshold. Let y; be the number of misfeeds observed in the
ith experiment out of m samples. Suppose we have the following data (My1,y1), (M2, y2),- -, (Mg, yk)
after k experiments. Let I be the MLE of I from this data based on model (3). The I} can be

solved from the equation

k 1 L

7
272_ = Z_
=14+ J‘If; (17“/) —=m

k

Then the next experiment should be carried out at My, = Zk The search is stopped when
| M1 — My| is less than a small pre-chosen value.The convergence of the sequence Mj, Ma, - - -
to ! is discussed and proved in Wu (1985) and Ying and Wu (1997). A similar set of sequential
experiments can be used to find the multifeed threshold.

We use the same example in the previous section to explain this approach. Suppose we observe
seven misfeeds in 10 attempts at M7 = 0.5. Then corresponding to 50% failure threshold, I, = 0.76.
Therefore the next experiment should be carried out at My = 0.76. If we did the experiment at
M> = 0.6 (as in the original example) and observed five misfeeds, then the next experiment should
be at M3 = i2 = 0.67, and so on.



Table 2: Control factors and levels

Factors Notation Levels
- +
PCB finish A hot air level bare copper
Solder mask B liquid photo-imagable dry film
PCB thickness C .062 inches .090 inches
Plated through hole size D .033 inches .039 inches
Flux air knife pressure E 40 psi 60 psi
Flux air knife angle F 0 degrees 45 degrees
Flux wave height G low high
Solder wave height H low high
Flux composition I low solids medium solids
Pad size J small large
Solder pump size K 55% 80%
Flux density L .86 gms/ml .87 gms/ml
Solder temperature M 460 OF 500 OF
Solder waves N single dual
PCB orientation 0 0 degrees 45 degrees
An Example

We will illustrate the analysis of operating window experiments using an example from Peace
(1993). Electronic components are assembled on a printed circuit board using wave soldering.
Insufficient heat energy results in solder voids, whereas too much heat energy causes solder bridges.
The objective of the study was to minimize both voids and bridges through parameter design
optimization. The top side board temperature is taken as the operating window factor. The
operating window factor thresholds are defined as follows:

l: top side board temperature at which solder voids stop.

u: top side board temperature at which solder bridges begin.

Peace did not mention the failure threshold value, but this will not be required in the analysis.
The control factors and their levels are given in Table 2. The printed circuit board carrier is taken
as the noise factor and has five levels. The data on [ and u from a 2}?}11 design are given in Table
3.

The PM, = —log (% Zl?) and PM, = —log (% 1 /uf) are calculated for each run. The
half-normal plots of the effects are shown in Figure 5. Because it is a saturated resolution 117
design, the two-factor and higher order interactions cannot be estimated and are assumed to be
negligible. We see that the effects A, D, G, L, and N are significant for PM); and the effects H, J,
and M are significant for PM,,. This is confirmed using Lenth’s method at 5% level IER (see Wu
and Hamada, 2000, Section 3.13). It is a coincidence that the two groups of factors do not overlap.
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Table 3: Data of wave soldering experiment

Run | ABCDEFGHIJKLMNO l U

1 | - 24'7 245 242 245 240 | 253 260 265 265 250
2 | ——————- ++++++++ | 235232 230 232 230 | 231 235 238 238 240
3 ———++++—-————++++ | 229 223 220 225 220 | 273 280 290 280 275
4 ———++++++++————| 234 230 235 233 228 | 222 230 235 230 228
5 —+4+—-——4++—-——4++——++ | 242 235 234 235 230 | 228 235 234 235 230
6 —+4+-——4++++—-—4+4+—— | 242 230 238 234 237 | 252 260 258 264 257
7 - +4+++————4++++——| 237 234 235 230 232 | 248 255 245 260 252
8 -—+4+++——+4+-————++ | 238 235 236 235 230 | 234 240 246 235 240
9 +—-—+—-—+—+—4+—4+—4+—+ | 241 240 235 240 235 | 270 275 285 270 275
10 | +—+—4+—++—+—+—+4+— | 230 225 222 215 215 | 215 225 222 215 225
1 | +—++—+——+—++—+— | 224 220 215 212 212 | 261 268 265 262 272
12 | +—4+4+—-+—-—+—4+——4+—+ | 231 230 228 228 226 | 225 230 238 228 236
13 | ++——++——++——+4+— | 239 235 235 230 235 | 235 235 235 240 245
4 |\ ++——++—-—+——++——+ | 239 235 238 235 230 | 235 235 238 245 250
5 | ++—4+—-——4+—-—++—-—+——+ | 223 220 215 218 218 | 245 255 265 238 258
6 | ++—4+——4+4+——+—+4+— | 222 220 215 224 218 | 255 260 265 244 268

The fitted models are (the factor levels are coded as -1 and +1),

PM; = —10.8776 + 0.0314A4 + 0.0377D + 0.0187G + 0.0272L + 0.0265N

and
PM, = 11.0204 — 0.0701H — 0.0920.J + 0.0457M.

Following the two-step optimization procedure in (7), the factor levels that maximize PM =
PM;+PM, are A, D, G H_J_L M_N,. At this optimum level the PM; and PM, are —10.7361
and 11.2282 respectively. Assuming ¢; = cg, the operating window factor should be adjusted to

(11.2282 + 10.7361
exp

1 ) = 242.5.

We have also plotted the effects of PM = PM; + PM, in the first panel of Figure 6. Note
that PM is the same as the SN ratio in (1). None of the effects seems significant. The Lenth’s
method at 5% level IER identifies only the effect J to be significant. A possible explanation for
this discrepancy is the following. A factor that increases ! tends to increase u also. Therefore
such a factor will have opposite effects on PM, and PM,. This may lead to a non-monotonic
relationship between the factor and PM = PM,;+PM,. The non-monotonicity in the response can
be manifested as nonlinearity and interactions among control factors which may not be estimable
from the experiment. Modeling PM,; and PM, separately avoids this problem.
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The half-normal plot of GPM, is shown in the second panel of Figure (6). The conclusions
from this plot are essentially the same as the previous analysis. It is not surprising that even though
the underlying models are very different, the analysis of PM and GPM, yields the same results.
This is because the sensitivity of the performance measure to a; and a2 is small.
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Figure 5: Half-normal plots of PMl and PM,

Conclusions

In this article we have given a comprehensive review of the operating window experiments and
attempted to provide a rigorous statistical foundation. We consider operating window experiments
to be a powerful tool for quality and reliability improvement, though a lot of changes and improve-
ments from the existing practice should be made on the design and analysis of the experiments.

The use of the operating window SN ratio in (1) is justified by using the theory of PerMIA
under some restrictive modeling assumptions. Based on the derivation, we have suggested a new
modeling and optimization strategy. The performance measure was further generalized using more
flexible models for the probability of failures. We have suggested using generalized linear models
to estimate the operating window factor thresholds from the data. The need of using complete set
of data in the experiment is emphasized for a more informative analysis. We have recommended
the logit-MLE method for sequentially searching the operating window factor thresholds instead
of using a trial and error approach. The superiority of the proposed analysis strategy is illustrated
with the analysis of a wave soldering experiment.
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