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1 Motivation

As we enter the second quarter of the 21st century, there is enormous enthusiasm
about Artificial Intelligence (AI) and its role in our societies. The expectation is that
AT will influence all aspects of our lives by providing solutions to problems that have
not been solved before, using enormous amounts of data and expensive compute.
And while there is overwhelming excitement for Al and its impact, there are concerns
about creating machines that will be smarter than humans. So, where is the truth in
all this?

In this article, we argue that the current dialog on Al is limited to problems and
use cases where Al is destined to succeed. And these are problems where there are
enormous amounts of data (big data) and available compute. But even in the cases
where both data and compute are available, ensuring safety, trustworthiness, and
generalization is a difficult task, especially for use cases such as decision making. We
assert that all the discussion regarding Artificial General Intelligence (AGI) is naive
and disregards the need to respect the unstable, scale, and constraints of many real-
world systems and networks of systems in which it is important to have some form
of autonomy. There exist different forms of complexity in the real world and these
forms are overlooked when we talk about Al and its capabilities in decision making.
So, what are these different forms of complexity in the real world? Why they are
important to our societies? And why will there not be a one-architecture-fits-all
approach when developing decision-making systems using AI? What other fields and
disciplines are needed to bring Al to solid ground and make it trustworthy?

To support our arguments in this article, we look back at the history of control
systems society and identify moments of reflection and skepticism regarding scientific
practices. We chose control theory because it is one of the closest disciplines to
current efforts and future promises to use Al for decision making. My goal is to
revisit epistemological debates of scientific disciplines that had a great societal impact,
such as control theory, and to create a relevant context within which we can have
meaningful discussion that goes beyond the current hype about Al
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In discussing these issues, we will use the terminology of AI-Driven Predictive
Decision Making or AI-Driven Planning systems to refer to decision-making archi-
tectures that use machine learning algorithms to represent different modules within
the decision-making architecture, including objective functions, dynamics, and/or
policies. In addition, we will use the term Architecture in two settings. The first
to describe the internal structure of AI-Driven Predictive Decision Making systems
which may consist of computational modules with specific functionalities such as
planning, perception, low-level control etc. The second is to describe the structure of
neural network representations themselves.

If you do not have time to read this article just read

the text in boxes ©.

2 Looking Back: What happened to Control Systems Society?

Back in 1989 at the international Conference on Decision and Control (CDC), Gunter
Stein delivered the first Bode Lecture in the history of Control Systems Society [1].
The Bode lecture and the corresponding Bode award is the most prestigious recog-
nition for a scientist working in areas of control and dynamical system theory. The
title of Gunter Stein’s lecture is "Respect the Unstable” and the topic is motivated
by the two major trends of that era, namely the need to work with more dangerous
systems, and the trend to worship more formal mathematics for control. At that time
the control systems society had reached its peak with four prior decades of signifi-
cant contributions in areas of optimal control, state estimation, robust and adaptive
control. As Gunter Stein put it bluntly:

“Control group is a very succesful group. Think about control systems ... they are in
our houses, they are in our cars and transportation systems. They are in our
factories and military systems ... they are everywhere ... they work and work and
work we hardly ever notice. So we are enormously successful and we should be proud
of that. But what issues do we have?”

Gunter Stein continues by expressing his concern regarding the detachment of
mathematics from the real-world physical consequences. His focus is on method-
ological approaches used for the design of feedback control systems in domains and
applications characterized as safety critical. As he explains:

“We certainly place a lot of value on mathematics, and I think we are doing it at the
expense of the real practical physical consequences of some of the things that
mathematics describes. If someone accepts that, then these two trends are in

opposition. .... We, at the moment, are very respected society. Society around us let

us control things that are dangerous ... more and more of them. They trust us. Our
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technology is well respected and no-one questions it basically. But if these two trends
continue that might not be true. We may in fact join the other areas of technology in
terms of how trustworthy we are.”

Gunter Stein’s lecture is a testament to the maturity of the control systems society
of that time. He not only emphasized the importance of connecting the mathematics
of control design to physics, but also provided a path forward by proposing that
we can worship mathematics and bring advanced methods for as long as there is
connection with the real physical consequences that these mathematics describe. In
his lecture as well as in his paper, Gunter Stein discusses famous accidents in the
domains of aerospace engineering, nuclear energy, including the Chernobyl accident
in April of 1986. The core concept in Gunter Stein’s message is the concept of stability
in dynamical systems and the fact that unstable systems are much harder to control
than systems with inherently stable dynamics. His paper is definitely worth reading
even for scientists outside the area of control theory.

Mathematical fanciness should not come at the
expense of losing the connection with the actual

physical consequences that mathematics describes.
This loss can have serious implications.

3 Moving Forward: The Era of Artificial Intelligence

When listening to Gunter Stein’s lecture [1] and reading his article [2], the first thing
that comes into my mind is whether the AI community today is at the point of where
the control systems society was back in 1989. Whether the dialog about Al addresses
the true epistemological issues of the field. Does Al bring us closer to the real,
physical consequences that mathematics and Al representations describe, or does it
abstract us further? Are there trends today that are in opposition? Can we have a
one-architecture-fits-all approach or do we need architectures that are tailored to the
decision-making task being considered? If the answer is yes, how can we talk about
AGI when architectures need to be tailored to the decision-making task to ensure
safety, guardrail satisfaction, and scalability? Should we focus only on Autonomous
Vehicles when we talk about applications of Al to decision making? Next, we will try
to address all these questions starting from the last one and going backwards.

3.1 Autonomous Vehicles (AV): A popular application of Al for
decision-making.

AVs, such as self-driving cars and terrestrial vehicles, are one of the most popular use
cases of Al for decision making. Existing technologies are just at the beginning, with
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few promising efforts in demonstrating autonomous driving in specific environments
and cities. There is a lot of work to do in scaling autonomy architectures to different
environments and achieving generalization and safety. It is one thing to demonstrate
a proof of concept, and it is another to make sure that this proof of concept scales in
different environments and meets the safety and generalization requirements. And,
as usually happens in challenging engineering projects, this last step takes 80% of the
total time and effort. Therefore, I am not underestimating the difficulty of AV. I am
just trying to say that this should not be the only use case when we talk about Al
as there are other forms and notions of complexity that go beyond the complexity of
self-driving cars and single-agent robotics problems. In addition, there is the area of
Urban Aerial Mobility, which adds an entire new dimension to the open problems we
have in autonomy and transportation.

In general, I think many of the questions related to safety and generalization will
boil down to what is the best decision-making architecture, that is, how to bring
perception, planning, and control/adaptation together. Should we design architec-
tures that are end-to-end and map raw multimodal sensing data to control decisions?
Should we impose a nominal architecture consisting of perception, planning, and
low-level control modules? How are uncertainty representations embedded? Which
architecture is better suited for generalization to different environments? There is a
difference when vehicles have to operate in partially known environments and in an
environment for which there is no prior information. How can adaptation improve gen-
eralization and which modules of the perceptual decision-making architecture should
we adapt? Although there is a lot of work on this space, it is important to test the
proposed architectures in the real physical world and not just rely on simulations.
For this reason, there is an issue with those who try to predict the future of Al for
decision making without showing demonstrations with experiments in the real world
or when they do not test their research ideas on challenging autonomy tasks with real
hardware. It is one thing to propose a decision-making architecture for autonomous
driving, it is another thing to actually do it.

Safety in autonomous vehicles will not come by just
imitating experts. We need to be thinking about

optimization-based decision-making architectures
and be obsessed with rigorous real world testing.

3.2 The dialog on Al should include large-scale decision-making
problems
The mainstream discussion today about the capabilities of Al includes use cases

such as self-driving cars, recommendation systems, applications of Al to health care,
biology, information retrieval, weather forecasting, and general applications of Al to
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science. Although this is a fairly broad list of areas, there are challenging large-scale
decision-making problems that have a high socioeconomic impact and are crucial to
our society. An example of large-scale decision-making problems is resource allocation
for general supply-demand systems.

In resource allocation problems, resources are allocated to meet demand require-
ments and achieve certain economic objectives in the presence of constraints and
uncertainty. What makes resource allocation problems challenging is that they are
typically large-scale, with dynamics, constraints, and decisions operating at differ-
ent spatio-temporal scales. These scales may vary from seconds to days or weeks.
Another characteristic of resource allocation problems, and in general of large-scale
decision-making problems, is that there are no human data that one could use to learn
optimal policies. Although humans are good at performing low-dimensional decision-
making tasks, such as driving a car or manipulating objects, they really struggle to
handle large-scale decision-making tasks. This means that the only option available
to find optimal policies is optimization with all the scientific and engineering chal-
lenges that this option entails in terms of scalability, feasibility, and robustness to
uncertainty. And this is where the actual challenges lie in dealing with networks, the
complexity and scale of which increases day by day, month by month, year by year.
An enthusiastic advocate for Al may say “I do not care how data are generated if
they are generated by a human or an existing decision-making system. For as long
as the data exist, I can always learn from them”. Well, 1 wish it were so easy. So,
yes you can learn from the data, but the question is whether you can guarantee that
you will not violate the physics, guardrails, and constraints of the problem in consid-
eration and in particular as the scale of problem increases. I will address this issue
later in this article when discussing model-free versus model-based neural network
representations. But for now the main point I am making is the following.

From self-driving cars to resource allocation problems in general supply-demand and
network control systems, there exist different notions of complexity. These notions
start from the complexity of perception-action-adaptation loops at the single agent

level and expand to the complexity of scale in networks and large-scale
decision-making problems (see Fig. 1). The dialog on AI should include the entire
spectrum of complexity and go beyond the popular use-cases of content (text, audio,
video) generation, self-driving cars, and applications of Al to robotic systems which,
with the exception of swarms, are for the most part low-dimensional.

Of course, the public and the media are excited about the capabilities of Generative
Al especially as they relate to use cases such as content generation and information
retrieval. Today, every professional can use Al tools to support work and increase
productivity, and this is great. However, as scientists, we have the obligation to talk
about problems that are difficult not only to solve but also to communicate to the
public. In the context of large-scale networks and general supply demand systems,
we take for granted our ability to deal with the increasing complexity, scale, and the
different sources of uncertainty. In many cases, such systems are part of the crit-
ical infrastructure of our societies, and their continuous operation is vital to basic
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Fig. 1. The different notions of complexity in predictive decision making: From au-
tonomous vehicles and robotics to networks and supply demand systems such
as satellite mega-constellations, data center networks and transportation/lo-
gistics.

operations, economic activities, and needs in the areas of transportation, telecommu-
nication, and information networks as well as in power and energy management.

It is myopic to focus only on autonomous vehicles
when discussing AI and decision making. There

exist different notions of complexity that go beyond
the complexity of perception-action loops.

3.3 Why are resource allocation problems important?

Next, I would like to discuss three examples of resource allocation problems that will
have a significant impact on our societies. These examples include resource alloca-
tion problems in data center networks, satellite mega-constellations, and transporta-
tion/air traffic management. All examples share the same characteristics, that is,



3 Moving Forward: The Era of Artificial Intelligence 7

they include networks of increasing complexity, scalability, and demand. In addition,
if not already, these networks will be part of the critical infrastructure of our societies,
and thus their non-disrupted and safe operation is essential.

Starting with the data center management use case, there is a clear trend in in-
creasing energy consumption due to the growth of Al-related technologies and the
need for more compute. Recent reports [3] on data center energy usage predict a
demand increase of 4.4% of total electricity consumption in the US in 2023, to fore-
casts that range from 6.7% to 12% by 2028. Given this surge in computing demand
and the need for more energy, there is an ongoing discussion in terms of what the
best technologies are to support the energy needs of data center networks. These
include clean energy solutions, nuclear energy and technologies such as Small Mod-
ular Reactors (SMRs) [4, 5]. From a decision-making perspective, the data center
management is a large-scale network control problem with decisions, dynamic pro-
cesses, and constraints at different spatio-temporal scales [6], and different sources
of uncertainty including forecasting demand, stochasticity in energy production and
weather conditions. As the scale and complexity of these networks increases, there
is a need for distributed optimization and scalable decision-making technologies that
can efficiently plan for resource allocation - how to allocate compute resources - to
meet increasing demand requirements while satisfying capacity, energy constraints,
and safety guardrails in the presence of uncertainty. Some relevant academic work on
this space includes references [7, 8, 9, 10, 11, 12, 13, 14, 15].

In the area of satellite networks, there are several studies that forecast a growth
of the total market economy [16, 17]. Although forecasts have their own assumptions,
there is a clear trend in terms of an economy that will increase its size due to the
decrease in launch cost, several technological innovations, and a diversified pool of
investments that includes the government and the private sector. This rise will have
a significant impact on a wide range of industries, including automotive and man-
ufacturing, aviation, information technology, supply chain and transportation, and
many others, by providing new capabilities and services. And just to understand
where we are headed, projections on the scale of satellite networks tell us that by
2030 there will be 63,000 satellites orbiting Earth [18] from 5,500 in 2022. In this
context of satellite constellations on a large scale, we are talking about moving supply
demand networks with a topology that varies in time in which there are several large-
scale decision-making and resource allocation problems that need to be considered
and solved in a coordinated fashion [19]. As the scale of such networks increases in
terms of number of satellites, users, and services, the complexity of corresponding
decision-making problems will also increase.

Finally, in the domain of aviation, in a recent 2024 report by Federal Aviation
Administration (FAA) [20] there is a clear trend of increasing demand in air trans-
portation. As the report indicates, the total number of passengers to/from the US
from American and foreign flag carriers will increase from 250M to 475M by 2044.
There are several large-scale decision-making and resource allocation problems to be
solved in air traffic management, such as slot allocation, capacity management, and
route planning to ensure minimum delays, reduce airspace congestion, and perform
optimal scheduling [21, 22]. The situation in transportation and air traffic man-
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agement is becoming more complex when considering emerging technologies in the
domain of Urban Aerial Mobility with the use cases of air taxis and air-cargo vehicles
as well as drone delivery services [23, 24, 25]. Are we going to double the size of our
airports and the number of aircrafts to meet the increasing demand? How are we go-
ing to handle the increasing traffic in the airspace? Although it is difficult to answer
these questions, one thing is certain: we will need reliable and scalable technologies
for large-scale resource allocation that can handle uncertainty, constraints, and in-
creasing demand for transportation networks. Recent efforts [26, 27] on the design
of market mechanisms are steps in the right direction; however, this is only the be-
ginning, as more emphasis should be placed on how to handle sources of uncertainty
and how to scale distributed optimization as networks increase their complexity and
size.

I hope that by this point the reader sees a common theme in these three examples.
This common theme says that:

There are resource allocation problems with a rapidly increasing complexity due to a
number of socio-economic and technological reasons. Although Al technologies can be
used to support functionalities such as forecasting or model learning within predictive

decision-making architectures designed for these resource allocation problems, the
core challenges lie in scaling dynamic optimization and having a principled
methodology to take into account the different sources of uncertainty and constraints.
The shortcut of learning from a human does not apply here. In addition, the
discussion on comparison with human intelligence does not apply here either. These
architectures must be interpretable so that they can be audited when this is necessary.

We should appreciate the complexity of scale in
resource allocation and networked control problems.

These problems have high socio-economic impact
and their complexity rapidly increases with time.

3.4 Scale makes things harder

Satisfying guardrails and handling uncertainty becomes harder and harder as the
scale increases. The scale of resource allocation problems is large due to the fact that
they typically have many decisions to be optimized, and as we have already discussed,
these decisions operate at different spatio-temporal scales.

An argument that could be an antilogos to our message here is: How is it possible
that we can optimize neural network representations with billions of parameters but
we struggle with resource allocation problems. The answer to this question is that re-
source allocation problems are large-scale optimization problems that are constrained
by the physics of processes, as well as constraints that represent guardrails and safety
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requirements. From an optimization perspective, there is a profound difference be-
tween training a neural network for supervised learning and performing optimization
in a large-scale network to allocate resources in the presence of constraints and uncer-
tainty. In the former case, we are looking for a point in the state space that optimizes
an objective function, while in the latter case, we are looking for a point in the state
space that, besides optimizing the objective, has also to satisfy guardrails and con-
straints. In addition, another reason for why the two paradigms are different is that
the economics of training deep neural networks will not work in the case of large-
scale resource allocation problems. Very often re-optimization needs to take place in
large-scale networked control systems as they operate in changing environments. How
often depends on the levels of non-stationarity of the environment. For this reason,
optimization in resource allocation problems can not be expensive.

It is also important here to appreciate the relationship between scale and uncer-
tainty. In layman terms, in an ideal world that is completely deterministic, resource
allocation problems in supply demand systems have already an enormous scale for the
reasons that we have already explained. The addition of uncertainty in the decision-
making process further increases this initial scale in a multiplicative way. Essentially,
if you want to consider uncertainty in the decision-making process, the price that
you have to pay is the increase in scale and, therefore, in computation. Due to this
multiplicative effect that uncertainty has on the initial scale, handling uncertainty in
large-scale decision-making problems is much harder than in problems with a small
scale. In general, my main point here is this.

Starting with Gunter Stein’s presentation back in 1989, it is important not only to
respect the unstable but also to respect the increasing scale and constraints of
networked systems. These systems have high socioeconomic impact, and their safe
and non-disrupted operation are essential to our society. In the same spirit of how
hard it is to control unstable systems vs. stable systems, it is important to
acknowledge that it is hard to control and optimize large-scale systems. So, scale
makes things harder even if the world was purely deterministic. The consideration of
uncertainty in the decision making process adds more complexity by increasing the
initial scale in a multiplicative fashion.

Scale and uncertainty make resource allocation
problems very hard to solve. It is a lot harder to

deal with uncertainty as the scale of a
decision-making problem increases.

3.5 Removing the opacity of neural network representations.

Al-driven predictive decision making systems, especially those relying on black-box
(model-free) representations, are not configured to guarantee safe operation that is
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Fig. 2: Deep Unfolding and Iterative Optimization Algorithms. Figure taken from
[32] with the author’s permission

interpretable and generalizable. Safe operation means constraint satisfaction in the
presence of uncertainty at all times and in all environments and for the case of re-
source allocation problems at all scales. It is hard to believe that because neural
networks have learning rules such as backpropagation or because they can be trained
in a distributed fashion that they will be able to solve resource allocation problems.
There are other characteristics of neural network representations that are relevant to
constraint satisfaction and safety, and from my point of view these characteristics are
related to the underlying architecture and structure of neural networks. The good
news is that there are ways to design the underlying architecture on the basis of
the physics of the processes to which neural networks are trained to represent. The
majority of the work on this space is related to Physics-Informed Neural Networks.
These are essentially neural networks that are designed to represent systems with
temporal or spatiotemporal dynamics [28, 29, 30, 31].

In a similar vein with the physics-informed neural networks, there have been efforts
to design neural network representations based on the dynamics of iterative optimiza-
tion algorithms. The resulting neural networks are used to learn the solutions of opti-
mization algorithms with each layer of the neural network architecture corresponding
to one iteration of the iterative optimization counterpart. The learnable parameters
in each layer correspond to the open parameters of the corresponding optimization
algorithm (see Fig.2). This area is known by the names Algorithmic Unrolling (AU),
Learning-To-Optimize (L20), or Deep Unfolding (DU) and the first attempt is refer-
ence [33]. Applications include the areas of signal and image processing, compressed
sensing, and state estimation [34, 32, 35, 36|, game theory [37], and optimization
problems where decision variables are integers [38]. DU provides a range of architec-
tural designs for neural network representations that can be customized based on the
levels of domain knowledge incorporated into them (see Fig.2).

One of the most promising areas for DU is distributed optimization for large-scale
decision making, training and quadratic programming [39, 40, 41, 42]. The result so
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far demonstrated that the deep unfolded architecture surpasses the performance of the
iterative optimization counter parts, they can generalize well to similar problems and
satisfy constraints as these are embedded in the architecture, they are interpretable
since each layer corresponds to an iteration of the corresponding optimization algo-
rithm, and they provide a functional representation of the optimization algorithms.
This last characteristic paves the way towards certifying the aforementioned neural
network representations and then deploying them to perform decision-making tasks
in safety critical domains. I think this is where there is a lot of room for new ideas
and research on neural network architectures that are tailored to the decision-making
problem being considered. We will call this relatively new research direction: From
Optimization Algorithms in Decision Making to Neural Network Representations.

In another line of research, existing neural network representations, such as trans-
formers, have been derived based on optimization unrolling [43, 44, 45] using specific
energy functions. These energy functions are designed such that when performing
algorithmic unrolling the structure of known neural networks architectures emerge.
Besides seeding light into how known representations can be designed in principled
way, the connections to energy functions and algorithmic unrolling offer opportuni-
ties for novel neural network architectures. We will call this research direction: From
Neural Network Representations to Unrolling Optimization and Backward. The log-
ical steps of this line of research are in the opposite direction to the one described
in the previous paragraph, in which there is no prior neural network representation
in mind and the unrolling process starts with pre-existing optimization algorithms.
In the context of decision-making and planning tasks, these algorithms correspond
to constrained dynamic optimization and optimal control with objective functions
comprise of actual physical energy objectives, penalties that encode safety guardrails,
and terms that have some economic meaning and interpretability. Thus, it should be
clear that the two lines of research are substantially different as they serve different
purposes. So, my main point here is this:

The idea of AGI using general-purpose black-box neural network architectures is far
from the need to design Al-driven predictive decision making systems that are
interpretable and trustworthy. Only when neural network architectures are designed
using the dynamics of the physical process or the dynamics of iterative optimization
algorithm they are trained to represent can we talk about safe, reliable and
interpretable operation.

The above message may appear to be restrictive for the main-stream research
on Al. One may argue that there are abstract planning tasks that are related to
higher and more strategic levels of cognition for which the corresponding states do
not directly map into the physics of the real world. In fact, there are philosophical
considerations on the topic of opacity of neural networks that are willing to accept
opacity when neural networks are used as guides to explore or draw attention to
promising avenues in scientific discovery [46] in contrast to previous epistemological
efforts to define a framework for transparency in complex computational systems [47].
Although I am cautiously open to accepting this proposal for tasks such as scientific
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discovery, we should never give up on seeking to reduce opacity in deep learning. Even
for high-level cognitive tasks such as scientific discovery, strategic decision making in
management and economics [48], or planning in diplomacy and geopolitics [49, 50],
there should be abstract representations of a state space in which high-level planning
and search occurs. Either by defining a planning task as an optimization algorithm
and then designing a neural network architecture using algorithmic unrolling, or by
first heuristically designing a black-box neural network architecture and then seeking
to understand how its structure emerges from properly designed energy objectives and
optimization algorithms, there is a path towards reducing opacity even for high-level
cognitive tasks. This path will require multidisciplinary work at the intersection of
optimization, control, and statistics.

Optimization-informed neural network architectures
is the way to go towards safe and reliable AI-driven

decision-making. These architectures are
interpretable and tailored to decision-making
problems being considered.

3.5.1 Explainability in Al-driven Planning Systems

Although in the previous section we discuss the important issue of opacity in general
neural network representations, the elephant in the room is on the explainability of
decisions produced by Al-driven predictive decision-making systems. With physics-
and optimization-informed neural network representations, we can reduce opacity in
such systems. But what other sources of opacity exist? The answer to this question
is related to the need to represent Value Functions (VFs) and the crucial role that
these VFs play in decision making. VFs encode information about the future beyond
the look-ahead horizon used in planning systems. Such systems typically optimize
objectives that are split into short- and long-term, while the overall optimization is
constrained by the physics and guardrails of the processes for which they are designed
to make decisions. Without getting technical, let us consider a process that has states
s and actions a with look ahead horizon T" and $ denoting the time derivative of state.
The objective to be optimized has the typical form:

to+T
Objective = / i €<3(7), a(7)>d7’ + V(s(to +7T),t, + T> (1)
to
Short Term Long Term
Subject To :
Dynamics(s, a, $) =0 (2)

Guardrails(s,a) <0 (3)



where V' is the corresponding VF and ¢ is cost or reward accumulated over the look
ahead horizon. Based on the mathematical representation in (1), (2) and (3) we
shall think of VFs as a way to guide planning systems to proactively act in pres-
ence of future events and environment changes. One way to reduce the sensitivity
of decision-making to the VF representation is to increase the look-ahead horizon T
Unfortunately, this choice comes at the cost of increasing the computational com-
plexity, and it is typically avoided when decisions have to be real time or when scale
is large. Essentially, knowing the VF is a very hard problem given the fact that VF
should satisfy the Dynamic Programming Principle [51]. From a practical perspective
VFs can be manually designed; however, in complex, and large-scale dynamical sys-
tems and planning tasks VFs should be learned. The ability to learn VFs depends on
the levels of nonstationarity of the environment. This is a particular important point
of consideration for systems that operate in the real physical world such as robotics,
AVs, swarms as well as general supply demand and network controlled systems.
So, my overall point here is this:

When thinking about the opacity of Al-driven planning systems and the
explainability of their decisions, this will certainly depend on the complexity and
interpretability of the underlying VF representations. But even in this case, the

resulting decision-making architecture would be so much easier to interpret compared
to an architecture in which dynamics, constraints, objectives and optimization
algorithms are all together represented by a single giant black-box neural network.

Value Functions (VFs) are important for guiding
Al-driven decision-making systems. The
explainability of decisions of such systems depends

on our ability to interpret VFs and understand their
interaction with optimization. This interaction is
the source of intelligent behavior.

4 Concluding Remarks: The Lack of Mesotes!

In closing this article, it is worth discussing whether there exist two trends today that
are in opposition. The answer is yes. The first trend is to develop general-purpose
AT systems towards AGI. The second is the request to deploy Al systems to more
and more cases in the real world and have the expectation that these systems will
be trustworthy. Physics-informed and optimization-informed neural network archi-
tectures reduce the gap between mathematical representations and the real physical

! This concept is central in Aristole’s Nicomachean Ethics. Mesotes (Meo6tns) the virtue of
avoiding extremes by integrating opposite views towards a golden mean (xpvo”n Toun).



consequences that these representations describe. Such architectures pave the way
towards the development of trustworthy predictive Al decision-making systems and
allow their deployment to safety critical applications, starting from self-driving cars
and UAM vehicles to large-scale decision-making and resource allocation problems in
networks and supply-demand systems.

In general, I would like to be optimistic and say that there is a great future for
Al and that the overall impact on our societies will be positive. However, to develop
trustworthy Al technologies, we will have to rely on disciplines such as optimization
theory, control and statistics that are canonical and provide ways to design predictive
Al decision-making systems that respect the unstable, scale and constraints of real
physical as well as socio-economic systems and are transparent. In this sense, they
will be safe for deployment in the real world. Therefore, I believe that there is
a path forward for ethical, responsible, and trustworthy AI. However, this path is
epistemologically in the opposite direction to where the mainstream Al ecosystem is
moving today. In the post-modern era that we live in, I think it is important to have
a balanced view between tradition and modernism, between the history of science and
its future. Not everything that comes from tradition is great, but at the same time we
should be skeptical with overpromising statements about the capabilities of certain
technologies such as Al. Recognizing the existence of conservation laws, constraints,
and scale makes us humble and allows us to make careful predictions about the future.

Thanks for reading!

Disclaimer: The positions and claims in this article represent only the personal
opinions and views of the author.
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