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Abstract

Modeling and predicting solar ramping events,
which have complex spatio-temporal dependencies,
are critical for improving situational awareness of so-
lar power systems. To tackle these challenges, we
adopt a novel spatio-temporal categorical point pro-
cess model, which intuitively and effectively addresses
correlation and interaction among ramping events.
We demonstrate the interpretability and predictive
power of our model in real-data experiments.

1 Introduction

Modeling ramping events in solar power systems is
essential. Ramping events [Florita et al., 2013, Cui
et al., 2015, Kamath, 2010] are one-bit information
that represents abnormal events in sequential obser-
vations. They can be interpreted as abrupt slope in-
creases or decreases in power generations and typ-
ically occur under extreme weather (e.g., rainstorm
or hurricane) [Rocchetta et al., 2015]. The power sys-
tem is vulnerable to such events, which forces the af-
fected units to shut down. Therefore, predicting these
events is valuable for distribution operators to take
necessary precautions and reduce restoration costs.

In general, the ramping event is also challeng-
ing to predict because of (i) spatio-temporal corre-
lation, (ii) non-stationarity, and (iii) computational
efficiency in online prediction. This paper addresses
these challenges through two contributions. First, we
present a spatio-temporal categorical point process
originally proposed by Juditsky et al. [2020]. The
model can flexibly capture the spatio-temporal cor-
relations and interactions among binary or categori-
cal ramping events without assuming time-decaying
influence. The model parameters are efficiently es-
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timated using convex optimization with theoretical
guarantees. In addition, the model can efficiently
make online probabilistic ramping event predictions
at any location and time. Second, we propose dy-
namic decision thresholds to address non-stationary
when making online predictions of a future ramping
event. These dynamic thresholds show improved per-
formance over static ones.

Literature. There have been many works on solar
ramping event modeling. A line of work started by
Florita et al. [2013] adopts the Swinging Door Al-
gorithm (SDA) commonly used in data compression,
which does not build statistical models. Later, Cui
et al. [2015] and Cui et al. [2017] propose an op-
timized SDA using dynamic programming. How-
ever, these works do not have theoretical guaran-
tees and consider no spatio-temporal correlations.
Among recent works, Abuella and Chowdhury [2019]
uses ensemble-based probabilistic forecasts but needs
access to many features besides historical ramping
events. In addition, limited data can hamper perfor-
mance. Meanwhile, Zhu et al. [2019] proposes a fore-
warning method using a credal network and imprecise
Dirichlet model to study power change by meteoro-
logical fluctuation. However, the authors only pro-
vide probabilistic forecasts without online categori-
cal predictions. As a result, dynamic solar ramping
event modeling remains a great challenge, especially
under strong spatio-temporal correlation.

We can also view ramping event modeling as a type
of anomaly detection. Research on anomaly detection
in the time series analysis area has also been active
for decades, which could be traced back to Grubbs
[1969]’s work in the 1960s. There are many conven-
tional works on the topic, such as Aggarwal [2015],
Akoglu et al. [2015], Gupta et al. [2013]. Also, many
works use modern deep learning frameworks to deal
with more complex patterns such as Hawkins et al.
[2002] and more. However, none of these works have a
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flexible anomaly detection model under strong spatio-
temporal correlation for non-stationary data. Lastly,
Xu and Xie [2021] uses novel conformal prediction
techniques for anomaly detection in spatio-temporal
data, but it is yet unclear how the method can be
applied to categorical responses.

2 Model and Prediction

Notation. Observed data are denoted as ωT =
{ωtk, 1 ≤ t < T, 1 ≤ k ≤ K} for T time steps at K lo-
cations, where ωtk ∈ {0, 1, . . . ,M} denotes the state
of the ramping event out of M + 1 possible states (0
means it is a non-ramping event). Meanwhile, given
a memory window d, define ωtt−d = {ωsk, t− d ≤ s <
t, 1 ≤ k ≤ K} as all ramping data in the past d time
units from all location.

Model. We now define the spatio-temporal proba-
bilistic model for ramping events. For each location
k, we associate an array of birthrate parameters β̄k =
{βk(p), 0 ≤ p ≤M}, and for every pair of locations
k, l and every s ∈ {1, . . . , d}, an array of interaction
parameters β̄sk` = {βsk`(p, q), 0 ≤ p ≤M, 0 ≤ q ≤M}.
Thus, for each ramping state p ∈ {1, . . . ,M}, the con-
ditional probability of ωtk being in state p = 0, . . . ,M
on ωtt−d is written as

P[ωtk = p|ωtt−d] = βk(p) +

d∑
s=1

K∑
`=1

βsk`
(
p, ω(t−s)`

)
,

(1)
This conditional probability model explicitly cap-
tures the dependence of event at time t and lo-
cation k on events from all locations in the past
d days. The set of model parameters are β ={
β̄k, β̄

s
k` : 1 ≤ s ≤ d, 1 ≤ k, ` ≤ K

}
. Define the num-

ber of parameters κ := K(M + 1) + dK2(M + 1)2,
then β ∈ Rκ, subject to (1) lies within [0, 1].

Estimation. We introduce both the least-square (LS)
method and the maximum likelihood (ML) estima-
tion technique for model estimation.

We obtain the LS estimate β̂LS(ωN ) by minimizing
the following optimization problem objective:

1

2N

N∑
t=1

K∑
k=1

∥∥∥∥∥
(
β̄k +

d∑
s=1

K∑
`=1

β̄sk`
(
ω(t−s)`

))
− ω̄tk

∥∥∥∥∥
2

2
(2)

In (2), ω̄tk := eωtk
∈ RM+1 is the vector of

ramping states, whose ith entry is 1 if ωtk is in
state p = 0, . . . ,M . This vector encodes the true
state of the data point at time t and location k.
Also, β̄k = {βk(p) ∈ R, p ∈ {0, ...,M}} ∈ RM+1

and β̄sk`
(
ω(t−s)`

)
= {βsk`

(
p, ω(t−s)`

)
∈ R, p ∈

{0, ...,M}} ∈ RM+1. Moreover, note this optimiza-
tion problem has a strongly convex objective func-
tion (e.g. the least-square cost function), so it can be
solved efficiently in polynomial time.

Following [Juditsky et al., 2020], we can obtain the

ML estimate β̂ML(ωN ) by minimizing the following
objective:

− 1

N

N∑
t=1

K∑
k=1

ln

(
βk(ωtk) +

d∑
s=1

K∑
l=1

βskl(ωtk, ω(t−s)l)

)
,

(3)
The objective function is convex since it resembles
the likelihood function for a generalized linear model
(GLM) with Bernoulli link functions. Thus it can be
solved efficiently by convex optimization algorithms
as we did for LS estimates.

Remark 1 (Computational Complexity). The total
number of parameters κ depend on K (i.e., number
of location) and M (i.e., number of states) quadrati-
cally. Therefore, even for convex solvers with polyno-
mial complexity, the complexity of solving the prob-
lem can be high when these numbers are large. In
such a case, sparsity can be imposed in this model to
speed up computation. For example, we may assume
that a pair of locations do not influence each other if
the distance between them exceeds a threshold with-
out losing model convexity.

Prediction. We first make sequential prediction of
future conditional probabilities using estimated pa-
rameters according to equation (1). Then, probabil-
ities are converted to states using abnormal thresh-
olds {τtk(p) : 1 ≤ p ≤ M}. These thresholds can be
defined sequentially and dynamically or be fixed in
advance.

We propose the following dynamic τtk(p) for se-
quential prediction. Denote w as the window of past
w time units of observations. Then, the dynamic
thresholds τtk(p), p = 1, . . . ,M have the form:

τtk(p) =αp

∑w
i=1 p̂(t−i)k(p)ω(t−i)k(p)∑w

i=1 ω(t−i)k(p)
+

(1− αp)
∑w
i=1 p̂(t−i)k(p)(1− ω(t−i)k(p))

w −∑w
i=1 ω(t−i)k(p)

.

(4)

Thresholds (4) uses the history of the ramping events.
If αp is close to 0, the threshold is likely small since
the latter summand in (4) tends to have a larger de-
nominator than its numerator. If there is no ramping
event with the given state in the past w days, we let
the dynamic threshold be the static threshold (e.g.
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τtk(p) = τk(p) for all t and τk(p) is found via cross-
validation) to avoid 0/0.

3 Theory

The performance guarantee for β̂LS = β̂LS(ωN )
is proven by Juditsky et al. [2020]. We state our

contribution for the ML estimates β̂ML = β̂ML(ωN ).
First, the gradient FωN (x) of the ML objective (3)

is

FωN (β) =
1

N

N∑
t=1

η
(
ωt−1t−d

)
θ
(
ηT
(
ωt−1t−d

)
x, ωt

)
,

with

η>(ωtt−d) = [IK , IK ⊗ vec(ωt−1t−d)>] ∈ RK×κ. (5)

θ(z, ω)

=−
K∑
k=1

[
M∑
p=0

[w]kp
[z]kp

ekp −
1−∑M

p=0[w]kp

1−∑M
p=0[z]kp

M∑
p=0

ekp.

]

For ξt := η
(
ωt−1t−d

)
θ
(
ηT
(
ωt−1t−d

)
β, ωt

)
, E[ξt] = 0.

Therefore, {ξt} forms a martingale-difference se-

quence and FωN (x) = 1
N

∑N
t=1 ξt. FωN (x) will be ab-

breviated as F (x) from now on. To make sure F (β)
is continuous, we also require that β leads (1) to be
within [ρ, 1− ρ] for a pre-specified ρ ∈ (0, 1)

Lemma 3.1. Assume ||ξt||∞ ≤ Θ for all t. For all
ε ∈ (0, 1) vector F (β) satisfies

ProbωN

{
‖F (β)‖∞ ≥ Θ

√
2 ln(2κ/ε)

N

}
≤ ε.ρ ∈ (0, 1)

Proof. We first provide a simple bound on ||ξt||∞ and
then link Θ to ||ξt||∞ under ML with identity-link.

First,

||ξt||∞
=||η

(
ωt−1t−d

)
θ
(
ηT
(
ωt−1t−d

)
β, ωt

)
||∞

(i)

≤||θ
(
ηT
(
ωt−1t−d

)
β, ωt

)
||∞

(ii)
= ||

K∑
k=1

[
M∑
p=0

[w]kp
[z]kp

ekp −
1−∑M

p=0[w]kp

1−∑M
p=0[z]kp

M∑
p=0

ekp

]
||∞

(iii)

≤ ||
K∑
k=1

M∑
p=0

[w]kp
[z]kp

ekp||∞

(iv)

≤ ||
K∑
k=1

M∑
p=0

1

ρ
ekp||∞

(v)
= 1/ρ,

where (i) holds by the definition of η, (ii) holds under
the simpler notation z := ηTβ, ω := ωt, (iii) holds

as 1 ≥ ∑M
p=0[w]kp and

∑M
p=0[z]kp, (iv) holds as 0 ≤

[ω]kp ≤ 1 and [z]kp ≥ ρ by definition, and (v) holds

as
∑K
k=1

∑M
p=0 e

kp is the vector of all 1’s in RK(M+1).

Also, denoting by E|ωt the conditional expectation
given ωt and i = 1, . . . , κ, we have

Eωt+1

{
exp

{
t+1∑
s=1

γ [ξs]i

}}

≤Eωt

{
exp

{
γ

t∑
s=1

[ξs]i

}
exp

{
γ2/2ρ2

}}
,

which holds due to the Hoeffding’s inequality and,
from the above bound that the conditional, ωt given,
distribution of [ξt+1]i is zero mean and supported on
[−1/ρ, 1/ρ]. By induction, we have

EωN

{
exp

{
γ

[
N∑
t=1

ξt

]
i

}}
≤ exp

{
Nγ2/2ρ2

}
.

Now using Chernoff bound, we have

ProbωN {[F (β)]i > θ}

= ProbωN

{
1

N

[
N∑
t=1

ξt

]
i

> θ

}

≤ exp{−µθ}EωN

{
exp

{
µ

1

N

[
N∑
t=1

ξt

]
i

}}

≤ exp

{
−µθ +

µ2

2Ñ

}
,

where Ñ = Nρ2. The union bound and further sim-
plifications yields the desired result

For our main theorem below, define A[ωn] :=
1
N

∑N
t=1 η(ωtt−d)η

>(ωtt−d) for η in (5) and the con-
dition number given A ∈ Rκ×κ, A � 0:

θp[A] := max{θ ≥ 0 : g>Ag ≥ θ||g||2p,∀g ∈ Rκ, p ∈ [1,∞]}.
(6)

Theorem 3.2 (Bounding `p error of ML estimate).
For every ε ∈ (0, 1), every ωN , and any p ∈ [1,∞],
we have with probability at least 1− ε that

||β̂ML−β||p ≤
(1− ρ)2

ρ

√
2 ln(2κ/ε)

N
/
√
θp[A[ωN ]]θ1[A[ωN ]].

Proof. For simplicity, let β̂ := β̂ML. Since F (x) is
the gradient of the convex and continuously differen-
tiable log-likelihood LωN (x), F (x) is continuous and
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monotone. Thus, standard results in monotone vari-

ational inequality yields
〈
F (β)− F (β̂),β − β̂

〉
≥ 0

and F (β̂) = 0. In fact, we can prove a stronger in-
equality: define F̃ (ηTx) where ηF̃ (ηTx) = F (x) with

ηηT = 1
N

∑N
t=1 η(ωt−1t−d)ηT (ωt−1t−d). Then〈

F̃ (ηTβ)− F̃ (ηT β̂), ηT (β − β̂)
〉
≥ (1−ρ)−2||ηT (β̂−β)||22.

Now, by the earlier definition of θp(A) = θp(ηη
T ),

we can see that ||ηT (β̂−β)||22 = (β̂T−βT )A(β̂−β) ≥√
θ1(A)θp(A)||β̂ − β||1||β̂ − β||p.
As a result,

||F (β)||∞||β̂ − β||1
≥
〈
F (β)− F (β̂),β − β̂

〉
=
〈
F̃ (ηTβ)− F̃ (ηT β̂), ηT (β − β̂)

〉
≥(1− ρ)−2||ηT (β̂ − β)||22
≥
√
θ1(A)θp(A)||β̂ − β||1||β̂ − β||p

We finish the proof by cancelling ||β̂ − β||1 from the
the final inequality and using Lemma 3.1 to bound
||F (β)||∞.

Remark 2 (Numerical Computation). The quan-
tity θp[A[ωN ]] in (6) is readily computable when
p = 2 or ∞: when p = 2, it is the
minimum eigenvalue and when p = ∞, it is
min1≤i≤κ

{
xTAx : ‖x‖∞ ≤ 1, xi = 1

}
, which is the

minimum of κ efficiently computable quantities.
Solving for p = 1 is hard in general, but the discus-
sion in [Juditsky et al., 2020] obtains a bound tight
within the factor π/2 [Nesterov, 1998].

Furthermore, we can expect that the minimum
eigenvalue of A[ωn] will be of order 1 with high prob-
ability, so that the bound using Theorem 3.2 goes
to 0 as N → ∞ at the rate O(1/

√
N). As a result,

β̂
p→ β. Lastly, the bound on the right-hand side

in Theorem 3.2 is fully data-driven and computable
given historical ramping events.

4 Real-data study

We focus on modeling single-state ramping events
(e.g. ωtk ∈ {0, 1}) for visualization simplicity. Two-
state ramping events occur when the current radia-
tion is too high or too low compared to the past.

The dataset comes from the NSRDB1. We collect
a non-uniform set of 10 downtown data across dif-

1Dataset available at https://nsrdb.nrel.gov/

ferent cities2 in California. Data in 2017 are used
for parameter estimation and data in 2018 are for
sequential prediction.

We adopt standard performance metrics for clas-
sification, including precision, recall, and F1 score.
Specifically, we consider a predicted state (i.e.,
thresholding the probabilistic prediction) to be a true
positive if it aligns with the actual state. Because
ramping events are extreme cases in data (e.g., posi-
tive cases in data are rare), we do not use the ROC
curve (true positive rate versus false-positive rate) in
our setting.

4.1 Parameter estimation results

We first visualize the estimated birthrate and in-
teraction parameters in Figure 1, which provide in-
terpretable insights into correlation among locations.
We then overlay these parameters on terrain maps in
Figure 2 to illustrate certain spatio-temporary pat-
terns uncovered by our point-process model.

0 5 10
Location k

0.05

0.10

0.15
Birthrate βk

0 5
Memory (time) s

0.05

0.10

0.15

Interaction βs11

0 5
Memory (time) s

0.00

0.05

0.10

Interaction βs12

0 5
Memory (time) s

−0.05

0.00

0.05
Interaction βs14

Figure 1: Recovered birthrate parameters at differ-
ent locations and interaction parameters over time.
The blue curve shows ML recoveries, and the red
curve shows LS recoveries. The shaded areas are 95%
confidence intervals under bootstrap. Birthrates are
similar in magnitude across different locations, and
interactions all decay very fast over time.

(a) Recovered spatio-temporal influence: Figure 1
shows the recovered single-state birthrate parame-
ters βk over different locations by ML and LS, and
shows a selected number of interaction parameters βskl
over time. Bootstrap confidence intervals are plot-
ted around the estimates. The results on birthrates

2Complete list of cities: Fremont, Milpitas, Mountain View,
North San Jose, Palo Alto, Redwood City, San Mateo, Santa
Clara, South San Jose, Sunnyvale
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show the existence of heterogeneity among locations.
We also find that estimates of the interaction param-
eters between different sensors decay fast, indicat-
ing that location-to-location influences do not persist
over time. In practice, this indicates that ramping
events that happened several times ago at any loca-
tion cannot noticeably influence the current ramping
probabilities. Lastly, estimates recovered by ML and
LS generally have very similar magnitude.

37.1

37.2

37.3

37.4

37.5

37.6

−122.43 −122.19 −121.95 −121.71
Longitude

La
tit

ud
e

birthrate
0.04
0.06
0.08
0.10

Figure 2: Visualization of ML birthrate (red cir-
cles) and interactions (black lines) recovery on ter-
rain map. We do not show parameter recovery for
s > 1 because the magnitude decays very fast with
the same orientations.

(b) Visualize interaction parameters on terrain map:
We plot these parameters as graphs overlaid on a ter-
rain map to visualize the influences. We only show
the ML estimates because LS estimates are similar.
The vertices’ size and edges’ width are proportional
to the magnitude of corresponding recovered param-
eters. Results in Figure 2 are interpretable and un-
veil previously unknown connections among the lo-
cations. In particular, locations close to each other
have similar birthrates, and there are strong influ-
ences from a city onto itself. In addition, influences
mainly flow towards the southeast, with large magni-
tudes even if cities are far away (e.g., San Mateo to
Santa Clara and Sunnyvale to South San Jose).

4.2 Prediction performance:

We use aforementioned techniques to make sequen-
tial prediction in Palo Alto (one representative ex-
ample in North California) and evaluate the metrics.
Table 1 compares the performance of our model on
Atlanta data with two additional baselines: the logis-
tic regression and the linear regression. Our method
yields significantly higher F1 scores.

Table 1: Baseline comparison for single-state model:
we compare the F1 scores of our method (LS or ML)
with two baselines methods, where ours yield signifi-
cantly higher scores. Static τ means that the decision
thresholds are held constant at a fixed location during
prediction.

LS ML Linear Regression Logistic Regression

Static τ 0.96 0.97 0.64 0.67

Dynamic τ 0.88 0.96 0.65 0.67

To better visualize the estimated probabilities’ tra-
jectories, we plot the probability estimates, dynamic
thresholds, and the prediction intervals in Figure 3.
We also use the bootstrap confidence interval for β,
which was shown in Figure 1, to compute the con-
fidence interval for ptk. The prediction intervals at
95% confidence level concentrate closely around the
estimates, even if the Bonferroni correction was used.
Based on the figure, dynamic thresholds and proba-
bility estimates (red/blue dots) have similar rise-and-
fall patterns. At the same time, the trajectory of
probabilities also highly correlates with the actual
ramping events (black dots). Such high correlation
enables accurate prediction. It is clear that dynamic
thresholds yield decision boundaries that help distin-
guish the ramping events.

0 50 100 150 200 250 300 350
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1.0
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Ground Truth
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LS Predicted Probability

Figure 3: Prediction intervals for online point predic-
tion of probabilities for single-state ramping events
using LS (red dots) and ML (blue dots), compared
with true ramping events (black dots). Dynamic
thresholds well separate the set of predicted ramp-
ing vs. normal probabilities.

Remark 3 (Beyond single state). We remark that the
above model has been applied to ramping events with
more than two states (e.g., high abnormal state, nor-
mal state, and low abnormal state). The results are
not shown due to space limitation. Nevertheless, the
predicted probabilities well follow the dynamics in the
ramping events as we observed in Figure 3. In addi-
tion, we examined the robustness of our model on
data in different seasons, where the overall predictive
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performance remains satisfactory.

5 Conclusion and future works

In this paper, we introduce a new framework for
modeling spatio-temporal abnormal events in solar
radiation, where model parameters can be efficiently
estimated with strong performance guarantee. We
apply the method to various cities in the US to show
that the model is flexible and robust, yielding phys-
ically meaningful results for interpretation. We be-
lieve the proposed model is a general framework for
other spatio-temporal data modeling tasks.

There are a few possible extensions. In terms of
data, we can consider other definitions of ramping
events and more categories per event, which may in-
clude the severity of each ramping event. We can also
include link functions and other regularization tech-
niques for improved performances during modeling.
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