The Consortium for Enabling Technologies and Innovation # Virtual Summer Meeting for Young Researchers **Multi-modal Surveillance of Localized Processes** Using Cube Satellite Platforms: Phenomena, Signatures, and Feasible Architectures Mario Mendoza Texas A&M University July 7th, 2020 Advisor/ETI Co-PI: P. Tsvetkov, Texas A&M University Industry Advisors: M. Lewis, T. Guy, NanoRacks, LLC ### Overview - Introduction - Phenomena and Signatures - CubeSat Platform Analysis - Orbital Modelling - Conclusions and Future Work ## Introduction ## Cube satellites (CubeSats) provide a unique platform for monitoring localized processes anywhere within the Earth's surface or atmospheric levels in regards to nuclear security. - Areas of interest can be targeted at certain times on an ondemand basis - CubeSats equipped with adequate sensors and data analytics capabilities can create a characterization surveillance method for phenomena on interest - Advantageous over conventional satellites because of cost and simplicity #### **Timeline** The effort is focused on science and technology of predictive and on-demand characterization of localized developments on the earth surface, subsurface and within atmosphere: - *Task 1: CubeSat-based global surveyor architecture development - *Task 2: Specification development for a CubeSat-based global surveyor - Task 3. Computational and experimental program based on surrogate and simulated data sets demonstrating capabilities of the orbital surveyor platform - Task 4. CubeSat design and data analysis towards a future demonstration launch program #### Schedule: Year 1: CubeSat-based global surveyor architecture development Year 2: Specification development for a CubeSat-based global surveyor **Year 3:** Computational and experimental program based on surrogate and simulated data sets demonstrating capabilities of the proposed orbital surveyor platform Year 4: CubeSat design and data analysis towards a future demonstration launch program Year 5: Continuation of all work # Task 1: CubeSat-based global surveyor architecture development - 1.1. CubeSat configuration and platform capabilities - 1.2. Instrumentation options analysis for CubeSat based surface and atmospheric surveys - 1.3. Enabling data analysis methods to support data fusion, reconstruction, and predictive analysis - 1.4. Multi-modal signature development accounting for high resolution remote sensing data streams - 1.5. Prototype concept and computational analysis to demonstrate capability # Task 2: Specification development for a CubeSat-based global surveyor - 2.1. CubeSat very high-resolution sensing options with focus on optical image analysis, reconstruction and signature development - 2.2. Multi-modal spectral signature analysis options in CubeSat architectures - 2.3. Hardware specification development and integration options analysis ## CubeSat-based Surveillance Platform Development marmen13@tamu.edu # Phenomena and Signatures ### Phenomena and Signatures - First step in developing a CubeSat-based surveillance system - Types of phenomena of interest for observation will determine CubeSat physical architecture and sensors - Due to life-time of CubeSats in orbit, the surveillance system is best suited for events of immediate interest on an on-demand and shortterm periodic basis ### Phenomena of Interest for Nuclear Security - Vehicles of Interest - Automobiles and Airplanes - Infrastructural Emergencies of Interest - Blackouts and Fires - Construction and Mining Events of Interest # Characteristic Elements incorporated into the Signature Data Strings for Objects of Interest - Dimensions - Speed - Emissions - Temperatures - Other | Dimension | Value | |-----------|-------------------| | Height | 1.414 m – 2.115 m | | Length | 2.695 m – 5.399 m | | Width | 1.475 m – 2.070 m | Minimum and Maximum Dimensions for all new vehicles sold in Europe¹ Average vehicle speeds on highways in Great Britain in 2012² | Automobile Emissions ³ | | | |-----------------------------------|--|--| | CO ₂ | | | | CH ₄ | | | | СО | | | | N ₂ O | | | **Average Operating Temperature of Automobiles**⁴ 90-105 °C ## Signatures for Infrastructural Emergencies of Interest - Infrastructural Fires - Temperatures, Emissions, Aerosol Indices - Blackouts - Temperatures, Light Indices | Type of Fire/Heat Source | Average Temperature | |-------------------------------------|---------------------| | Infrastructural Fire ^{5,6} | 350-1200 °C | | Wildfire ⁷ | 800 °C | | Volcanic Plumes and Lava Flow8 | 600-1200 °C | | Infrastructural Fire Emissions ⁹ | | | |---|--|--| | CO ₂ | | | | CH ₄ | | | | NO _x | | | | Other materials inside | | | # Signatures for Construction and Mining Events of Interest #### Construction - Vehicles - Same parameters as Vehicles of Interest - Temperatures, Emissions, Presence of Human Workers - Mining - Vehicles - Same parameters as Vehicles of Interest - Temperatures, Emissions, Presence of Human Workers - Presence of Blasting Agents, Mine Footprint "Satellite images show Chinese construction near site of Indian border clash" 10 # **CubeSat Platform Analysis** 19 #### **CubeSat Architecture** - CubeSats are measured in units of U, 1U is equal to 10 cm x 10 cm x 10 cm cube with a mass close to 1 kg - Sizes range from 1U to 12U - Most common and versatile form factor: 3U - Allows for the use of COTS components ## **Major CubeSat Components** - Payload (Sensor) - Power Supply - Transceiver - Solar Panels - Attitude Control System - Antennas - Onboard Computer and Circuitry COTS Solar Panels Antenna Module **Attitude Determination** and Control System **Secondary Payload Break-out Board** Inter-Stages **Electric Power Supply** Transceiver **Onboard Computer Data Concentrator Break-out Board Primary Payload** Components for the 2U qbee50-LTU-OC (SE01) CubeSat¹¹ ### **CubeSat System Options** - Single vs Constellation - Communications - RF Signals - UHF - S-band - Ground Station only vs Intersatellite communication - Networks - KSAT - Globalstar #### **CubeSat Launch** - International Space Station (ISS) - NanoRacks (Industry Partner) - Lack of propulsion on CubeSat - ISS inclination and period - Once launched, CubeSats adopt same orbit as ISS - Slight orbit deformation occurs due to CubeSats' ballistic coefficient NanoRacks ISS Launcher¹² #### NanoRacks ISS Launcher¹² # **Orbital Modeling** ### **Orbital Modelling Algorithm** - NASA General Mission Analysis Tool (GMAT)¹³ - NASA publishes ephemeris data for the ISS daily The start time, stop time, and total duration in seconds of the ISS access times to College Station between May 16th and May 17th, 2020. | Start Time (UTC) | Stop Time (UTC) | Duration (s) | |------------------|-----------------|--------------| | 16 May 2020 | 16 May 2020 | 459.320 | | 02:21:11.119 | 02:28:50.439 | | | 16 May 2020 | 16 May 2020 | 214.643 | | 04:00:24.049 | 04:03:58.692 | | | 16 May 2020 | 16 May 2020 | 241.663 | | 08:55:58.427 | 08:59:33.090 | | | 16 May 2020 | 16 May 2020 | 459.730 | | 10:31:06.514 | 10:38:46.245 | | | 17 May 2020 | 17 May 2020 | 440.953 | | 01:33:35.889 | 01:40:56.842 | | | 17 May 2020 | 17 May 2020 | 336.205 | | 03:11:22.331 | 03:16:58.536 | | | 17 May 2020 | 17 May 2020 | 446.742 | | 09:43:24.391 | 09:50:51.132 | | | 17 May 2020 | 17 May 2020 | 258.039 | | 11:21:24.435 | 11:25:42.474 | | #### Angle of Elevation The start time, stop time, and total duration in seconds of a CubeSat access times to College Station between May 16th and May 17th, 2020. | Start Time (UTC) | Stop Time (UTC) | Duration (s) | | |------------------|-----------------|--------------|-----------------------------| | 16 May 2020 | 16 May 2020 | 63.147 | → Influences sensing time | | 02:24:28.108 | 02:25:31.255 | | Sensor Angle of Elevation | | 16 May 2020 | 16 May 2020 | 63.090 | Geneel / migre of Elevation | | 10:33:28.336 | 10:34:31.426 | | | ### **Interface Between Algorithms and Data** ### **Conclusions and Future Work** #### **Conclusions** - Phenomena of interest identified - CubeSat architecture identified - Orbital capabilities identified - Development of algorithm for orbital data - CubeSats are viable surveillance platforms for nuclear security #### **Future Work** - Develop surrogate dataset of representative data - Develop anomaly detection methodology for characterization on surrogate dataset - Create illustrative applications of the technology # Task 2: Specification development for a CubeSat-based global surveyor - 2.1. CubeSat very high-resolution sensing options with focus on optical image analysis, reconstruction and signature development - 2.2. Multi-modal spectral signature analysis options in CubeSat architectures - 2.3. Hardware specification development and integration options analysis # Task 3: Computational and experimental program based on surrogate and simulated data sets demonstrating capabilities of the proposed orbital surveyor platform - 3.1. 3D surface and atmospheric mapping method with dynamic feature localization and analysis - 3.2. CubeSat surveyor performance model and data simulation - 3.3. Data analytics demonstration program based on high-resolution multi-modal signatures (land and atmospheric mapping, feature extraction, object recognition) human activity localization, activity detection and interpretation with resolutions higher than 5m. # Task 4: CubeSat design and data analysis towards a future demonstration launch program - 4.1. Data analysis and data acquisition system development and specification in support of the CubeSat surveyor architectures - 4.2. Data analytics methods including fusion (spatial, spectral, scale-space adaptations) and machine learning based on Cube Sat data streams - 4.3. Design of a CubeSat-based global surveyor and the launch program development #### References - 1) Automobiledimension.com, 2020. https://www.automobiledimension.com - 2) Worledge, Rachel. "Free Flow Vehicle Speed Statistics: Great Britain 2012". Vehicle Speeds Statistics, UK Department for Transport, 2013. - 3) "Greenhouse Gas Emissions from a Typical Passenger Vehicle". US Environmental Protection Agency, 2018. https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle - 4) Bastan, Muhammet et al. "Remote Detection of Idling Cars Using Infrared Imaging and Deep Networks". Nanyang Technological University, 2018. - 5) Ariyanayagam, Anthony D., & Mahendran M. (2013). "Fire Safety of Buildings Based on Realistic Fire Time-Temperature Curves", Proceedings of the 19th CIB World Building Congress, Brisbane 2013: Construction and Society, Brisbane, 2013. Brisbane, Australia: Queensland University of Technology. - 6) "Fires and Thermal Environments". Thermal Protective Clothing for Firefighters, Elsevier, 2017, pp. 5-15. - 7) "How hot is a Hawaiian volcano?". US Geological Survey. https://www.usgs.gov/faqs/how-hot-a-hawaiian-volcano?qt-news_science_products=0#qt-news_science_products #### References - 8) T. Roberts, G. Dayma, and C. Oppenheimer. "Reaction Rates Control High-Temperature Chemistry of Volcanic Gases in Air". Frontiers in Earth Science, vol. 7, Jul. 2019, doi: 10.3389/feart.2019.00154. - 9) Branz & Scion. "Assessing the Impact of Vegetation and House Fires on Greenhouse Gas Emissions". The New Zealand Fire Service Commission, Fire Research Report, April 2010. - 10) Kuo, Lily. "Satellite images show Chinese construction near site of India border clash". The Guardian. 25 Jun 2020. https://www.theguardian.com/world/2020/jun/25/satellite-images-show-chinese-construction-near-site-of-india-border-clash - 11) Nieto-Peroy, C., & Emami, M. R. "CubeSat Mission: From Design to Operation". Applied Sciences, 9 (2019) 3110. doi: 10.3390/app9153110 - 12) Wann, Alun. "NanoRacks CubeSat Deployer Clearance Cone Definition". CAMMP AI EC-1375. 19 Aug 2013. - 13) NASA General Mission Analysis Tool. https://software.nasa.gov/software/GSC-17177-1 Acknowledgement This material is based upon work supported by the Department of Energy/National Nuclear Security Administration under Award Number DE-NA0003921. The Consortium for Enabling Technologies and Innovation ## Virtual Summer Meeting for Young Researchers # Questions? Mario Mendoza, marmen13@tamu.edu Advisor/ETI Co-PI: P. Tsvetkov, Texas A&M University Industry Advisors: M. Lewis, T. Guy, NanoRacks, LLC