Optimal UAV Trajectory Planning for Radiological Search

2020 ETI Summer Meeting

Sam Kemp
Jonathan Rogers
School of Aerospace Engineering
Georgia Institute of Technology

Andrew Torgesen
Jon How
Department of Aeronautics and
Astronautics
Massachusetts Institute of
Technology

Project Team

Collaborative project between Georgia Tech and MIT

Jonathan Rogers (GT)

Sam Kemp (GT)

Jon How (MIT)

Andrew Torgesen (MIT)

- Joint expertise in path planning, control and optimization for robotic vehicles
 - Extensive experience in UAV prototype development and demonstration

Project Motivation

- Two major problems of interest in counterproliferation:
 - Source localization and characterization
 - Radiation mapping of a 2D or 3D area

Source Localization

- · Find source(s) over defined search area
- We can cover search area faster if we use multiple vehicles
- If vehicles are unmanned, deploying more of them (100s?) becomes feasible

Radiation Mapping

- · Map radiation intensity over defined area
- UAVs and UGVs allow area to be mapped without exposing humans to radiation
- Ability to circumvent obstacles, reach entire area may benefit from using multiple heterogeneous vehicles

Prior Work

- Current literature can be divided into:
 - Single-agent source term estimation (STE) approaches
 - Multi-agent optimal task allocation
- Single-agent approaches:
 - Goal specifically to estimate location, strength, transmission properties of one or more sources
 - Formulated as partially observable Markov decision processes (POMDPs) with a discrete set of allowable actions
 - Nonlinear Bayesian inference models for estimating source properties
 - Non-parametric approximate measures of information used in path planning cost function
 - Myopic, computationally intractable for > 1 agent

Prior Work

- Multi-agent approaches
 - Focus is on distributed, non-myopic, computationally tractable methods for allocating tasks to a team of robots in real-time to minimize some team-wide cost function
 - Rarely directed specifically at STE problems
 - Planning is sample-based or formulated as a search problem
 - Bayesian inference, if used, generally confined to linear models
 - Either arbitrarily defined rewards or linear information measures used in cost functions
 - Inference models not sophisticated enough to handle standard STE

Technical Approach

- Merge inference mechanisms from single-agent STE work with robust multi-agent planning formulations
- Formulate more robust and efficient solution to STE search problem using multiple agents
- Account for idiosyncrasies present in the radiation detection process:
 - Dependency of sensor accuracy on sensor altitude and velocity
 - Omnipresence of background noise from naturally-occurring isotopes

Gas source localization with ground robot.

Inter-agent coordination for optimal task allocation.

Project Approach

- Proposed solution to STE search problem that is more temporally efficient than single-agent or uninformed planning strategies
 - Non-myopic
 - Distributed
 - Coordinated
 - Information-driven
 - Capable of estimating dispersion behavior
 - Handles sensor constraints
 - Robust to individual agent failure

Robust adaptive coverage control for robotic sensor networks

Project Approach

- Emphasis on hardware validation of simulation results
- Experience between labs at Georgia Tech and MIT in experimental UAVs and UGVs
- Experience with multi-agent platforms, informationtheoretic search, and performance-constrained sensor models

Decentralized Planning Using Macro-Actions (MIT)

Problem Setup and Preliminary Results

Simulation just starting to map the area

Potential action vectors an agent sees

- We have a simple simulation for single and multi-agent systems that employ active learning.
- Active learning allows us to minimize flight times by searching only areas of uncertainty or interest.
- The sim starts with no prior knowledge of the function it will be discovering.
- Agents start at arbitrary points then propose multiple candidate action vectors.

Problem Setup and Preliminary Results

- A centralized controller selects the next action vector for each agent using a cost function.
- The cost function looks for action vectors with the highest discovery that also keep the agents separated.
- Agents keep mapping the area until the Integrated Squared Difference (ISD) is below an arbitrary threshold.

Problem Setup and Preliminary Results

- For a single agent system, the uncertainty sampling (US) method was compared to a raster sampling (RS) method (lawnmower pattern). The raster pattern was generated to use a similar step size as the US method for a fair comparison.
- In cases where the scale of the problem was unknown, the uncertainty sampling method was able to outperform the raster sampling method.
- Without fine tuning, the raster pattern would either be too coarse (not detailed enough) or too fine (too slow), whereas the US method would adapt quickly.
- For a multi agent system, the centralized controller can become overwhelmed when there
 are too many agents and candidate points to evaluate.

Upcoming Work

- Build on our past work on convex relaxations of the path planning using resource-dependent sensor models
 - Account for effects of altitude and velocity on radiation detector accuracy
- Extend non-myopic multi-agent task allocation strategies for simplified version of the STE search problem
 - Assess need for centralized vs. decentralized inference strategy
 - Investigate incorporating Bayesian inference using nonlinear models
 - Assess computational tractability when included in multi-agent joint planning
- Investigate using segmentation to estimate background noise in real-time (avoid pre-mapping)

Bayesian inference using nonlinear measurement models for point source localization.

Upcoming Work

- Develop UAVs with communication and payload capacities suited to our needs.
- Develop sensor package suitable for our UAVs.
- Test systems in simulated radiation fields.
- Test systems in actual radiation fields in partnership with Idaho National Labs (INL).

Multi-agent formation flying experiment performed recently at MIT

DJI Matrice M600 Industrial Drone: Currently used for human piloted radiation mapping at INL

Collaboration with National Labs

- Currently plan to partner with Idaho National Laboratories (POC: David Chichester)
 - Use techniques developed here to take measurements of radiation dispersal events that they conduct regularly
 - Leverage INL expertise in sensing and use of UAVs for source localization

- Possible additional laboratory partners
 - Oak Ridge, others?

Questions and Discussion