The Consortium for Enabling Technologies and Innovation

Virtual Summer Meeting for Young Researchers

Large Area Organic Photodetectors for Radiation Detection Applications

Oliver Moreno

Center for Organic Photonics and Electronics

Georgia Institute of Technology

July 8th, 2020

About Us

- Organic electronics, photonics, and optics
- Device simulation, fabrication, and characterization
- History of collaborations across campus with chemists, ubiquitous computing experts, designers, and nuclear engineers
- Focus on device fabrication and characterization for radiation detection

Mission

- Maintaining the safety, security, and effectiveness of the nuclear weapons stockpile
- Reducing the threat of nuclear proliferation and nuclear terrorism around the world
- Providing nuclear propulsion to the U.S. Navy's fleet of aircraft carriers and submarines.

Goal: Develop flexible large-area organic photodetectors to integrate with plastic scintillators as radiation detectors for nonproliferation

Our approach

- Material selection and photodiode design Emphasis on interface engineering:
 - Charge-collecting electrodes, and donor/acceptor heterojunction
- Fabrication (thermal evap. & printing) and characterization:
 - J-V, Electronic noise, Responsivity, Noise equivalent power (NEP), specific detectivity (D*)
- Modeling:
 - Optical properties of devices
 - Steady-state photodiode characteristics
 - Electronic Noise

Device-level

Organic Photodetectors (OPD)

Reflective electrode (or semi-transparent). 10 Ω/\Box sheet resistance or better

Hole-collecting interlayer

Photoactive layer: Bulk heterojunction comprised of Donor and Acceptor materials

Electron-collecting interlayer

Y. Zhou et al., Science 336, 327-332 (2012)

Substrate:
Recyclable/flexible/transparent

"Transparent" electrode >70% Tx of visible light (or better); $10 \Omega/\Box$ sheet resistance or better

Steady-state characterization and modeling

Prince's equivalent circuit model

$$J(V,T) = \frac{R_p}{R_p + R_s} \left\{ J_0 \left[\exp \left(\frac{V - J(V,T)R_s A}{n_{id}k_B T/q} \right) - 1 \right] - \left(J_{ph} - \frac{V}{R_p A} \right) \right\}$$

Goal: derive reliable J_0 and R_p values

W. Shockley, H. J. Queisser J. Appl. Phys. 32, 510-519 (1961).

C. Fuentes-Hernandez et al, 2016 IEEE Symposium on Radiation Measurements and Applications (2016).

Electronic Noise Characterization

Characterization

Keithley 6430, with< 1 fA noise floor

Modeling

Use J₀ and R_p
 values derived
 from steady-state
 modeling to
 calculate thermal
 and shot white noise
 contributions

Data credit: Canek Fuentes Hernandez, PhD

OPD vs. SiPDs: benchmarking

C. Fuentes-Hernandez et al, 2016 IEEE Symposium on Radiation Measurements and Applications (2016).

Flexible OPD

Data credit: Wen-fang Chou, PhD

Temporal characteristics of OPD

Response time of OPD needs to be reduced to allow applications in scintillator detectors

Current Research Focus

Research Question	Hypothesis
What material and device level strategies can we implement to improve response time in OPDs?	Explore bi-layer devices with high-mobility to improve charge extraction and time constant
	Explore small-molecules, spectrally matched to scintillator, and tandem architecture, to increase absorption

Case Studies

Control Point Screening

UAV: Mounted or Body

Swarm Robotics

Discover and enable applications with end users!

Roadmap Forward

- Continue advancing the response time of OPD to enable photon-counting
- Collaborations with academic partners in multidisciplinary ETI cohort for integrated advancement of nuclear science
- Collaborations with national lab partners to identify new markets and advance technology readiness
- Explore possibilities for innovation with societal value and commercial impact in nonproliferation

This material is based upon work supported by the Department of Energy/National Nuclear Security Administration under Award Number DE-NA0003921.

Mit

