The Consortium for Enabling Technologies and Innovation Virtual Summer Meeting for Young Researchers

Simultaneous imaging and ID of radioactive materials and devices

... from plasma physics & fusion to national security

Dr. Luis F. Delgado-Aparicio Princeton Plasma Physics Laboratory July 8th, 2020

Acknowledgements to all my collaborators

P. vanMeter², E. Feibush¹, B. Stratton¹, D. Den Hartog², K. Hill¹, M. Bitter¹, N. Pablant¹, T. Barbui¹, O. Chellai¹, P. Efthimion¹, G. Ascione¹, J. Menard¹ and R. Goldston^{1,3}

¹Princeton Plasma Physics Laboratory, Princeton, NJ, 08540 ²University of Wisconsin, Madison, WI, 53706 ³Princeton University, Princeton, NJ, 08540

Princeton University Plasma Physics Laboratory (PPPL)

- PPPL is one of 17 DoE national laboratories.
- We are managed by PU but have a government mandate that focuses on fusion energy research and basic plasma science.

Nuclear Fusion is an ideal alternative to solve the energy challenge – the sun's energy comes from FUSION

Fusion energy is:

- 1. Clean
 - No greenhouse-gas production
 - No smog and no acid rain
 - Only short-lived radioactive wastes (due to neutron bombardment of vessel material)

2. Safe

- No possibility of runaway "chain" reaction/meltdown
- No proliferation threat (not a credible bomb factory)
- 3. Nearly inexhaustible (~10⁹ year supply)
- 4. Efficient and independent of geographical location
- 5. In the future, available 24/7

When small hot ions combine (usually hydrogen: H, D, T) there is a lot of ENERGY produced!

National Nuclear Society Administration

Main systems in the US are in General Atomics (CA), MIT (MA) & PPPL (NJ)

DIII-D in General Atomics, San Diego, CA

Alcator C-Mod @ PSFC, MIT, Cambridge, MA

 $T_{e,0} \sim 1 \rightarrow 6 \text{ keV} (> 10^6 \circ \text{C})$ \Rightarrow naturally emits x-rays

NSTX-U @ PPPL, Princeton University Princeton, NJ

Conventional tomography integrates in photonenergy using a metallic filter & photodiode arrays

Conventional SXR tomography is still being used for stability, MHD and transport studies

Its extremely difficult to extract plasma quantities from integrated emission using conventional tomography

Novel x-ray detectors are able to take simultaneous images of the plasmas at different energy ranges

PILATUS detectors enable breakthrough of 100k pixels (minimum) working at multiple energy ranges!

- CMOS hybrid pixel technology developed originally for synchrotrons
- The comparator voltage of the readout chip (V_{cmp}) controls the global threshold energy.
- The threshold energy can be individually refined/trimmed using a built-in 6-bits DAC (V_{trim}).
 - Maximum frame rate is 500 Hz (1ms integration + 1 ms readout); 10⁷ CPS/p for PILATUS3

Eight (8) "color" measurement at MST is possible using 60-chord photon detector

- 487 pixels vertically; 7-"pixels" inbetween chips not being used
- 8-color measurement can be selected from 1.8 to 22 keV in low-, medium- and high-energy ranges
- Thresholds are set individually for each pixel adjusting the associated trimbit setting
- In-situ spatial calibration was done using Fe55 source

Diagnostic tested at UW-Madison has demonstrated <u>unprecedented</u> flexibility in the design of x-ray systems

ldelgado@pppl.gov

12

Motivation for developing capability for simultaneous imaging and ID of radioactive materials and devices

Develop a 6D imaging concept that is capable of identifying the position (x,y,z), time-evolution (†) and nature of active radionuclei (intensity [], energy [E]) which can be found or used in the medical field, physical and chemical sciences, military bases, decontamination sites, nuclear reactors and nuclear proliferation probes.

The 2D option (e.g. intensity, energy) was developed @ PPPL

Miniature Integrated Nuclear Detection System (MINDS)

- Three U.S. patents have been issued
- Licensed to InSitech
- Sub-licensed to VeriTainer Corporation
- Undergoing testing in Singapore
- Operational @ U.S. military base and rail @ bus commuter centers in the NE-US.

MINDS detection system consist of a scintillator, a PMT, an amplifier & a MCA

MINDS tollbooth application.

1st GOAL: Examine 4D (x,y,intensity,energy) option

15

ETI Virtual Summer Meeting for Young Researchers

Scan of Fe55 reveal its location, intensity & energy-dependence

Log-scale

 Fe55 used was weak ∆t_{integration}~3 mins ~1c/pix/s

• PILATUS3 has larger dynamic range: 5x10⁶ c/pix/s (good option for strong sources)

•Emission drops quickly between 4 & 6 keV)

ETI Virtual Summer Meeting for Young Researchers

Energy-dependence

- Low-resolution spectroscopy with ΔE=0.1 keV is enough to reveal the source
- Future step: deal with stronger sources and ΔE=0.05 keV

ETI Virtual Summer Meeting for Young Researchers

Multi-Gaussian profile fit can be obtained with high-accuracy

Two Gaussian fit for $E_C=3$ keV

Automatic procedure capable of:

- 2D localization
- Intensity
- Energydependence

National Nuclear Society Administration

2D fits were done for all energy-scan resolving 4D option (e.g. x,y,I,E): extracting Fe & Am emission

Conclusion and future work

(1) Using novel technology developed for nuclear fusion studies we aim to develop a 6D capability for Simultaneous IMaging and Identification of RAdioactive Materials & Devices (SIMIRA^{MD})

- (2) Tested 4D option (e.g. x,y,I,E) using Si-PILATUS3 technology and low-intensity Fe & Am sources
- ③ Custom visualization tool to locate & ID sources and the nature of their unstable nuclei

(4) Use stronger sources and radiation fields with moving-parts (max. fr~500 Hz)

(5) Use of HXR imagers fielded with CdTe sensors working with Am/Co, as well as depleted and enriched Pu- & U-samples.

NORTH CAROLIN

THE OHIO STATE UNIVERSITY

This material is based upon work supported by the Department of Energy/National Nuclear Security Administration under Award Number DE-NA0003921.

This work was performed under U.S. DoE Contracts No. DE-AC02-09CH11466 and OFES 2015 Early Career Award No. AT-10-20-10-1 at PPPL

