
Summer School on Linear Programs: Robust IPM Exercises

06/02/2025

Hints: Hints are on the last page. It is recommended to think about the problem without hints
for a while, and then look at the hints when stuck.

Problem 1: Self-Concordance

In the two lectures today, we did all the IPM analysis using the logarithmic barrier function. Are
there other barrier functions which can be used to design IPMs? In this exercise we explore this
notion a little bit, using the concept of self-concordance.

We will state the definition of ν-self-concordance here. It may seem unnatural at first, but
hopefully through the exercises you will see why it would be natural to arrive at such a definition
from first principles.

Definition (ν-self-concordance). For a convex set K ⊆ Rn, the function Φ : K → R ∪ {+∞} is
ν-self-concordant if:

1. For all x ∈ K, it holds that ∇Φ(x)⊤∇2Φ(x)−1∇Φ(x) ≤ ν, and

2. For all x ∈ K and u, v, w ∈ Rn it holds that∣∣∇3Φ(x)[u, v, w]
∣∣ ≤ 2∥u∥∇2Φ(x)∥v∥∇2Φ(x)∥w∥∇2Φ(x).

Here, ∥x∥M :=
√
x⊤Mx is the matrix norm, and ∇3Φ(x)[u, v, w] is the third order directional

derivative in directions u, v, w.

(a) Prove that the function Φ(x) = − log x on K{x : x > 0} is 1-self-concordant.

(b) Let Φ1,Φ2, . . . ,Φk be ν1, . . . , νk-self-concordant functions on a domain K. Prove that Φ1 +
· · ·+Φk is ν1 + · · ·+ νk-self-concordant.

(c) Prove that if Φ is a self-concordant function, then for x and ∥∆∥∇2Φ(x) ≤ ε < 1 that

(1− ε)∇2Φ(x) ⪯ ∇2Φ(x+∆) ⪯ 1

1− ε
∇2Φ(x).

Problem 2: IPM Using Self-Concordance

In this section we set up an IPM using self-concordant barriers. We consider the dual version of
linear programs:

min
x∈K

c⊤x, (0.1)

for a convex set K admitting a ν-self-concordant barrier function.
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Central path and optimality. This motivates setting up the central path as follows:

xµ := argminxc
⊤x+ µΦ(x).

Then KKT conditions say that the centrality conditions are c + µ∇Φ(xµ) = 0. This brings us to
the definition of ε-centered point in this setting.

Definition. We say that a point x is ε-centered for path parameter µ if ∥c+µ∇Φ(xµ)∥∇2Φ(x)−1 ≤ εµ.

Let us analyze this method.

(a) (Advancing) Let δ ≤ 1/2 and ν ≥ 1. Prove that if x is ε-centered at path parameter µ, then
for µ′ =

(
1− δ√

ν

)
µ, x is 2(ε+ δ)-centered at path parameter µ′.

(b) (Solving for the step) Let g = −(c + µ∇Φ(x)). Check that the natural first order step to
correct this gradient error is given by x → x+ δx for

δx =
1

µ
∇2Φ(x)−1g.

(c) (Recentering) Let x be ε-centered for ε ≤ 1/100. Prove that for this choice of δ that x+ δx is
at 10ε2-centered at path parameter µ.

Combining these steps gives an algorithm which takes Õ(
√
ν) steps to find a solution to (0.1)

to high-accuracy.
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Hints

Problem 1(b): The hardest part is proving the following inequality for vectors v1, . . . , vk and
PSD matrices M1, . . . ,Mk

v⊤M−1v ≤
k∑

i=1

v⊤i M
−1
i vi where v =

k∑
i=1

vi,M =
k∑

i=1

Mi.

To prove this, use that v⊤i M
−1
i vi ≤ νi is equivalent to 1

νi
viv

⊤
i ⪯ Mi in the PSD ordering. Summing

this over all i, it suffices then to prove that

1∑k
i=1 νi

vv⊤ ⪯
k∑

i=1

1

νi
viv

⊤
i ,

which is much easier.

Problem 1(c): We want to prove that v⊤∇2Φ(x+∆)v ≤ 1
1−εv

⊤∇2Φ(x)v. Define

f(t) = v⊤∇2Φ(x+ t∆)v

and use that f ′(t) = ∇3Φ(x+ t∆)[∆, v, v] and use property 2 of self-concordance.

Problem 2(a): Use the triangle inequality and property 1 of self-concordance.

Problem 2(b): Just as discussed in the lecture, plug in x → x+ δx and note that ∇Φ(x+ δx) ≈
∇Φ(x) +∇2Φ(x)δx is the first-order Taylor expansion.

Problem 2(c): Use the fundamental theorem of calculus to bound the higher-order error of the
expansion ∇Φ(x+ δx) ≈ ∇Φ(x) +∇2Φ(x)δx. You will need to use Problem 1(c).
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