
Summer School on LP Solvers

Problem Set on Strongly Polynomial Algorithms

Throughout this exercise sheet we consider LP in primal-dual standard form:

min c⊤x max y⊤b

s.t. Ax = b A⊤y + s = c

x ≥ 0 s ≥ 0

(1)

for A ∈ Rd×n, b ∈ Rd and c ∈ Rn.
The central path solution for parameter µ ≥ 0 is defined to be the pair

of primal-dual feasible solutions (xcp(µ), scp(µ)) such that for all i ∈ [n] we
have that xcp(µ)is

cp(µ)i = µ. Let furthermore (x∗, s∗) be a primal-dual pair of
optimal solutions.

1. Recall the definition of the max-central path as

xm
i (µ) := max{xi : Ax = b, x ≥ 0, c⊤x ≤ c⊤x∗ + µ} (2)

Prove that the max-central path approximates the central path up to a
factor 2n. More precisely, show that (2n)−1xm

i (nµ) ≤ xcp
i (µ) ≤ xm

i (nµ).
Hint: Make use of the fact that for any primal-dual feasible solution (x, s)
we have that 0 = (x−x∗)⊤(s−s∗) and so x⊤s = x⊤s∗+s⊤x∗−(x∗)⊤s∗ =
x⊤s∗ + s⊤x∗.

2. Recall that a circuit C ⊂ [n] of A is a minimal subset of dependent columns
of A. That is: AC does not have full column rank, however for all ∅ ⊊ D ⊊
C the matrix AD does have full column rank. An elementary vector xC ∈
ker(A) corresponding to circuit C is a vector s.t. supp(xC) = C, where
supp(v) := {i ∈ [n] : vi ̸= 0} denotes the support. The circuit imbalance
κ(A) of A is defined to be the maximal ratio of two entries in the support of
an elementary vector. That is, κ(A) := maxx∈E(A) maxi,j∈supp(x) |xj/xi|,
where E(A) denotes the set of elementary vectors of A.
Tomorrow we will see that Interior Point Methods can find an optimal
solution to (1) in time O

(
poly(n) log(κ(A))

)
.

Let A be the incidence matrix of an undirected graph, i.e., each column
has exactly two non-zeros entries, both of which are 1.

(a) Characterize the circuits of A.
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(b) Show that κ(A) ∈ {1, 2}. For which graphs is κ(A) = 1?

3. So far, we have not discussed how to find an initial starting point (x, s) near
the central path. As LP feasibility is generally as hard as LP optimization,
we can not expect this to be an easy task. Therefore, in both theory
and practice, IPMs are usually initialized on auxiliary LPs. One of the
standard initialization techniques is the following: For some sufficiently
large parameter M > 0, consider the primal dual program

min c⊤x+M1⊤x̂ max y⊤b+ 2M1⊤z

s.t. Ax−Ax̂ = b A⊤y + z + s = c

x+ x̄ = 2M1 −A⊤y + ŝ = M1

z + s̄ = 0

x, x̂, x̄ ≥ 0 s, ŝ, s̄ ≥ 0

(3)

(a) Show that if M is large enough, (in particular M ≫ ∥b∥, ∥c∥) we can
initialize this system near the central path (with some ε-error) for
some

x ≈ x̂ ≈ x̄ ≈ s ≈ ŝ ≈ s̄ ≈ M1 (4)

and a parameter µ ≈ M2. Provide some intuition on why optimal
solutions to (3) correspond to optimal solutions of (1).

(b) The constraint matrix of the modified system (3) is now

M =

[
A −A 0
I 0 I

]
(5)

Show that κ(M) = κ(A). In particular, this initialization technique
preserves the circuit imbalance.

4. For a given partition B ∪N = [n] of variables and a feasible vector x > 0
recall the trust region program for a particular type of update step in
interior points methods:

min
δ∈ker(A)

∥∥∥∥xN + δN
xN

∥∥∥∥
2

s.t.

∥∥∥∥ δBxB

∥∥∥∥
2

≤ ε . (6)

If we square constraint and objective and furthermore lagrangify the con-
straint with a fixed λ ≥ 0 we obtain the unconstrained problem

min
δ∈ker(A)

∥∥∥∥xN + δN
xN

∥∥∥∥2
2

+ λ

∥∥∥∥ δBxB

∥∥∥∥2
2

. (7)

For fixed λ > 0, give a closed formula for the optimal solution of (7). Note:
This illustrates that the complexity in solving (6) stem from the fact that
it is hard to guess a value of λ ≥ 0 for which the optimal solution to (7)
fulfills ∥δB/xB∥2 ≈ ε.
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