Summer School on LP Solvers
Problem Set on Matrix Data Structures

Let 7 € R™ be a vector with 7; > 1 for all i. One can show that for linear program min,—, ¢’z the
weighted log barrier

n
ful@) = cTo— -3 7 log(a)
i=1
also implies a working primal-dual method. Here being centered is equivalent to
xi8; = - 7; for all ¢

and the number of iterations is O(+/|[7][1 - log(u1/p0)). (Note, this is exactly equivalent to the IPM from
Monday when 7; = 1 for all 4.)

For this modified IPM, rather than ||S™1d;]|2, [|S™1d,]|2 < 1/10, we have the guarantee ||[S™1d4||, < 1/10
and ||X~16,||, < 1/10. Here the 7-norm is defined as ||v||, := /> ;_, T - v2, i.e., the f>-norm but we weight
the contribution of each component by ;.

1 Problem: Weighted Bound on Number of Updates

For e € (0,1/2],1et (1 —e)x <T < (14 €)z.
We run an algorithm (eg some IPM) that in each iteration updates z + x + ¢, for some new 4. We
are promised || X~18,||, < 1/10. After each iteration, we update Z; <— z; for any i where the approximation

doesn’t hold anymore. Let I, C {1,...,n} be the indices i where we changed T; during the k-th iteration.

Problem: Show that after T iterations

T
Y>> mi=0(TVIrlli/e).

k=1iely

Hint: During the lecture we have proven this for 7 = I, where we showed the number of updates to Z is
bounded by O(T'/n/e).
Remark/Application: If we have a data structure where updating Z; takes different time for different

i, then we could pick 7; to be proportional to the time. Then Zgzl Zielk 7; would be proportional to the
time complexity of our data structure. We will explore this in the next question.

2 Problem: Sparse Product Maintenance

nnz
nnz

Let ;, =1+n-
and nnz(A) is the number of non-zero entries in the entire matrix. Let us assume matrix A is given as a list

of non-zero entries (i.e., for each row we have a list of non-zero entries).

(‘:))" for all i = 1,...,n. Here nnz(A); is the number of non-zero entries in the ith row,

Problem: Show we can maintain (ATXisilA) in O(dnnz(A)) total time over T = O(/||7]|1) iterations.
(In each iteration, we are promised || X716, ., [|S™1ds|» < 1/10.)

Remark: If we maintain (AXisilA), then we compute (AXisilA)_1 from scratch in O(d*) time. This
implies an LP solver with O(((v/n + d) nnz(A) + /nd*)log(u1/uo)) time complexity. For n > d“, this is
O(v/nnnz(A)log(p1/ po))-

This is faster than the algorithms from the lecture for very sparse A.

Extra Problem: Instead of computing the inverse from scratch in each iteration, how fast can we maintain
it?

	Problem: Weighted Bound on Number of Updates
	Problem: Sparse Product Maintenance

