
Summer School on LP Solvers
Problem Set on Matrix Data Structures

Let τ ∈ Rn be a vector with τi ≥ 1 for all i. One can show that for linear program minAx=b c⊤x the
weighted log barrier

fµ(x) = c⊤x− µ ·
n∑

i=1
τi · log(xi)

also implies a working primal-dual method. Here being centered is equivalent to

xisi = µ · τi for all i

and the number of iterations is Õ(
√
∥τ∥1 · log(µ1/µ0)). (Note, this is exactly equivalent to the IPM from

Monday when τi = 1 for all i.)
For this modified IPM, rather than ∥S−1δs∥2, ∥S−1δx∥2 ≤ 1/10, we have the guarantee ∥S−1δs∥τ ≤ 1/10

and ∥X−1δx∥τ ≤ 1/10. Here the τ -norm is defined as ∥v∥τ :=
√∑n

i=1 τi · v2
i , i.e., the ℓ2-norm but we weight

the contribution of each component by τi.

1 Problem: Weighted Bound on Number of Updates
For ϵ ∈ (0, 1/2], let (1− ϵ)x ≤ x ≤ (1 + ϵ)x.

We run an algorithm (eg some IPM) that in each iteration updates x ← x + δx for some new δx. We
are promised ∥X−1δx∥τ ≤ 1/10. After each iteration, we update xi ← xi for any i where the approximation
doesn’t hold anymore. Let Ik ⊂ {1, ..., n} be the indices i where we changed xi during the k-th iteration.

Problem: Show that after T iterations
T∑

k=1

∑
i∈Ik

τi = O(T
√
∥τ∥1/ϵ).

Hint: During the lecture we have proven this for τ = 1⃗, where we showed the number of updates to x is
bounded by O(T

√
n/ϵ).

Remark/Application: If we have a data structure where updating xi takes different time for different
i, then we could pick τi to be proportional to the time. Then

∑T
k=1

∑
i∈Ik

τi would be proportional to the
time complexity of our data structure. We will explore this in the next question.

2 Problem: Sparse Product Maintenance
Let τi = 1 + n · nnz(A)i

nnz(A) for all i = 1, ..., n. Here nnz(A)i is the number of non-zero entries in the ith row,
and nnz(A) is the number of non-zero entries in the entire matrix. Let us assume matrix A is given as a list
of non-zero entries (i.e., for each row we have a list of non-zero entries).

Problem: Show we can maintain (A⊤XS−1A) in O(d nnz(A)) total time over T = O(
√
∥τ∥1) iterations.

(In each iteration, we are promised ∥X−1δx∥τ , ∥S−1δs∥τ ≤ 1/10.)

1



Remark: If we maintain (AXS−1A), then we compute (AXS−1A)−1 from scratch in O(dω) time. This
implies an LP solver with Õ(((

√
n + d) nnz(A) +

√
ndω) log(µ1/µ0)) time complexity. For n > dω, this is

Õ(
√

n nnz(A) log(µ1/µ0)).
This is faster than the algorithms from the lecture for very sparse A.

Extra Problem: Instead of computing the inverse from scratch in each iteration, how fast can we maintain
it?

2


	Problem: Weighted Bound on Number of Updates
	Problem: Sparse Product Maintenance

