
Week 13 Report - NFHM

Romouald Dombrovski

November 15, 2024

1 Time Log

What progress did you make in the last week?

• Generated captions with InternVl using Thomas’ methods

• Set up and familiarized myself with PACE ICE cluster

• Met with Thomas, Dr. Porto, Moritz and Bree to discuss training models with UNI-
COM

• Refactored code into usable utils chunks

• Created training plan with Thomas for cluster comparison

• Trained cluster models with 100, 500 clusters

• Evaluated the models

• Met with Thomas and Bree to discuss results and next steps

2 Abstract

Bjerge K., et al. Hierarchical Classification of Insects with Multitask Learning and Anomaly
Detection. doi: https://doi.org/10.1101/2023.06.29.546989.

Abstract Cameras and computer vision are revolutionising the study of insects, creating new
research opportunities within agriculture, epidemiology, evolution, ecology and monitoring of
biodiversity. However, a major challenge is the diversity of insects and close resemblances of
many species combined with computer vision are often not sufficient to classify large numbers
of insect species, which sometimes cannot be identified at the species level. Here, we present

1

an algorithm to hierarchically classify insects from images, leveraging a simple taxonomy
to (1) classify specimens across multiple taxonomic ranks simultaneously, and (2) highlight
the lowest rank at which a reliable classification can be reached. Specifically, we propose
multitask learning, a loss function incorporating class dependency at each taxonomic rank,
and anomaly detection based on outlier analysis for quantification of uncertainty. First, we
compile a dataset of 41,731 images of insects, combining images from time-lapse monitor-
ing of floral scenes with images from the Global Biodiversity Information Facility (GBIF).
Second, we adapt state-of-the-art convolutional neural networks, ResNet and EfficientNet,
for the hierarchical classification of insects belonging to three orders, five families and nine
species. Third, we assess model generalization for 11 species unseen by the trained models.
Here, anomaly detection is used to predict the higher rank of the species not present in
the training set. We found that incorporating a simple taxonomy into our model increased
accuracy at higher taxonomic ranks. As expected, our algorithm correctly classified new
insect species at higher taxonomic ranks, while classification was uncertain at lower taxo-
nomic ranks. Anomaly detection can effectively flag novel taxa that are visually distinct
from species in the training data. However, five novel taxa were consistently mistaken for
visually similar species in the training data. Above all, we have demonstrated a practical
approach to hierarchical classification based on species taxonomy and uncertainty during
automated in situ monitoring of live insects. Our method is simple and versatile and could
be implemented to classify a wide range of insects as well as other organisms.

Summary (GPT-4o) This paper introduces a hierarchical classification method for iden-
tifying insects from images, leveraging multitask learning, hierarchical loss functions, and
anomaly detection to classify insects across multiple taxonomic ranks and flag uncertain
classifications. Using a dataset of 41,731 insect images, the authors trained modified con-
volutional neural networks, such as ResNet50 and EfficientNetB3, to classify insects at the
order, family, and species levels. The model demonstrated improved accuracy at higher
taxonomic ranks and was particularly effective at classifying new, unseen species at broader
taxonomic categories. Anomaly detection flagged species not present in the training data
as ”unsure,” ensuring reliable higher-level classifications while highlighting uncertainty at
lower ranks. By incorporating data from time-lapse monitoring and the Global Biodiversity
Information Facility (GBIF), the model became robust across diverse image types. This
approach holds promise for applications in biodiversity monitoring, pest management, and
ecological studies, offering scalable and reliable classification systems for insect identification
and novel species detection.

2

3 Scripts and Code Blocks

From last week we decided to continue working on training UNICOM models on different
cluster sizes. I discussed with Thomas to ensure that we stay on the same page in terms
of hyperparameters. We used OpenClip’s ViT-H-14-378-quickgelu model to create initial
embeddings for images and text. We used this model, because it had the best initial perfor-
mance of any other CLIP model as per the accuracy comparison provided in the OpenCLIP
repo. The model we trained was a CLIP ViT-B/32 visual transformer

The hyperparameters we decided to match were the following:

self.batch_size = 128

self.dataset = "cub"

self.debug = 0

self.epochs = 32

self.lr = 1e-5

self.lr_pfc_weight = 10.0

self.input_size = 224

self.gradient_acc = 1

self.model_name = "ViT-B/32"

self.margin_loss_m1 = 1.0

self.margin_loss_m2 = 0.3

self.margin_loss_m3 = 0.0

self.margin_loss_s = 32.0

self.margin_loss_filter = 0.0

self.num_workers = 4

self.num_feat = 512

self.optimizer = "adamw"

self.output = "/tmp/tmp_for_training"

self.resume = "NULL"

self.sample_rate = 1.0

self.seed = 5

self.transform = None

self.weight_decay = 0

self.output_dim = 512 if "B/32" in self.model_name else (

768 if "B/16" in self.model_name else 1024

)

This was the main loop calling each of step of the evaluation

eval_df = pd.DataFrame(columns=[’model’, ’taxa’, ’column’,

’accuracy_individual’, ’accuracy_avg’, ’distance_individual’, ’distance_avg’])

for ncluster in [100, 500, 1000, 2000]:

create cluster train df

train_df = setup_clusters(other_df, ncluster)

3

https://github.com/mlfoundations/open_clip
https://github.com/mlfoundations/open_clip

config = Config()

model, transform = training_loop(config, train_df)

eval_row = vlm_species_eval(other_df, model, transform, get_embeds, ncluster)

torch.save(model.state_dict(),

f’/home/hice1/rdombrovski3/scratch/unicom_clip_weights_{ncluster}_clusters.pth’)

del model

torch.cuda.empty_cache()

eval_df = pd.concat([eval_df, eval_row], ignore_index=True)

The training loop was the same as the previous week, so I won’t repeat it here. After discus-
sion with the team, I wanted to compare evaluation by doing the initial clustering + training
on the ENTIRE VLM4Bio dataset, instead of doing the initial split. Whilst there was risk
of overfitting when doing the evaluation, we wanted to see if it greatly affected the results
(the clustering process was already a regularizing method). Here is how the clusters were
set up for my process:

def setup_clusters(df, num_cluster):

train_df, test_df = get_test_train_split(df, test_size=0,

stratify_by_scientific_name=True)

make sure clusters are set on training data ONLY

train_df = set_clusters_on_df(train_df, ’avg_embedding’,

ncentroids=num_cluster)

return train_df

I rewrote a lot of my code from notebooks into reusable utils functions. The code can be
seen in the following pull request.

Here is an example, which is the rewritten metrics evaluation function

import os

import pandas as pd

import requests

import torch

from transformers import AutoModelForCausalLM, AutoProcessor, AutoModel,

CLIPImageProcessor

from PIL import Image

import numpy as np

from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances

from sklearn.model_selection import train_test_split

import open_clip

from huggingface_hub import hf_hub_download

from time import time

4

https://github.com/BioCosmos-AI/BioCosmos/pull/10/files

device = "cuda" if torch.cuda.is_available() else "cpu"

torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

def get_test_train_split(df_cleaned, test_size=0.2,

stratify_by_scientific_name=False):

"""

Split a dataframe into test and train sets

Parameters

df_cleaned : dataframe

DESCRIPTION.

test_size : float, optional

size of the test set. The default is 0.1.

stratify_by_scientific_name : Boolean, optional

Allow for stratification (even representation across classes). The

default is False.

Returns

train_df : TYPE

DESCRIPTION.

test_df : TYPE

DESCRIPTION.

"""

if stratify_by_scientific_name:

if we want to get at least one from each we can filter out all options

with only 1 image

species_counts = df_cleaned[’scientific_name’].value_counts()

valid_species = species_counts[species_counts > 1].index

df_filtered =

df_cleaned[df_cleaned[’scientific_name’].isin(valid_species)]

with stratification, we need to specify the test_size because we need

to hit a minimum

calc_min = len(valid_species)/len(df_filtered)

min_split = max(test_size, calc_min)

print(f’The split for stratification is: {min_split}’)

train_df, test_df = train_test_split(df_filtered, test_size=min_split,

stratify=df_filtered[’scientific_name’])

else:

train_df, test_df = train_test_split(df_cleaned, test_size=test_size)

return train_df, test_df

def calculate_similarity_and_distance(test_embeddings, train_embeddings, model):

5

we don’t need the dim=1, in both cases its 1

test_embeddings, train_embeddings = np.squeeze(test_embeddings, axis=1),

np.squeeze(train_embeddings, axis=1)

if florence, avg across new dim 1, size = 577 (patches on img)

if model == ’florence’:

test_embeddings = np.mean(test_embeddings, axis=1)

train_embeddings = np.mean(train_embeddings, axis=1)

similarity_matrix = cosine_similarity(test_embeddings, train_embeddings)

distance_matrix = euclidean_distances(test_embeddings, train_embeddings)

return similarity_matrix, distance_matrix

def find_best_match_vectorized(test_embeddings, train_df, label_column, model):

Get train embeddings and labels as numpy arrays

train_embeddings = np.array(train_df[’image_embeddings’].tolist())

train_labels = train_df[label_column].values

Calculate similarity and distance for all test embeddings at once

similarity_matrix, distance_matrix =

calculate_similarity_and_distance(test_embeddings, train_embeddings,

model)

Get the labels with the highest individual similarity score and lowest

distance

highest_similarity_idx = similarity_matrix.argmax(axis=1)

highest_similarity_labels = train_labels[highest_similarity_idx]

highest_similarity_scores = similarity_matrix.max(axis=1)

lowest_dist_idx = distance_matrix.argmin(axis=1)

lowest_dist_labels = train_labels[highest_similarity_idx]

lowest_dist_scores = similarity_matrix.min(axis=1)

create a repeated matrix of train labels to match the size of similarity

matrix (test_size x train_size)

repeated_train_labels = np.tile(train_labels, (similarity_matrix.shape[0], 1))

Create a DataFrame with each test embedding’s comparison to all train labels

Flatten the similarity matrix and repeated labels to match

similarity_df = pd.DataFrame({

’test_idx’: np.repeat(range(similarity_matrix.shape[0]),

similarity_matrix.shape[1]),

label_column: repeated_train_labels.flatten(),

’similarity_score’: similarity_matrix.flatten()

6

})

avg_similarity_df = similarity_df.groupby([’test_idx’, label_column],

as_index=False).mean()

idx_max_avg =

avg_similarity_df.groupby(’test_idx’)[’similarity_score’].idxmax()

highest_avg_sim_labels = avg_similarity_df.loc[idx_max_avg,

label_column].values

highest_avg_sim_scores = avg_similarity_df.loc[idx_max_avg,

’similarity_score’].values

distance_df = pd.DataFrame({

’test_idx’: np.repeat(range(similarity_matrix.shape[0]),

similarity_matrix.shape[1]),

label_column: repeated_train_labels.flatten(),

’distance_score’: distance_matrix.flatten()

})

avg_dist_df = distance_df.groupby([’test_idx’, label_column],

as_index=False).mean()

idx_min_avg = avg_dist_df.groupby(’test_idx’)[’distance_score’].idxmin()

lowest_avg_dist_labels = avg_dist_df.loc[idx_min_avg, label_column].values

lowest_avg_dist_scores = avg_dist_df.loc[idx_min_avg, ’distance_score’].values

return

highest_similarity_labels,highest_similarity_scores,highest_avg_sim_labels,highest_avg_sim_scores,lowest_dist_labels,lowest_dist_scores,lowest_avg_dist_labels,lowest_avg_dist_scores

def apply_best_match_vectorized(test_df, train_df, label_column, model):

Convert all test image embeddings to numpy arrays

test_embeddings = np.array(test_df[’image_embeddings’].tolist())

Vectorized function to find the best match for each test embedding

highest_individual_name, highest_individual_score, highest_mean_name,

highest_mean_score,lowest_dist_name, lowest_dist_score,

lowest_avg_dist_name, lowest_avg_dist_score = find_best_match_vectorized(

test_embeddings, train_df, label_column, model

)

Assign results back to the test DataFrame

test_df[’highest_individual_name’] = highest_individual_name

test_df[’highest_individual_score’] = highest_individual_score

test_df[’highest_mean_name’] = highest_mean_name

test_df[’highest_mean_score’] = highest_mean_score

test_df[’lowest_dist_name’] = lowest_dist_name

test_df[’lowest_dist_score’] = lowest_dist_score

test_df[’lowest_avg_dist_name’] = lowest_avg_dist_name

test_df[’lowest_avg_dist_score’] = lowest_avg_dist_score

7

Calculate accuracy metrics

accuracy_individual = np.mean(test_df[’highest_individual_name’] ==

test_df[label_column])

accuracy_mean = np.mean(test_df[’highest_mean_name’] == test_df[label_column])

accuracy_dist = np.mean(test_df[’lowest_dist_name’] == test_df[label_column])

accuracy_avg_dist = np.mean(test_df[’lowest_avg_dist_name’] ==

test_df[label_column])

print(f"Accuracy for model {model} on column {label_column} based on highest

individual cosine similarity: {accuracy_individual * 100:.2f}%")

print(f"Accuracy for model {model} on column {label_column} based on highest

mean cosine similarity: {accuracy_mean * 100:.2f}%")

print(f"Accuracy for model {model} on column {label_column} based on lowest

individual euclidean distance: {accuracy_individual * 100:.2f}%")

print(f"Accuracy for model {model} on column {label_column} based on lowest

mean euclidean distance: {accuracy_mean * 100:.2f}%")

return test_df, accuracy_individual, accuracy_mean, accuracy_dist,

accuracy_avg_dist

def extract_genus(scientific_name):

try:

return scientific_name.split()[0]

except Exception as e:

print(scientific_name)

raise

def vlm_species_eval(full_species_df, model, transform, get_embeds):

"""

Evaluation loop to calculate cosine similarity and euclidean distance in n=1

NN method

Parameters

full_species_df : Dataframe

Dataframe containing all info about the VLM4Bio datasets, with image file

names and scientific_names.

model : model

model used to evaluate the data.

transform : function

transform function used to preprocess data for the model.

get_embeds : function

function used to get image embeddings for the model.

Returns

eval_df : Dataframe

8

output dataframe including all the accuracy calculations.

"""

full_species_df[’category’] = full_species_df[’category’].apply(lambda x:

x.strip())

eval_df = pd.DataFrame(columns=[’model’, ’taxa’, ’column’,

’accuracy_individual’, ’accuracy_avg’, ’distance_individual’,

’distance_avg’])

rows = []

model = model.float()

analysis_taxa = [’Fish’, ’Bird’, ’Butterfly’, ’All’]

full_species_df =

full_species_df[full_species_df[’scientific_name’].str.strip() != ’’]

full_species_df[’genus’] =

full_species_df[’scientific_name’].apply(extract_genus)

note the amount of time necessary to generate all embeddings

start = time.time()

full_species_df[’image_embeddings’] =

full_species_df[’image_name’].apply(lambda x: get_embeds(x, model,

transform))

full_species_df.dropna(subset=[’scientific_name’], inplace=True)

time_length = time.time() - start

print(f’Took {time_length} seconds to generate embeddings’)

we’re gonna compare species by species within each taxa, and against each

for taxa in analysis_taxa: # cleaned_dfs can have full species appended to it

too

print(f"WORKING ON TAXA: {taxa}")

df = full_species_df if taxa == ’All’ else

full_species_df[full_species_df[’category’] == taxa]

train_df, test_df = get_test_train_split(df, test_size=0.2,

stratify_by_scientific_name=False)

start = time.time()

test_df, accuracy_individual, accuracy_avg, distance_individual,

distance_avg = apply_best_match_vectorized(test_df, train_df,

’scientific_name’, ’trained_vlm_unicom’)

time_length = time.time() - start

print(f"Time for analysis for model trained_vlm_unicom: {time_length}")

rows.append({’model’: ’trained_vlm_unicom’, ’taxa’: taxa, ’column’:

’species’, ’accuracy_individual’: f"{accuracy_individual * 100:.2f}%",

9

’accuracy_avg’: f"{accuracy_avg * 100:.2f}%", ’distance_individual’:

f"{distance_individual * 100:.2f}%", ’distance_avg’: f"{distance_avg *

100:.2f}%"})

test_df, accuracy_individual, accuracy_avg, distance_individual,

distance_avg = apply_best_match_vectorized(test_df, train_df, ’genus’,

’trained_vlm_unicom’)

rows.append({’model’: ’trained_vlm_unicom’, ’taxa’: taxa, ’column’:

’genus’, ’accuracy_individual’: f"{accuracy_individual * 100:.2f}%",

’accuracy_avg’: f"{accuracy_avg * 100:.2f}%", ’distance_individual’:

f"{distance_individual * 100:.2f}%", ’distance_avg’: f"{distance_avg *

100:.2f}%"})

if taxa == ’All’: # only relevant when comparing against other taxa

test_df, accuracy_individual, accuracy_avg, distance_individual,

distance_avg = apply_best_match_vectorized(test_df, train_df,

’category’, ’trained_vlm_unicom’)

rows.append({’model’: ’trained_vlm_unicom’, ’taxa’: taxa, ’column’:

’taxa’, ’accuracy_individual’: f"{accuracy_individual *

100:.2f}%", ’accuracy_avg’: f"{accuracy_avg * 100:.2f}%",

’distance_individual’: f"{distance_individual * 100:.2f}%",

’distance_avg’: f"{distance_avg * 100:.2f}%"})

eval_df = pd.concat([eval_df, pd.DataFrame(rows)], ignore_index=True)

return eval_df

10

4 Visualization

I had some difficulties with the PACE ICE cluster, especially concerning length of training
time + memory usage, as this was my first time using the tool. Because of this, I was only
able to train a model on 100 500 clusters. I will be running the training loop with 1000
and 2000 clusters in the coming day(s) and compare the evaluation to Bioclip and OpenClip
models.

Figure 1: Table showing comparison between models trained on 100 500 clusters

11

5 Next Week Proposal

• Finish running training + eval on remaining clusters

• Get set up on Hyergator

• Test parallel GPU computing for UNICOM training

• Re-read and discuss Bioclip paper with Thomas

• Work with Thomas on getting evaluation scripts aligned

• Meet with Dr. Porto and UofF collaboration team

12

	Time Log
	Abstract
	Scripts and Code Blocks
	Visualization
	Next Week Proposal

