
Week 11 Report - NFHM

Romouald Dombrovski

November 1, 2024

1 Time Log

What progress did you make in the last week?

• Met up with Biocosmos collaborators

• Examined UNICOM code base

• Generated notebook to perform training on generated clusters

• Ran training loop, reported findings to team

2 Abstract

Alexey Dosovitskiy, et al. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In ICLR, 2021.

AbstractWhile the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In vision,
attention is either applied in conjunction with convolutional networks, orused to replace
certain components of convolutional networks while keeping their overall structure in place.
We show that this reliance on CNNs is not necessary and a pure transformer applied directly
to sequences of image patches can perform very well on image classification tasks. When
pre-trained on large amounts of data and transferred to multiple mid-sized or small image
recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) at-
tains excellent results compared to state-of-the-art convolutional networks while requiring
substantially fewer computational resources to train.

Summary (GPT-4o) The paper ”An Image is Worth 16x16 Words: Transformers for Im-
age Recognition at Scale” proposes the Vision Transformer (ViT), an innovative approach

1

to image recognition that abandons convolutional neural networks (CNNs) in favor of pure
Transformers. By dividing images into fixed-size patches (like 16x16 pixels) and treating
these patches as tokens, ViT applies a standard Transformer directly to images, leveraging
the same architecture used in natural language processing. Through large-scale pre-training
on datasets like ImageNet-21k and JFT-300M, ViT achieves competitive or superior per-
formance compared to CNNs on major benchmarks, including ImageNet, CIFAR-100, and
VTAB tasks, while also being more computationally efficient. Unlike CNNs, which have
inductive biases like translation invariance and locality, ViT relies on extensive data to learn
these features, making it highly effective with ample data but less so with smaller datasets.
The study also explores the potential of self-supervised pre-training in ViT, showing promis-
ing improvements. The authors conclude that with further scaling and exploration of self-
supervision, ViT holds significant promise for expanding the applicability of Transformers
to broader computer vision tasks.

3 Scripts and Code Blocks

Last week we generated the embeddings for our image dataset (VLM4Bio) and then were
able to cluster them using the faiss library from Meta. The VLM4Bio dataset contained
30,000 images which were then organized to 3000 clusters as an initial test (the correct ratio
of clusters to samples will be a future experiment).
We used the coding samples from the UNICOM repository to help write the training loop
which was used to train the model. From the UNICOM paper and the scripts themselves,
it is determined that the training loop actually trains both the partial fc layer as well as the
base openclip model itself. The embeddings that were initially generated (and saved) are
only to be used for the sake of generating initial clusters. Each image is given a ”pseudola-
bel” which is the cluster id which it belongs to. The training loop is used to train the model
to recognize each image as belonging to its specific cluster group.

The code for generating the embedding dataset, taking in the dataframe and the transfor-
mation function for the images:

class VLM4BioEmbeddingDataset(torch.utils.data.Dataset):

def __init__(self, df, transform=None):

self.img_dir = ’downloaded_images/’

self.image_files = df[’image_filename’].tolist()

if ’cluster_ids’ in df.columns:

self.cluster_ids = df[’cluster_ids’].tolist()

else:

self.cluster_ids = [-1] * len(self.image_files)

self.transform = transform

2

https://github.com/deepglint/unicom/tree/main

def __len__(self):

return len(self.image_files)

def __getitem__(self, idx):

Load image and apply transformations

image_path = os.path.join(self.img_dir, self.image_files[idx]).strip()

image = Image.open(image_path).convert("RGB")

if self.transform:

image = self.transform(image)

label = self.cluster_ids[idx]

return image, label

The code for the partial fc module layer was taken straight from the unicom partialfc.py
code.
The code to generate the base model being trained was taken from the unicom model.py
code.
The code for the training loop came from unicom’s retrieval.py code. It was updated to
work on a single GPU run, as the code from UNICOM was mean to be run on a multi-GPU
architecture.

from torch import optim

from tqdm import tqdm

import torch.distributed as dist

import os

setting s, m1, m2, m3, sample_rate, num_feat based on

https://github.com/deepglint/unicom/blob/main/retrieval.py#L34

s = 32

m1 = 1.0

m2 = 0.3

m3 = 0.0

sample_rate = 1.0

num_feat = 256 # random number, not based on defaults

initializing CombinedMarginLoss and PartialFC

margin_loss = CombinedMarginLoss(s, m1, m2, m3)

Initialize distributed processing with a single process

os.environ[’MASTER_ADDR’] = ’localhost’

os.environ[’MASTER_PORT’] = ’12355’

dist.init_process_group(backend=’nccl’, world_size=1, rank=0)

partial_fc = PartialFC_V2(

3

https://github.com/deepglint/unicom/blob/main/partial_fc.py
https://github.com/deepglint/unicom/blob/main/unicom/model.py
https://github.com/deepglint/unicom/blob/main/retrieval.py#L116

margin_loss, embedding_size=EMBEDDING_SIZE,

num_classes=NUM_CLUSTERS, sample_rate=sample_rate,

sample_num_feat=num_feat)

BATCH_SIZE = 128

defaults from retrieval.py

LR = 0.0001

LR_PFC = 5.0

num_epochs = 10

partial_fc.train().cuda()

backbone_model, transform = load("ViT-L/14@336px", device="cuda")

train_transform = get_transform(336)

train_dataset = VLM4BioEmbeddingDataset(train_df, transform=train_transform)

test_dataset = VLM4BioEmbeddingDataset(test_df, transform=train_transform)

steps_per_epoch = len(train_dataset) // BATCH_SIZE

dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE,

shuffle=True, drop_last=True)

optimizer = torch.optim.AdamW(

[

{"params": backbone_model.parameters(), "lr": LR},

{"params": partial_fc.parameters(), "lr": LR * LR_PFC}

]

)

lr_scheduler = optim.lr_scheduler.OneCycleLR(

optimizer,

max_lr=[LR, LR*LR_PFC],

steps_per_epoch=len(dataloader),

epochs=num_epochs,

pct_start=0.1

)

backbone_model.train()

backbone_model.float().cuda()

partial_fc.train()

for epoch in range(num_epochs):

epoch_loss = 0

with tqdm(dataloader, unit="batch") as batch_epoch:

batch_epoch.set_description(f"Epoch [{epoch+1}/{num_epochs}]")

4

for images, labels in batch_epoch:

images = images.cuda()

labels = labels.long().cuda()

optimizer.zero_grad()

with torch.cuda.amp.autocast(True):

batch_embeddings = backbone_model(images).float().cuda()

batch_embeddings = normalize(batch_embeddings)

loss = partial_fc(batch_embeddings, labels)

loss.backward()

optimizer.step()

lr_scheduler.step()

epoch_loss += loss.item()

batch_epoch.set_postfix(loss=loss.item())

avg_loss = epoch_loss / len(dataloader)

print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}")

Final centroids after training

updated_centroids = partial_fc.weight.detach().cpu().numpy()

Save model and centroids

torch.save(backbone_model.state_dict(), ’trained_model.pth’)

np.save(’final_centroids.npy’, updated_centroids)

print("Training complete. Model and centroids saved.")

I ran the training loop and was unable to get a lowered loss function. I discussed this with
Thomas, and he was able to get a decreased loss with his implementation, so I will compare
the two.

4 Visualization

No visualization from this week.

5 Next Week Proposal

• Compare training loop with Thomas Deatherage

• Run the training loop on the clustered dataset

• Create an evaluation script using UNICOM code

5

• Test the newly trained model in comparison to the other models in the model eval
script

• Test different cluster sizes to find the most optimal

• Meet with Dr. Porto et al. to plan further

6

	Time Log
	Abstract
	Scripts and Code Blocks
	Visualization
	Next Week Proposal

