
Week 12 Report - NFHM

Romouald Dombrovski

November 8, 2024

1 Time Log

What progress did you make in the last week?

• Set up training loop for visual encodings

• Trained ViT-B/32 models from UNICOM and CLIP

• Evaluated results using eval metrics script

• Reported findings to team, discussed following steps

2 Abstract

Steinke D., et al. Towards a Taxonomy Machine - A Training Set of 5.6 Million Anthropod
Images. doi: https://doi.org/10.1101/2024.07.15.600863.

AbstractThe taxonomic identification of organisms from images is an active research area
within the machine learning community. Current algorithms are very effective for object
recognition and discrimination, but they require extensive training datasets to generate reli-
able assignments. This study releases 5.6 million images with representatives from 10 arthro-
pod classes and 26 insect orders. All images were taken using a Keyence VHX-7000 Digital
Microscope system with an automatic stage to permit high-resolution (4K) microphotogra-
phy. Providing phenotypic data for 324,000 species derived from 48 countries, this release
represents, by far, the largest dataset of standardized arthropod images. As such, this
dataset is well suited for testing the efficacy of machine learning algorithms for identifying
specimens to higher taxonomic categories.
Summary (GPT-4o) The paper ”Towards a Taxonomy Machine – A Training Set of
5.6 Million Arthropod Images” introduces a groundbreaking dataset of 5.6 million high-
resolution arthropod images, representing over 320,000 species collected from 48 countries.

1



Captured through the Keyence VHX-7000 Digital Microscope system, these images feature
specimens from 10 arthropod classes and 26 insect orders, presented in various orientations,
which enhances the dataset’s utility for training machine learning models on complex visual
recognition tasks. This collection, derived from the global DNA barcoding project, supports
the development of machine learning algorithms for accurate taxonomic classification, en-
abling image-based identification of arthropods and providing crucial data for biodiversity
research. Each image links to a DNA Barcode Index Number (BIN) on the Barcode of
Life Datasystems (BOLD), offering taxonomic insights and facilitating biomass and abun-
dance estimation. This vast dataset, the largest standardized collection of its kind, sets a
new foundation for automated species identification, supporting scalability with millions of
images added yearly, which can further optimize AI-driven identification tools.

3 Scripts and Code Blocks

Last week we used the UNICOM repo code samples to create the training loop which was
to be used to generate our own UNICOM models based on the ecological data found on the
VLM4Bio dataset. If successful, we would continue to train larger datasets, such as Tree of
Life.
Combining from my training loop and Thomas’ training loop, which showed better results
(as per Thomas’ pull request)

import clip

from torch.utils.data import DataLoader

config = None

if config is None:

config = Config()

# Make config globally available as args

global args

args = config

# Initialize distributed processing with a single process

os.environ[’MASTER_ADDR’] = ’localhost’

os.environ[’MASTER_PORT’] = ’12355’

distributed.init_process_group(backend=’nccl’, world_size=1, rank=0)

# Load model and initialize

# model, transform_clip = clip.load("ViT-B/32") # if loading the model from the

2

https://github.com/BioCosmos-AI/BioCosmos/pull/9/files#diff-130ff37b44a6164a462723dc5eeaaff06b75942f371b34e0a7fff401e62ea7b1


CLIP library

model, transform_clip = load("ViT-B/32", device="cuda") # if loading the model

from UNICOM archive

# model = model.visual # only used if using the CLIP model

model = model.float() # Convert to full precision because that’s what the rest

of the unicom seems to want

model = WarpModule(model)

model.train()

model.cuda()

train_dataset = VLM4BioEmbeddingDataset(train_df, transform=transform_clip)

loader_train = DataLoader(

train_dataset,

batch_size=args.batch_size,

num_workers=args.num_workers,

pin_memory=True,

drop_last=True,

shuffle=True

)

backbone = model

margin_loss = CombinedMarginLoss(

args.margin_loss_s,

args.margin_loss_m1,

args.margin_loss_m2,

args.margin_loss_m3,

args.margin_loss_filter

)

module_partial_fc = PartialFC_V2(

margin_loss,

args.output_dim,

train_dataset.num_classes,

args.sample_rate,

False,

sample_num_feat=args.num_feat,

)

module_partial_fc.train().cuda()

opt = torch.optim.AdamW(

params=[

3



{"params": backbone.parameters()},

{"params": module_partial_fc.parameters(), "lr": args.lr *

args.lr_pfc_weight}

],

lr=args.lr,

weight_decay=args.weight_decay

)

steps_per_epoch = len(train_dataset) // args.batch_size + 1

lr_scheduler = optim.lr_scheduler.OneCycleLR(

optimizer=opt,

max_lr=[args.lr, args.lr * args.lr_pfc_weight],

steps_per_epoch=steps_per_epoch,

epochs=args.epochs,

pct_start=0.1,

)

callback_func = SpeedCallBack(10, args.epochs * steps_per_epoch, args.batch_size)

auto_scaler = torch.cuda.amp.grad_scaler.GradScaler(growth_interval=200)

global_step = 0

# Main training loop - removed train_sampler check

for epoch in range(args.epochs):

for _, (img, local_labels) in enumerate(loader_train):

img = img.cuda()

local_labels = local_labels.long().cuda()

with torch.cuda.amp.autocast(False):

local_embeddings = backbone(img)

local_embeddings.float()

loss = module_partial_fc(local_embeddings, local_labels)

auto_scaler.scale(loss).backward()

if global_step % args.gradient_acc == 0:

auto_scaler.step(opt)

auto_scaler.update()

opt.zero_grad()

lr_scheduler.step()

global_step += 1

with torch.no_grad():

callback_func(

lr_scheduler,

float(loss),

4



global_step,

auto_scaler.get_scale()

)

print(f"Completed epoch {epoch}")

print("Training completed")

# Saving the centroids and the model state dict after training loop completes

updated_centroids = module_partial_fc.weight.detach().cpu().numpy()

torch.save(backbone.state_dict(), ’trained_model_uniclip.pth’)

np.save(’final_centroids_uniclip.npy’, updated_centroids)

print("Model and centroids saved.")

To load the model after upon next sessions. The model must have the same number and
type of parameters as the backbone model which was trained:

import clip

state_dict = torch.load(’trained_model_uniclip.pth’)

model, transform = clip.load("ViT-B/32")

# model = model.visual # only used if using the CLIP model

model = model.float()

mod = WarpModule(mod) # Warp module used on top of ViT layers

mod.cuda()

mod.load_state_dict(state_dict)

The evaluation was done using the model eval script’s code when comparing the different
out-of-the-box pretrained models:

def vlm_species_eval(full_species_df, model, transform):

full_species_df[’taxa’] = full_species_df[’taxa’].apply(lambda x: x.strip())

eval_df = pd.DataFrame(columns=[’model’, ’taxa’, ’column’,

’accuracy_individual’, ’accuracy_avg’, ’distance_individual’,

’distance_avg’])

rows = []

model = model.float()

analysis_taxa = [’Fish’, ’Bird’, ’Butterfly’, ’All’]

full_species_df =

full_species_df[full_species_df[’scientificName’].str.strip() != ’’]

full_species_df[’genus’] =

5



full_species_df[’scientificName’].apply(extract_genus)

# note the amount of time necessary to generate all embeddings

start = time.time()

full_species_df[’image_embeddings’] =

full_species_df[’image_filename’].apply(lambda x: get_embeds(x, model,

transform))

full_species_df.dropna(subset=[’scientificName’], inplace=True)

time_length = time.time() - start

print(f’Took {time_length} seconds to generate embeddings’)

# we’re gonna compare species by species within each taxa, and against each

for taxa in analysis_taxa: # cleaned_dfs can have full species appended to it

too

print(f"WORKING ON TAXA: {taxa}")

df = full_species_df if taxa == ’All’ else

full_species_df[full_species_df[’taxa’] == taxa]

train_df, test_df = get_test_train_split(df, test_size=0.2,

stratify_by_scientific_name=False)

start = time.time()

test_df, accuracy_individual, accuracy_avg, distance_individual, distance_avg

= apply_best_match_vectorized(test_df, train_df, ’scientificName’,

’trained_vlm_unicom’)

time_length = time.time() - start

print(f"Time for analysis for model trained_vlm_unicom: {time_length}")

rows.append({’model’: ’trained_vlm_unicom’, ’taxa’: taxa, ’column’:

’species’, ’accuracy_individual’: f"{accuracy_individual * 100:.2f}%",

’accuracy_avg’: f"{accuracy_avg * 100:.2f}%", ’distance_individual’:

f"{distance_individual * 100:.2f}%", ’distance_avg’: f"{distance_avg *

100:.2f}%"})

test_df, accuracy_individual, accuracy_avg, distance_individual, distance_avg

= apply_best_match_vectorized(test_df, train_df, ’genus’,

’trained_vlm_unicom’)

rows.append({’model’: ’trained_vlm_unicom’, ’taxa’: taxa, ’column’: ’genus’,

’accuracy_individual’: f"{accuracy_individual * 100:.2f}%",

’accuracy_avg’: f"{accuracy_avg * 100:.2f}%", ’distance_individual’:

f"{distance_individual * 100:.2f}%", ’distance_avg’: f"{distance_avg *

100:.2f}%"})

if taxa == ’All’: # only relevant when comparing against other taxa

test_df, accuracy_individual, accuracy_avg, distance_individual,

distance_avg = apply_best_match_vectorized(test_df, train_df, ’taxa’,

6



’trained_vlm_unicom’)

rows.append({’model’: ’trained_vlm_unicom’, ’taxa’: taxa, ’column’: ’taxa’,

’accuracy_individual’: f"{accuracy_individual * 100:.2f}%",

’accuracy_avg’: f"{accuracy_avg * 100:.2f}%", ’distance_individual’:

f"{distance_individual * 100:.2f}%", ’distance_avg’: f"{distance_avg *

100:.2f}%"})

eval_df = pd.concat([eval_df, pd.DataFrame(rows)], ignore_index=True)

return eval_df

7



4 Visualization

I am not posting the loss functions this week as I have not generated any, but as I retraining
the models, it will be something that will be present on next week’s log.

Here are the results of the evaluation script for the two trained models (both models are
ViT-B/32, but obtained from different sources). As a summary, accuracy is the cosine
similarity across a test set of the images in comparison to the training set. Distance is the
measure of euclidean distance. The individual comparison is measuring weather the topmost
matched result belongs to the correct classification (whether that’s species-level, genus-level
or taxa-level), and avg comparison indicates if the match exists across all of the matches on
average.

Figure 1: Model Eval results from CLIP ViT-B/32 model trained on UNICOM cluster
method

8



Figure 2: Model Eval results from UNICOM archived ViT-B/32 model trained on UNICOM
cluster method

5 Next Week Proposal

• Generate captions using Thomas’ code on ICE cluster

• Create two separate sets of data, using avg and concatenated text + visual embeddings

• Train ViT-L/14@336px model on VLM4Bio dataset

- Determine whether its better to use pretrained model after all

• Refactor evaluation code for re usability

• Evaluate newly trained models

• Train model at different cluster sizes (e.g. 10% of classes, 1%, etc.)

• Meet with Dr. Porto to show results

9


	Time Log
	Abstract
	Scripts and Code Blocks
	Visualization
	Next Week Proposal

