Week 15 Report - NFHM

Romouald Dombrovski

November 29, 2024

1 Time Log
What progress did you make in the last week?

e Reviewed SLURM scripting

e Wrote script to download VLM4Bio dataset onto Hypergator

Rewrote Bioclip zero-shot script to work with visual transformer models

Ran zero-shot topk analysis on ViT-H-14 generated embeddings

Met up with Thomas to plan next steps

2 Abstract

Caron M., et al. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE International Conference on Computer Vision, pages 9650-9660, 2021.

Abstract In this paper, we question if self-supervised learning provides new properties to
Vision Transformer (ViT) that stand out compared to convolutional networks (convnets).
Beyond the fact that adapting self-supervised methods to this architecture works particularly
well, we make the following observations: first, self-supervised ViT features contain explicit
information about the semantic segmentation of an image, which does not emerge as clearly
with supervised ViTs, nor with convnets. Second, these features are also excellent k-NN
classifiers, reaching 78.3% top-1 on ImageNet with a small ViT. Our study also underlines
the importance of momentum encoder, multi-crop training, and the use of small patches
with ViTs. We implement our findings into a simple self-supervised method, called DINO,
which we interpret as a form of self-distillation with no labels. We show the synergy between
DINO and ViTs by achieving 80.1% top-1 on ImageNet in linear evaluation with ViT-Base.

1

Summary (GPT-40) The paper ”Emerging Properties in Self-Supervised Vision Trans-
formers” explores the capabilities of Vision Transformers (ViTs) trained without supervi-
sion, revealing properties not found in supervised ViTs or convolutional networks (con-
vnets). It highlights that self-supervised ViTs learn semantic segmentation directly in their
self-attention maps, enabling unsupervised object boundary discovery. The authors intro-
duce DINO, a self-supervised method that combines a momentum encoder and multi-crop
training, achieving impressive results such as 80.1% top-1 accuracy on ImageNet linear eval-
uation with ViT-Base. The framework demonstrates outstanding performance with nearest-
neighbor classifiers, robustness to feature extraction, and transferability to downstream tasks.
This research suggests self-supervised learning as a pivotal step toward developing BERT-like
models for vision tasks, with promising applications in segmentation and retrieval without
the need for labeled data.

3 Scripts and Code Blocks

This week the goal was to focus on 2 fronts: first was to make progress on getting the Tree-
of-Life dataset onto SLURM, and second was to work on the evaluation script we will used for

our trained model. All file changes can be seen in this pull request: https://github.com/BioCosmos-
AI/BioCosmos/pull/11/files

For the first goal, I created a SLURM script to download the VLM4Bio dataset. I did this
as a test as this dataset was far smaller than the Tree of Life dataset.

#!/bin/bash

#SBATCH --job-name=download_vlmé4bio
#SBATCH --output=download_vlmé4bio.log
#SBATCH --error=download_vlmébio.err
#SBATCH --time=02:00:00

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=4

#SBATCH --mem=8G

#SBATCH --partition=hpg-dev

‘scontrol show partition‘ to show types of partition on hypergator

load module
module load git

get VLM4Bio dataset

mkdir /blue/arthur.porto-biocosmos/rdombrovski3.gatech/VLM4Bio

git clone https://huggingface.co/datasets/imageomics/VLM4Bio
/blue/arthur.porto-biocosmos/rdombrovski3.gatech/VLM4Bio/

if [$? -ne 0]; then
echo "Git clone failed. Exiting."
exit 1

fi

check if script exists, then run scripts
first_script_path =
"/blue/arthur.porto-biocosmos/rdombrovski3.gatech/VLM4Bio/download_bird_images.sh"
if [-f "$first_script_path"]; then
Run the shell scripts to download + process images as per documentation on
VLM4Bio page
bash
/blue/arthur.porto-biocosmos/rdombrovski3.gatech/VLM4Bio/download_bird_images.sh
bash
/blue/arthur.porto-biocosmos/rdombrovski3.gatech/VLM4Bio/process_fish_butterfly_images.
else

echo "script $first_script_path does not exist"
exit 1
fi

Having

import torch
import torch.nn.functional as F
from sklearn.model_selection import train_test_split

TODO: these are not correct right now
from ..vlm4bio.cluster_utils import load_df

def zero_shot_accuracy(test_loader, class_prototypes, topk=(1, 3, 5)):
nnn
Method to compute accuracy for top k when comparing test embeddings to class
prototypes
Parameters
test_loader : torch.utils.data.Dataloader
Dataloader for test dataset.
class_prototypes : Dict[str: torch.tensor]
Class prototypes of the
topk : tuple, optional
Tuple detailing which topk analysis is to be conducted. The default is
(1, 3, 5).
Returns
accuracies : Dict[int: float]
Accuracies for ks in topk of test embeddings to class prototype
embeddings.

assume the prototype embeddings exist in a stack, with the index of the
prototype being the same as its class idx

prototype_embeddings =
torch.stack(list(class_prototypes.values())).squeeze(1l) # Shape:
[num_classes, embedding_dim]

correct = {k: O for k in topk}
total = 0

with torch.no_grad():
for embeddings, labels in test_loader:

def

Compute similarity between test embeddings and class prototypes

similarities = F.cosine_similarity(embeddings.unsqueeze(1),
prototype_embeddings.unsqueeze(0), dim=-1) # Shape [batch_size,
num_classes]

Get top-k predictions
_, predictions = similarities.topk(max(topk), dim=-1) # Shape:
[batch_size, max(topk)]

set predictions for each top k (1, 3, 5)
for k in topk:
correct[k] += (predictions[:, :k] ==
labels.unsqueeze (1)) .any(dim=1) .sum() .item()

total += labels.size(0)

Compute accuracy for each k
accuracies = {k: correct[k] / total for k in topk}
return accuracies

get_test_train_split(df_cleaned, min_count_per_class=10, test_size=0.1):
Wi
Modified get_test_train_split function. Always stratified, get a minimum
count of each class.
Parameters
df _cleaned : pandas Dataframe
DESCRIPTION.
min_count_per_class: int
minimum number of instances (images) for each class. The default is 10.
test_size : float, optional
ratio size for the test split. The default is 0.1.
Returns
train_df : pandas Dataframe
the training split.
test_df : pandas Dataframe
the test split.

species_counts = df_cleaned[’scientific_name’].value_counts()

valid_species = species_counts[species_counts > min_count_per_class].index
df _filtered = df_cleaned[df_cleaned[’scientific_name’].isin(valid_species)]
calc_min = len(valid_species)/len(df_filtered)

min_split = max(test_size, calc_min)

train_df, test_df = train_test_split(df_filtered, test_size=min_split,
stratify=df_filtered[’scientific_name’])
return train_df, test_df

def get_class_prototypes(train_split):
Given the train split dataframe, create the class prototypes by getting mean
embeddings
Parameters
train_split : pandas Dataframe
The train split for the data, used to create the class prototypes.
Returns
class_prototypes : Dict[str: torch.tensor]
DESCRIPTION.
train_split["embedding tensor"] =
train_split["image_embeddings"] .apply(torch.tensor)
class_prototypes = (
train_split.groupby("scientific_name") ["embedding_tensor"]
.apply(lambda x: torch.stack(list(x.squeeze(0))) .mean(dim=0))
.to_dict ()
)

return class_prototypes

class EmbeddingsDataset(torch.utils.data.Dataset):
Mostly a redo of previous datasets. This is assuming the dataframe already
contains the image embeddings
def __init__(self, df, cls_to_idx, transform=None):
self.df = df
self .transform = transform
self.cls_to_idx = cls_to_idx

def __len__(self):

return len(self.df)

def __getitem__(self, idx):
Load image and apply transformations
row = self.df.iloc[idx]
image_embeddings = row[’image_embeddings’]

cls = row[’scientific_name’]
image embeddings are size [1, embed_dim] --> squeeze first dim
return image_embeddings.squeeze(0), self.cls_to_idx[cls]

if __name__ == "__main__":
get existing df with image embeddings

embeds_df = load_df (’ViT-H-14-embeddings’)

split data to train and test
train_split, test_split = get_test_train_split(embeds_df)

get prototypes from training splits
class_prototypes = get_class_prototypes(train_split)

list(class_prototypes.keys())
{cls: i for i, cls in enumerate(prototype_labels)}

prototype_labels
prototype_to_idx

dataset = EmbeddingsDataset(test_split, prototype_to_idx)

test_loader = torch.utils.data.Dataloader(dataset, batch_size=32,
shuffle=False)

topk_accuracies = zero_shot_accuracy(test_loader, class_prototypes,
prototype_to_idx, topk=(1, 3, 5))
print (f"Top-k Accuracies: {topk_accuracies}")

I used the previous embeddings generated by the OpenAl CLIP ViT-H-14 model (which
[stored in a .mat file) to test this script. I split the dataset into a 90:10 train:test split,
and took the average of the image embeddings per class (scientific name) to create class
prototypes for each individual species. I calculated the cosine similarity between the test set
and the class prototypes and obtained the topk accuracies for k=1, 3, 5. The results I got for
this model were: 1: 0.6284135240572172, 3: 0.8403771131339401, 5: 0.9044213263979194

4 Next Week Proposal

o Get Tree-of-Life 10M dataset downloaded onto blue storage on Hypergator

Run topk visual model zero shot on other model types

Create presentation + present for end of semester HAAG event

Fill out milestone report for NFHM project for Vy

	Time Log
	Abstract
	Scripts and Code Blocks
	Next Week Proposal

