Week 2 Report

Romouald Dombrovski

August 23, 2024

1. Abstract

Stevens, S. et al. (2024) “BIOCLIP: A Vision Foundation Model for the Tree of Life”.
arXiv preprint arXiv:2311.18803v3. https://doi.org/10.48550/arXiv.2311.18803

Abstract: Images of the natural world, collected by a variety of cameras, from
drones to individual phones, are increasingly abundant sources of biological
information. There is an explosion of computational methods and tools, particularly
computer vision, for extracting biologically relevant information from images for
science and conservation. Yet most of these are bespoke approaches designed for a
specific task and are not easily adaptable or extendable to new questions, contexts,
and datasets. A vision model for general organismal biology questions on images is
of timely need. To approach this, we curate and release TREEOFLIFE-10M, the
largest and most diverse ML-ready dataset of biology images. We then develop
BIOCLIP, a foundation model for the tree of life, leveraging the unique properties of
biology captured by TREEOFLIFE-10M, namely the abundance and variety of images
of plants, animals, and fungi, together with the availability of rich structured
biological knowledge. We rigorously benchmark our approach on diverse fine-
grained biology classification tasks and find that BIOCLIP consistently and
substantially outperforms existing baselines (by 16% to 17% absolute). Intrinsic
evaluation reveals that BIOCLIP has learned a hierarchical representation
conforming to the tree of life, shedding light on its strong generalizability.

Summary (GPT-40): The paper "BIOCLIP: A Vision Foundation Model for the Tree of
Life" introduces BIOCLIP, a novel vision model designed for biological image
classification, leveraging a new dataset called TREEOFLIFE-10M, which is the largest
and most diverse collection of biology images to date, containing over 10 million
images spanning 454,000 taxa. BIOCLIP uses a contrastive learning approach,
similar to CLIP, but uniquely incorporates the hierarchical taxonomy of life to
enhance generalization, even to species not seen during training. The model
significantly outperforms existing baselines in zero-shot and few-shot classification
tasks by 16-17%, demonstrating its ability to effectively generalize across the tree of

life. The authors highlight BIOCLIP’s potential to lower the barriers for applying Al in
biological research, enabling more accurate and efficient analysis of biological
images.

Relevance: This paper introduces a new model, BIOCLIP, based off the CLIP model
which is currently being used in our application. As we explore novel ways to
improve our process, we are discussing a comparison between existing open source
models, and especially highly trained ones like the one mentioned in the paper
should be in high consideration.

Scripts and Code Blocks

This week’s efforts consisted of some improvement, and refactoring of the existing
code base. This served three purposes: to allow faster on-boarding for future
collaborators, to improve code quality and cleanliness, and to familiarize myself
with the different working parts of the application.

My code changes can be found on the following pull requests:
https://github.com/Human-Augment-Analytics/NFHM/pull/29
https://github.com/Human-Augment-Analytics/NFHM/pull/30

Dockerfile updates:

When going through the docker-compose process, | noticed one of the containers
was not being built properly. | initially solved it by removing some extraneous bash
code on the build process:

7 10 mmmm .devcontainer/compose.ynl @

v

3 @@ -59,11 459,11 @@ services:

59 59 POSTGRES_USER: postgres
60 60 PASSWORD: postgres
61 61 POSTGRES_DB: nfhm
62 - command: |
63 - bash -c "
64 - su - postgres -c '/fusr/local/bin/docker-entrypoint.sh’
65 - su - postgres -c 'fusr/lib/postgresql/16/bin/postagres -D /var/lib/postagresql/data/"
66 - "
62 + # command: |
63 # Dbash -c "
64 k3 su - postgres -c '/fusr/local/bin/docker-entrypoint.sh'
65 + i su - postgres -c '/fusr/lib/postgresql/16/bin/postgres -D /var/lib/postgresqgl/data/’
66 + #
67 67 ports:

68 68 - 5432:5432
69 9

This allowed the postgres container to build successfully (by going through the
image’s docker-entrypoint script), but our process of creating the database and
relevant tables was not being accomplished. Through debugging, | was able to
eventually update the Dockerfile and the initializing sql query which was being run
on startup of the container:

v 5 mEmEm postgres/Dockerfile L,D

?‘.’d _1'5 *1:8 ".a?'

FROM pgvector/pgvector:pglé

2 2
3 4+ COPY ./postgres/init.sh /docker-entrypoint-initdb.d/init.sh
1@

3 5 RUN apt -y update && \
6 apt -y install postgresgl-16-pgvector && \

5 - apt -y install postgis

7 apt -y install postgis && \
+ chmod +x /docker-entrypoint-initdb.d/init.sh

v 324 mmmm postgres/init.sh d,j

o nma w

40
41
42
43

-

w W N on

10
1
12

14

16
17
18
19
20
21
22

53
54
55

56
57

@ -1,9 +1,22 @@
- #!/bin/bash
+ #!/usr/bin/env bash
set -e
+ # == 1. Create the NFHM database

- psql -v --username "“$POSTGRES_USER" --dbname "$POSTGRES_DB" <<-E0SQL
- == 1. Create the NFHM database
CREATE DATABASE nfhm;
drop nfm if already exists
if psql -1gt | cut -d \| -f 1 | grep -qw nfhm; then
echo "Dropping existing nfhm database."
psql =X -c “DROP DATABASE nfhm"
fi

psql =X -c "CREATE DATABASE nfhm"

Now check if the database exists, loop until detected

until psql -U “$POSTGRES_USER" ~tc "SELECT 1 FROM pg_database WHERE datname = ‘nfhm'" | grep -q 1; do
echo "Waiting for nfhm database to be created..."
sleep 2

done

LR I I T I I T T I I |

psql -v —-username “$POSTGRES_USER" --dbname "nfhm" <<-EQ0SQL

-~ Connect to the NFHM database
\c nfhm

@@ -40,4 +53,5 @2 CREATE TABLE search_records (

CREATE UNIQUE INDEX idx_unique_media_uuid ON search_records (media_uuid);

- EOSQL

©

+ EOSQL
+ wait

e

Ingestor_scripts

The next upgrade was a smaller one. | noted that our ingestor jobs were being run
using several cmdline commands in tandem.

e.g. To run the embedding worker:

conda activate ingestor_worker

export SOURCE_QUEUE="embedder"

export INPUT="inputs.vector_embedder"
export QUEUE="ingest_queue.RedisQueue"
export OUTPUT="outputs.index_to_postgres"

python ingestor/ingestor.py

To speed up this process, | simply put these commands into a bash script which
could be run from the bin/ directory of the project:

v 18 mmEEE bin/ingest_embed ff—‘

@@ -0,0 +1,18 @@

1 4 #!/usr/bin/env sh

2 4

3 4 # This script is run as a postCreateCommand from the dev container
4

5 + . "$(conda info --base)/etc/profile.d/conda.sh"

6 +

7 4+ conda init

8 4+ echo "Activating conda environment: Ingestor Worker"
9 4+ echo "Generating Embeddings"

10

11 4 conda activate ingestor_worker

12 &

13 4+ export SOURCE_QUEUE="embedder"

14 4+ export INPUT="inputs.vector_embedder"

15 4+ export QUEUE="ingest_queue.RedisQueue"

16 + export OUTPUT="outputs.index_to_postgres"

17

18 4+ python ingestor/ingestor.py

Vue component upgrade

| noticed that our app was built as one Vue component, and decided that it would be
beneficial to refactor the code into multiple logical components. The changes are
perhaps too much to put into this document, but are covered in the following
commit:

https://github.com/Human-Augment-
Analytics/NFHM/pull/30/commits/4d928ede102327389145d2614ee7c0d1d8875e8
a

3. Documentation

With the script changes, the Readme should also change to reflect the usage of the
ingestor_workers.

4. Proof of work

Proof that the postgres container is working:

v g nfhm_devcontainer El;/l;r)\ing 6.32% 14 hours ago O : W

postgres-1

@ 2300548089 &5 nfhm_devcontainer-postgres Running 5432:5432 (2 0% 16 hours ago O : W
mongo-express-1

@ 4d30202462e8 mongo-express Running 8081:8081 (7 0.01% 16 hours ago (] : W

) izﬁm o iﬁw Running 8888:8888 (7 0% 16 hours ago o 0]
mongo-1

@ mongo:latest Running 27018:27017 (7 0.96% 16 hours ago O : W

43019d4b05e1 (3

Proof that the scripts do as required:

(base) - $ bin/ingest_emb

no change /opt/conda/condabin/conda

no change /opt/conda/bin/conda

no change /opt/conda/bin/conda-env

no change /opt/conda/bin/activate

no change /opt/conda/bin/deactivate

no change /opt/conda/etc/profile.d/conda.sh

no change /opt/conda/etc/fish/conf.d/conda.fish

no change /opt/conda/shell/condabin/Conda. psml

no change /opt/conda/shell/condabin/conda-hook.ps1

no change /opt/conda/lib/python3.12/site-packages/xontrib/conda.xsh

no change /opt/conda/etc/profile.d/conda.csh

no change /home/vscode/.bashrc

No action taken.

Activating conda environment: Ingestor Worker

Generating Embeddings

2024-08-30 19:55:28,295 - asyncio - DEBUG - Using selector

2024-08-30 19:55:28, {"hos; "redis","port":6379,"database":9, "username":null, "password":null}, "mongo": {"hos m por
database" :"NHFM", "username" ‘example","input_collection" digbio"},"number_of_workers":1,"postgres":{"host":"postgres","port":5432, "database":"nfhm","table":"search_records
", "user":"postgres", "password":"postgres"}, "queue":"ingest_queue. redis_queue.RedisQueue","input":"inputs.vector_embeddings.vector_embedder outputs.postgres_output.index_to_postgres

Proof that the application runs afte

\ O\ A\ =
L3

r refactoring components:

Search with a natural language query or upload an image to perform a reverse image search

Q bug =

brushfoots; butterflies; butterflies and moths; winged insects; insects; hexapods;
arthropods; animals

iDigBio

images.collections.yale.edu

YPM ENT
414451

5. Next Week Proposal

This week we met up with our future collaborators from the ACIS lab at UF. Many of
the tasks that we’ll be working on will come up as we divide ourselves into sub-
teams. Here are some tasks that | foresee working on in the coming week:

- help set up our application on the ACIS infrastructure

- help set up Vite build tool for faster front end building

- help update components from js modules to vue modules

- explore alternative models to be used in our pipeline (e.g. Florence, BioClip, etc.)

