1.

Week 7 Report - NFHM

Romouald Dombrovski

October 03, 2024

Time Log

What progress did you make last week?

- Added Euclidean distance as a metric to model eval

- Added Arborclip as another model to compare

- Vectorized the comparison calculations for larger metrics evaluation (30,000
images)

- Produced visual representation for model evaluation comparison

Abstract

Nguyen, D.M.H., et al. 2023. LVM-Med: Learning Large-Scale Self-Supervised Vision
Models for Medical Imaging via Second-order Graph Matching. arXiv:2306.71925v3.
http://doi.org/10.48550/arXiv.2306.11925

Abstract: Obtaining large pre-trained models that can be fine-tuned to new tasks
with limited annotated samples has remained an open challenge for medical
imaging data. While pre-trained deep networks on ImageNet and vision-language
foundation models trained on web-scale data are prevailing approaches, their
effectiveness on medical tasks is limited due to the significant domain shift
between natural and medical images. To bridge this gap, we introduce LVM-Med, the
first family of deep networks trained on large-scale medical datasets. We have
collected approximately 1.3 million medical images from 55 publicly available
datasets, covering a large number of organs and modalities such as CT, MRI, X-ray,
and Ultrasound. We benchmark several state-of-the-art self-supervised algorithms
on this dataset and propose a novel self-supervised contrastive learning algorithm
using a graph-matching formulation. The proposed approach makes three
contributions: (i) it integrates prior pair-wise image similarity metrics based on local
and global information; (ii) it captures the structural constraints of feature
embeddings through a loss function constructed via a combinatorial graph-
matching objective; and (iii) it can be trained efficiently end-to-end using modern
gradient-estimation techniques for black-box solvers. We thoroughly evaluate the
proposed LVM-Med on 15 downstream medical tasks ranging from segmentation
and classification to object detection, and both for the in and out-of-distribution

settings. LVM-Med empirically outperforms a number of state-of-the-art supervised,
self-supervised, and foundation models. For challenging tasks such as Brain Tumor

Classification or Diabetic Retinopathy Grading, LVM-Med improves previous vision-

language models trained on 1 billion masks by 6-7% while using only a ResNet-50.

Summary (GPT-40): The paper titled "LVM-Med: Learning Large-Scale Self-
Supervised Vision Models for Medical Imaging via Second-order Graph Matching”
introduces LVM-Med, a novel self-supervised learning (SSL) model specifically
designed for medical imaging tasks. The authors address the limitations of pre-
trained models on natural images when applied to the medical domain due to
domain shifts. LVM-Med is trained on a curated dataset of 1.3 million medical
images from 55 publicly available datasets covering various organs and imaging
modalities such as CT, MRI, X-ray, and Ultrasound. The key innovation of LVM-Med is
its use of second-order graph matching, which integrates both local and global
image information to enhance feature embeddings. The model is evaluated on 15
downstream medical tasks, including segmentation and classification,
demonstrating superior performance over state-of-the-art supervised and self-
supervised models like ResNet-50 and Vision Transformer (ViT). Furthermore, LVM-
Med outperforms foundation models such as CLIP and SAM by up to 7% on
challenging tasks like brain tumor classification and diabetic retinopathy grading.
The proposed approach highlights the potential of LVM-Med in improving medical
image analysis and presents a significant step toward creating large-scale, self-
supervised vision models tailored for medical data.

Scripts and Code Blocks

Updated the stratification split

[1 from sklearn.model_selection import train_test_split

def get_test_train_split(df_cleaned, test_size=0.1, stratify_by_scientific_name=False):
if stratify_by_scientific_name:
if we want to get at least one from each we can filter out all options with only 1 image
species_counts = df_cleaned['scientificName'].value_counts()
valid_species = species_counts[species_counts > 1].index
df_filtered = df_cleaned[df_cleaned['scientificName'].isin(valid_species)]
with stratification, we need to specify the test_size because we need to hit a minimum
calc_min = len(valid_species)/len(df_filtered)
min_split = max(test_size, calc_min)
print(f'The split for stratification is: {min_split}')

train_df, test_df = train_test_split(df_filtered, test_size=min_split, stratify=df_filtered['scientificName'])
else:

train_df, test_df = train_test_split(df_cleaned, test_size=test_size)
return train_df, test_df

Added Arborclip (loading using weights, from bioclip endpoint)

elif model_name == 'arborclip':
model_name = "ChihHsuan-Yang/ArborCLIP"
filename = "arborclip-vit-b-16-from-bioclip—-epoch-8.pt"

Download the file from the repository
weights_path = hf_hub_download(repo_id=model_name, filename=filename)

Initialize the base BioCLIP model using OpenCLIP
model, _, processing = open_clip.create_model_and_transforms('hf-hub:imageomics/bioclip')

Load the fine-tuned weights into the model
checkpoint = torch.load(weights_path, map_location="cpu')

if "state_dict" in checkpoint:

state_dict = checkpoint["state_dict"]
else:

state_dict = checkpoint

state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)

The above changes were mainly to fix the way stratification was meant to work, the
maximum was taken for the split size instead of the minimum (especially with larger
datasets, the split may become 0.05. We want a decent stratified sample). Arborclip
was another interesting model, built off the clip backbone and trained on further

animalia species photos:

Insecta Mollusca Aves

491702 85244 496430

‘Western Honey Bee Garden Snail Mallard

Apis mellifera Cornu aspersum Anas platyrhynchos

319814 51064) 323667
Asian Lady Beetle Brown-lipped Snail House Sparrow
Harmonia axyridis Cepaea nemoralis Passer domesticus

N A L
302387 36939
Monarch Butterfly Leopard Slug Great Blue Heron
Danaus plexippus Limax maximus Ardea herodias

236145 36125 293617
Common Eastern Bumblebee Roman Snail Canada Goose
‘Bombus impatiens Helix pomatia Branta canadensis

177850 29.
Seven-spotted Ladybird Beetle Pacific Banana Slug Red-tailed Hawk
Coccinella septempunctata Ariolimax columbianus Buteo jamaicensis

Reptilia

120637
Western Fence Lizard
Sceloporus occidentalis

93608
Green Anole
Anolis carolinensis

90969
Brown Anole
Anolis sagrei

AN

79721
Snapping Turtle
Chelydra serpentina

62950
American Alligator
Alligator mississippiensis

turkey-tail

78142
Fly Agaric
Amanita muscaria

67644
splitgill mushroom
Schizophyllum commune

58556
pheasant's back mushroom
Cerioporus squamosus

55707
Maritime Sunburst Lichen
Xanthoria parietina

Plantae

: i3
l’/ﬁ%ﬁ “
173444

common yarrow
Achillea millefolium

137305
white clover
Trifolium repens

134145
Jack-by-the-hedge
Alliaria petiolata

Red Clover
Trifolium pratense

121634
ground-ivy
Glechoma hederacea

Arachnida

77315
Cross Orbweaver
Araneus diadematus

73085
Bold Jumper
Phidippus audax

60106
Yellow Garden Spider
Argiope aurantia

44611
Goldenrod Crab Spider
Misumena vatia

L LT

40350
Zebra Jumper
Salticus scenicus

Now with 4 models (Florence-2, Openclip, Bioclip, Arborclip), we wanted to run the
evaluation metrics using all 30,000 images from the VLM4Bio dataset, to compare
the contextual representation of the image embeddings created from these models.

Looking at the pgvector documentation (https://github.com/pgvector/pgvector), we
saw that Euclidean distance was another popular metric to compare embedding
vectors. So we added that on top of cosine similarity as a metric:

def calculate_similarity_and_distance(test_embeddings, train_embeddings, model):

we don't need the dim=1, in both cases its 1

test_embeddings, train_embeddings = np.squeeze(test_embeddings, axis=1), np.squeeze(train_embeddings, axis=1)

if florence, avg across new dim 1, size = 577 (patches on img)

if model == 'florence':

test_embeddings = np.mean(test_embeddings, axis=1)
train_embeddings = np.mean(train_embeddings, axis=1)

similarity_matrix = cosine_similarity(test_embeddings, train_embeddings)
distance_matrix = euclidean_distances(test_embeddings, train_embeddings)

return similarity_matrix, distance_matrix

As the datasets were large (~30,000 embeddings), the comparison was vectorized

def find_best_match_vectorized(test_embeddings, train_df, label_column, model):
Get train embeddings and labels as numpy arrays
train_embeddings = np.array(train_df['image_embeddings'].tolist())
train_labels = train_df[label_column].values

Calculate similarity and distance for all test embeddings at once
similarity_matrix, distance_matrix = calculate_similarity_and_distance(test_embeddings, train_embeddings, model)

Get the labels with the highest individual similarity score and lowest distance
highest_similarity_idx = similarity_matrix.argmax(axis=1)
highest_similarity_labels = train_labels[highest_similarity_idx]
highest_similarity_scores = similarity_matrix.max(axis=1)

lowest_dist_idx = distance_matrix.argmin(axis=1)
lowest_dist_labels = train_labels[highest_similarity_idx]
lowest_dist_scores = similarity_matrix.min(axis=1)

create a repeated matrix of train labels to match the size of similarity matrix (test_size x train_size)
repeated_train_labels = np.tile(train_labels, (similarity_matrix.shapel0], 1))

Create a DataFrame with each test embedding's comparison to all train labels
Flatten the similarity matrix and repeated labels to match
similarity_df = pd.DataFrame({
'test_idx': np.repeat(range(similarity_matrix.shape([0]), similarity_matrix.shape[1]),
label_column: repeated_train_labels.flatten(),
‘similarity_score': similarity_matrix.flatten()
1)
avg_similarity_df = similarity_df.groupby(['test_idx', label_column], as_index=False).mean()
idx_max_avg = avg_similarity_df.groupby('test_idx')['similarity_score'l].idxmax()
highest_avg_sim_labels = avg_similarity_df.loc[idx_max_avg, label_column].values
highest_avg_sim_scores = avg_similarity_df.loc[idx_max_avg, 'similarity_score'].values

distance_df = pd.DataFrame({
'test_idx': np.repeat(range(similarity_matrix.shapel[0]), similarity_matrix.shape[1]),
label_column: repeated_train_labels.flatten(),
'distance_score': distance_matrix.flatten()
})
avg_dist_df = distance_df.groupby(['test_idx', label_column], as_index=False).mean()
idx_min_avg = avg_dist_df.groupby('test_idx')['distance_score'].idxmin()
lowest_avg_dist_labels = avg_dist_df.loc[idx_min_avg, label_column].values
lowest_avg_dist_scores = avg_dist_df.loc[idx_min_avg, 'distance_score'].values

return highest_similarity_labels, highest_similarity_scores, highest_summed_label, highest_summed_score
return highest_similarity_labels,highest_similarity_scores,highest_avg_sim_labels,highest_avg_sim_scores, lowest_dist_1la

def apply_best_match_vectorized(test_df, train_df, label_column, model):
Convert all test image embeddings to numpy arrays
test_embeddings = np.array(test_df['image_embeddings'].tolist())

Vectorized function to find the best match for each test embedding
highest_individual_name, highest_individual_score, highest_mean_name, highest_mean_score, lowest_dist_name, lowest_dis1
test_embeddings, train_df, label_column, model

)

Assign results back to the test DataFrame
test_df['highest_individual_name'] = highest_individual_name
test_df['highest_individual_score'] = highest_individual_score
test_df['highest_mean_name'] = highest_mean_name
test_df['highest_mean_score'] = highest_mean_score
test_df['lowest_dist_name'] = lowest_dist_name
test_df['lowest_dist_score'] = lowest_dist_score
test_df['lowest_avg_dist_name'] = lowest_avg_dist_name
test_df['lowest_avg_dist_score'] = lowest_avg_dist_score

Calculate accuracy metrics

accuracy_individual = np.mean(test_df['highest_individual_name'] == test_df[label_column])
accuracy_mean = np.mean(test_df['highest_mean_name'] == test_df[label_column])
accuracy_dist = np.mean(test_df['lowest_dist_name'] == test_df[label_column])
accuracy_avg_dist = np.mean(test_df['lowest_avg_dist_name'] == test_df[label_column])

print(f"Accuracy for model {model} on column {label_column} based on highest individual cosine similarity: {accuracy_:
print(f"Accuracy for model {model} on column {label_column} based on highest mean cosine similarity: {accuracy_mean %
print(f"Accuracy for model {model} on column {label_column} based on lowest individual euclidean distance: {accuracy_:
print(f"Accuracy for model {model} on column {label_column} based on lowest mean euclidean distance: {accuracy_mean x

return test_df, accuracy_individual, accuracy_mean, accuracy_dist, accuracy_avg_dist

After obtaining all the relevant information in a df, created graphs to demonstrate
the results:

def make_plot(comparison_metric, df, column = 'species'):

if comparison_metric == 'cosine':

coll, col2 = 'accuracy_individual', ‘'accuracy_avg'

titlel, title2 = 'Individual Cosine Similarity', 'Average Cosine Similarity'
elif comparison_metric == 'distance':

coll, col2 = 'distance_individual', 'distance_avg'

titlel, title2 = 'Individual Euclidean Distance', 'Average Euclidean Distance'
else:

print('comparison metric is either distance or cosine')

taxa = list(df['taxa'].unique())
models = list(df['model'].unique())

model_ind = {

m: list(df.loc[df['model'] == m, coll].str.replace('s', '').astype(float)) for m in models
}
model_mean = {

m: list(df.loc[df['model'] == m, col2].str.replace('s', '').astype(float)) for m in models
}

x = np.arange(len(taxa)) # the label locations
width = 0.2 # the width of the bars
multiplier = @

fig, ax = plt.subplots(layout="'constrained')

for model, measurement in model_ind.items():
offset = width * multiplier
rects = ax.bar(x + offset, measurement, width, label=model)
multiplier += 1

ax.set_ylabel('Percent")

ax.set_title(f"{titlel} Across Models Comparing {column.title()}")
ax.set_xticks(x + width, taxa)

ax. legend(loc="upper left', ncols=3)

ax.set_ylim(0, 100)

plt.show()

fig, ax = plt.subplots(layout="'constrained")
multiplier = 0
for model, measurement in model_mean.items():
offset = width * multiplier
rects = ax.bar(x + offset, measurement, width, label=model)
multiplier += 1
ax.set_ylabel('Percent')
ax.set_title(f"{title2} Across Models Comparing {column.title()}")
ax.set_xticks(x + width, taxa)
ax.legend(loc="upper left', ncols=3)
ax.set_ylim(o, 100)
plt.show()

make_plot('cosine', species_rows, column='species')
make_plot('distance', species_rows, column='species')
make_plot('cosine', genus_rows, column='genus"')
make_plot('distance', genus_rows, column='genus')

4. Visualization

Results in comparing time to generate embeddings for 300 images for each model:
Time to generate image embeddings

florence

clip

Models

bioclip

arborclip

T T T Ll

30 40 50 60
Time (seconds)

0 10 20

Graphs comparing Cosine Similarity and Euclidean Distance across Species and

Genus:

100 Individual Cosine Similarity Across Models Comparing Species

I florence WM bioclip WEM arborclip
e dip

=
Q
Y
&
Fish Bird Butterfly All
Average Cosine Similarity Across Models Comparing Species
100
BN florence WM bioclip WM arborclip
. dip

Percent

Fish Bird Butterfly All

100 Individual Euclidean Distance Across Models Comparing Species

BN florence WM bioclip WM arborclip
e cdip

Percent

Fish

Bird Butterfly All

100 Average Euclidean Distance Across Models Comparing Species

BN florence WM bioclip WM arborclip
e dip

Percent

Fish

Bird Butterfly All

100 Individual Cosine Similarity Across Models Comparing Genus

BN florence WM bioclip WEM arborclip
= dip

80 A

60 -
€
Q
o
&
40 .
20 -
o .
Fsh Bird Butterfly All
Average Cosine Similarity Across Models Comparing Genus
100
Bl florence BN bioclip WM arborclip
e dip

Percent

Fish Bird Butterfly All

100 Individual Euclidean Distance Across Models Comparing Genus

Bl florence WM bioclip WM arborclip
e cdip

80 A

60 -
1<
Q
et
&

40 .

20 -

0 -

Fsh Bird Butterfly All
Average Euclidean Distance Across Models Comparing Genus
100

Percent

BN florence WM bioclip WM arborclip
e cdip

Fish Bird Butterfly All

5. Next Week Proposal
- Setup Ollama LLM viewer locally
- TestInternVL vision model
- Testimplementation of Bioclip/Arborclip with Biocosmos
- Update Vue to use Vite and .vue components

