Week 3 Report

Thomas Deatherage
NFHM/BioCosmos
6 September 2024

Time Slot

1) What progress did you make in the last week?
- Met with the GaTech Team (Vy, Roman and myself)
- Met again with UoF collaborators (Dr Porto, Moritz and Chris),
- Explored techniques for experimenting with different CV/multi-modal models
- Helped Vy debug her local dev environment

2) What are you planning on working on next?
- Continue exploring different CV/multi-modal models (bioclip, florence-2, etc.)
- Depending on when the ingestor team’s available (they’re in Japan, as I understand), meet
with them.

3) Is anything blocking you from getting work done?

- Looks like the Yale Peabody Museum’s servers may be throttling our requests. Not a
“blocker”, but an inconvenience nonetheless.

Abstracts & Summaries

1) VLM4Bio: A Benchmark Dataset to Evaluate Pretrained
Vision-Language Models for Trait Discovery from Biological
Images

Conference/Journal: Not stated

Abstract. Images of the natural world collected by a variety of cameras from drones to individual
phones are increasingly abundant sources of biological information. There is an explosion of
computational methods and tools particularly computer vision for extracting biologically relevant
information from images for science and conservation. Yet most of these are bespoke approaches
designed for a specific task and are not easily adaptable or extendable to new questions contexts
and datasets. A vision model for general organismal biology questions on images is of timely
need. To approach this we curate and release TreeOfLife-10M the largest and most diverse
ML-ready dataset of biology images. We then develop BioCLIP a foundation model for the tree
of life leveraging the unique properties of biology captured by TreeOfLife-10M namely the

abundance and variety of images of plants animals and fungi together with the availability of rich
structured biological knowledge. We rigorously benchmark our approach on diverse fine-grained
biology classification tasks and find that BioCLIP consistently and substantially outperforms
existing baselines (by 17% to 20% absolute). Intrinsic evaluation reveals that BioCLIP has
learned a hierarchical representation conforming to the tree of life shedding light on its strong
generalizability. All data code and models will be publicly released upon acceptance.

Summary: This paper discusses the importance of using images of nature to gather biological
information and the development of a new model called BIOCLIP that can classify different
organisms in images more accurately than existing methods.
Link:https://openaccess.thecvf.com/content/ CVPR2024/html/Stevens_BioCLIP_A_Vision_Foun

dation Model for_the Tree of Life CVPR_ 2024 paper.html
Code: https://imageomics.github.io/bioclip/

Scripts and Code Blocks

This week I merged my code contributions from last week into the new BioCosmos. See here and here

Additionally, I’ve opened a new PR to the new BioCosmos repo. Per my time slot report above, this
week | explored techniques to facilitate experimenting with models. That is to say, [want it to be easy to
pick a model, generate embeddings, and casually compare vector search results. Later, I also want to
make it easy to formally compare and automatically compare vector search results, perhaps via a
tool/dataset like VLM4Bio. Still very much a WIP, my work toward this goal can be found here:

https://github.com/BioCosmos-Al/BioCosmos/pull/2/files

Specifically, what I’ve done so far:

1)
2)
3)

4)

Update the embed_ingest job to accept command line arguments for using different OpenClip
models and different trained weights

Flyway (WIP) integration with postgres to allow for easy versioning/mutation of the Postgres
schema/DDL.

New columns in the search_records table which will eventually allow API users to specify which
embed/experiment version to query their vector search from

Minor code improvements, like exponential backoff retries on requests to fetch images from
YPM. This is because YPM appears to be throttling our requests to their servers.

https://openaccess.thecvf.com/content/CVPR2024/html/Stevens_BioCLIP_A_Vision_Foundation_Model_for_the_Tree_of_Life_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Stevens_BioCLIP_A_Vision_Foundation_Model_for_the_Tree_of_Life_CVPR_2024_paper.html
https://imageomics.github.io/bioclip/
https://github.com/Human-Augment-Analytics/NFHM/pull/31
https://github.com/BioCosmos-AI/BioCosmos/pull/1
https://github.com/sammarfy/VLM4Bio
https://github.com/BioCosmos-AI/BioCosmos/pull/2/files

The following three code screenshots show the new ability to specify OpenClip models and pretrained
weights from the CLI:

18 + # Parse command line arguments
19 + while [[$# —gt @ 11; do
20 4+ case $1 in

21 N ——mode1=x)

22+ MODEL="${1#+=1}"

23+ shift

24+ H

25 + -—pretrained=x)

26 + PRETRAINED="${1#x=}"

27+ shift

2@ ik

29 4+ -—pg_table_out=x)

30 + PG_TABLE_QUT="%${1#x=}"

31+ shift

32 &+ b

BEN ——embed_version=x)

34 4+ EMBED_VERSION="3${1#%=}"

35 + shift

36 + sk

37+ *)

38 &+ echo "Unknown parameter: $1"

39 + exit 1

40 + B3

41 + esac

42 + done

43 &

44 + # Construct the input_kwargs and output_kwargs
45 4+ ARGS=""

46 +

47 4+ if [! -z "$MODEL"]; then

48 4+ ARGS="$ARGS ——input_kwargs model $MODEL"

49 4+ fi

50 +

51 4+ if [! -z "$PRETRAINED"]; then

52 4+ ARGS="$ARGS —-input_kwargs pretrained $PRETRAINED"
53 + fi

54 4+

55 4+ if [! -z "$EMBED_VERSION"]; then

56 + ARGS="$ARGS —-input_kwargs embed_version $EMBED_VERSION"
57 4+ fi

58 +

59 4+ if [! -z "$PG_TABLE_OUT" 1; then

60 + ARGS="$ARGS —-output_kwargs table $PG_TABLE_OQUT"
61 + fi

62 +

63 + # Execute the Python script with the new arguments
64 4+ python ingestor/ingestor.py $ARGS

©

+ parser = argparse.ArgumentParser(description="Ingestor script"')

+ parser.add_argument('--input_kwargs', nargs=2, action='append', metavar=('key', 'value'), help='Input
kwargs')

+ parser.add_argument('--output_kwargs', nargs=2, action='append', metavar=('key', 'value'), help='Output
kwargs')

+

+ args = parser.parse_args()

+

+ if args.input_kwargs:

+ settings.input_kwargs.update(dict(args.input_kwargs))

+ if args.output_kwargs:

+ settings.output_kwargs.update(dict(args.output_kwargs))

+

+ cv_model = params.get('model') or opts.get('model’', DEFAULT_OPEN_CLIP_MODEL)

+ pretrained = params.get('pretrained') or opts.get('pretrained', DEFAULT_OPEN_CLIP_PRETRAIN_DATA)

embed_version = params.get('embed_version') or opts.get('embed_version', DEFAULT_EMBED_VERSION)

o,

+ await load_model(model_name=cv_model, pretrained=pretrained)

+ mongo_records = await extract_data(collection, page_size, page_offset, cv_model, pretrained,
embed_version)

if len(mongo_records) >= page_size:
next_job = {
"'page_size": page_size,
"page_offset": page_offset + 1,
"model": cv_model,
"pretrained": pretrained,
"embed_version": embed_version

+ o+ o+ o+ o+ o+ 4+

Schema changes to Postgres to support (eventually) specifying experiment versions when querying the

backend API:

— 1. Add new columns

ALTER TABLE search_records

ADD COLUMN model VARCHAR(255),

ADD COLUMN pretrained VARCHAR(255),
ADD COLUMN embed_version VARCHAR(512);

—— 2. Backfill existing rows

UPDATE search_records

SET model = 'ViT-B-32',
pretrained = 'laion2b_s34b_b79k",
embed_version = 'default'

WHERE model IS NULL;

—— 3. Drop the existing unique index
DROP INDEX IF EXISTS idx_unique_media_uuid;

-— 4. Create new unique index on media_uuid and embed_version
CREATE UNIQUE INDEX idx_unique_media_uuid_embed_version
ON search_records (media_uuid, embed_version);

-- 5. Create an index for similarity search on embedding, filtered by embed_version

—— Note: This assumes 'embedding' is of type vector. Vector dimension is specific to

-- model so we may need to reqthink how this works with the different models we explore .
.https://arxiv.org/pdf/2103.00020

w N = w oo o~ oy W =S wWw N » W W~ oy W - W NN
o+ F + F 4+ F + F 4+ F + F + F + F o+ o+ 4+ o+ 4

4+ CREATE INDEX idx_embedding_embed_version ON search_records
5 + USING ivfflat (embedding vector_l12_ops, embed_version)
Eﬂ}- WITH (lists = 10@); —— Adjust the number of lists based on your data size and query patterns. Not super sure

about this yet

—- Optionally, you might want to add NOT NULL constraints to the new columns
ALTER TABLE search_records

ALTER COLUMN model SET NOT NULL,

ALTER COLUMN pretrained SET NOT NULL,

ALTER COLUMN embed_version SET NOT NULL;

N D W
o+ o+ o+ 4+ 4+

Retry logic with exponential backoff for hopefully handling throttles from YPM. I still need to examine
the headers and see if there’s any 429 details on when the rate limit will be lifted. If provided, we can be

more intelligent in our retry logic.

async def download_with_exponential_backoff(
session: ClientSession,
url: str,
max_retries: int = 5,
base_delay: float = 1.0,
max_delay: float = 60.0
) —> Optional[Image.Image]:
for attempt in range(max_retries):
try:
return await download_image(session, url)
except ServerDisconnectedError as e:
if attempt == max_retries - 1:
logger.error(f"Max retries reached for {url}: {e}")
return None

Calculate delay with exponential backoff and jitter
delay = min(base_delay * (2 sk attempt) + random.uniform(@, 1), max_delay)

. Tk T T T s S S S S S S S S S S S

logger.warning(f"Server disconnected for {url}, retrying in {delay:.2f} seconds... (Attempt
{attempt + 1}/{max_retries})")
await asyncio.sleep(delay)

logger.error(f"Failed to download image from {url} after {max_retries} attempts")
return None

+ 4+ o+ 4+ o+

And part of my yet-unfinished attempt at integrating Flyway into our Postgres Docker container for
schema versioning:

6 + # Install required packages and Flyway

7 + RUN apt-get update && \

8 + apt—get install -y \

9 4+ postgresql-16-pgvector \

I postgis \

1 o+ wget \

2 4+ default-jre && \

3 o+ chmod +x /docker-entrypoint-initdb.d/init.sh && \

4 4+ wget -q0- https://repol.maven.org/maven2/org/flywaydb/flyway—-commandline/8.5.13/flyway—-commandline-8.5.13-
linux-x64.tar.gz | tar xvz && \

S5+ 1n -s /flyway-8.5.13/flyway /usr/local/bin && \

6 rm —rf /var/lib/apt/lists/x

T+

8 +

9 + # Set Flyway configuration

'@+ ENV FLYWAY_CONFIG_FILES=/flyway/conf/flyway.conf

‘1 4+ COPY ./postgres/flyway/conf/flyway.conf /flyway/conf/

2+

'3 4+ # Copy migration scripts

‘4 4+ COPY ./postgres/migrations /flyway/sql

5 o+

‘6 + # Set the working directory

‘7 + WORKDIR /

8 4+

'9 4+ COPY ./postgres/run-migrations.sh /usr/local/bin/run-migrations.sh

1@ + RUN chmod +x /usr/local/bin/run-migrations.sh

i1+

12 4+ # Set the entrypoint

13 4+ COPY ./postgres/docker-entrypoint.sh /fusr/local/bin/

{4 4+ RUN chmod +x /usr/local/bin/docker—entrypoint.sh

15 + ENTRYPOINT ["docker-entrypoint.sh"]

6+

i7 4+ CMD ["postgres"]

8+

Flow Charts/Diagrams

Nothing new flow-chart wise to show just yet.

Documentation

The primary documentation changes for this week are that one can pass model and pretrained weights
parameters to the ingest embed job. For example:

$ bin/ingest_embed --model=""Vit-B-32" --pretrained="1aion2b_s34b_b79k"

Results Visualization

No results to visualize this week.

Proof of Work

Still a WIP as of this week. Should have the end-to-end flow working by next week and can provide a
proof of it then.

Next Week’s Proposal

- Finish the model-selection support I started this week.
- Meet with Roman and Vy (and optionally Bree and Dr Porto) as usual on Wednesday.
- Meet with UoF collaborators, depending on schedules

