
Week 11 Report
Thomas Deatherage
NFHM/BioCosmos
1 November 2024

Time Slot

1) What progress did you make in the last week?
- Weekly catchup with UF collaborators.
- Another deep dive into the UNICOM paper h�ps://arxiv.org/pdf/2304.05884
- Used last week’s InternVL captioned images to create clusters/pseudo labels per

the process described in the Unicom paper.
- Used those cluster prototypes and the VLM4Bio data to train CLIP using the

Unicom codebase.

2) What are you planning on working on next?
- Benchmarking performance of the VLM4Bio trained Unicom clip model that I’m

training this week
- Work out any kinks
- Understand the specific training hyperparameters be�er
- Potentially move on to using larger datasets

3) Is anything blocking you from ge�ing work done?
- Nope.

Abstracts & Summaries
Lit review replaced by journal club

Scripts and Code Blocks

This week was largely centered around testing and modifying the Unicom code to work with
the VLM4Bio dataset. To this end, I first generated clusters or pseudo-classes for the 30k
image/caption pairs. (Note the captions were generated last week via InternVL). The Unicom

https://arxiv.org/pdf/2304.05884

code can be found at their Github repo. The most relevant files are retrieval.py and
partial_fc.py.

Here’s a relevant sample of the clustering code: Takes the 30,000 image/text captions and
generates 3000 clusters from the average of each image<>caption embedding pair.

def combine_and_cluster(n_clusters=3000):

"""

Load all .mat files, combine embeddings, and perform clustering

"""

Get all mat files -- Performance??????

mat_files = sorted(glob.glob('embeddings_batch_*.mat')) # Sort to

maintain order

Lists to store all embeddings and metadata

all_image_embeddings = []

all_text_embeddings = []

all_image_paths = []

all_scientific_names = []

all_categories = []

Load each file

for mat_file in mat_files:

print(f"Loading {mat_file}")

data = loadmat(mat_file)

all_image_embeddings.extend(data['image_embeddings'])

all_text_embeddings.extend(data['text_embeddings'])

all_image_paths.extend(data['image_paths'])

all_scientific_names.extend(data['scientific_names'])

all_categories.extend(data['categories'])

Convert to numpy arrays

image_embeddings = np.array(all_image_embeddings)

text_embeddings = np.array(all_text_embeddings)

Create joint embeddings

joint_embeddings = (image_embeddings + text_embeddings) / 2 # Average

Perform clustering

n, d = joint_embeddings.shape

n_clusters = min(n_clusters, n)

https://github.com/deepglint/unicom/tree/main
https://github.com/deepglint/unicom/blob/main/retrieval.py
https://github.com/deepglint/unicom/blob/main/partial_fc.py

This I had to add to retrieval.py as a class-adaptor for our VLM4Bio clustered dataset.

Used to load VLM4BIO-based clustered dataset

class CustomClusteredDataset(Dataset):

def __init__(self, cluster_results_path, transform=None):

self.df = pd.read_csv(cluster_results_path)

self.transform = transform

self.num_classes = self.df['cluster_id'].nunique()

Clean and convert paths

base_dir = os.path.dirname(os.path.abspath(cluster_results_path))

self.df['image_path'] = self.df['image_path'].apply(

lambda x: os.path.abspath(os.path.join(base_dir, x.strip()))

)

Debugging: Print first few paths to verify

print("First few image paths:")

print(self.df['image_path'].head())

def __len__(self):

return len(self.df)

def __getitem__(self, idx):

row = self.df.iloc[idx]

image_path = row['image_path']

cluster_id = row['cluster_id']

try:

image = PIL.Image.open(image_path)

if self.transform:

image = self.transform(image)

return image, cluster_id

except Exception as e:

print(f"Error loading image {image_path}: {e}")

raise

I was having difficulty with the main function, which is the entrypoint for the retrieval.py
script. So I re-wrote it from scratch:

def main(config=None):

print("Current working directory:", os.getcwd())

if config is None:

config = Config()

Make config globally available as args

global args

args = config

Initialize distributed processing with a single process

os.environ['MASTER_ADDR'] = 'localhost'

os.environ['MASTER_PORT'] = '12355'

distributed.init_process_group(backend='nccl', world_size=1, rank=0)

Load model and initialize

model, transform_clip = clip.load(args.model_name)

Use only the vision encoder part of CLIP

model = model.visual

model = model.float() # Convert to full precision because that's what

the rest of the unicom seems to want

model = WarpModule(model)

model.train()

model.cuda()

Create dataset and loader

dataset_train = CustomClusteredDataset(

cluster_results_path='clustering_results.csv',

transform=transform_clip

)

loader_train = DataLoader(

dataset_train,

batch_size=args.batch_size,

num_workers=args.num_workers,

pin_memory=True,

drop_last=True,

shuffle=True

)

backbone = model

margin_loss = CombinedMarginLoss(

args.margin_loss_s,

args.margin_loss_m1,

args.margin_loss_m2,

args.margin_loss_m3,

args.margin_loss_filter

)

module_partial_fc = PartialFC_V2(

margin_loss,

args.output_dim,

dataset_train.num_classes,

args.sample_rate,

False,

sample_num_feat=args.num_feat,

use_distributed=False

)

module_partial_fc.train().cuda()

opt = torch.optim.AdamW(

params=[

{"params": backbone.parameters()},

{"params": module_partial_fc.parameters(), "lr": args.lr *

args.lr_pfc_weight}

],

lr=args.lr,

weight_decay=args.weight_decay

)

steps_per_epoch = len(dataset_train) // args.batch_size + 1

lr_scheduler = optim.lr_scheduler.OneCycleLR(

optimizer=opt,

max_lr=[args.lr, args.lr * args.lr_pfc_weight],

steps_per_epoch=steps_per_epoch,

epochs=args.epochs,

pct_start=0.1,

)

callback_func = SpeedCallBack(10, args.epochs * steps_per_epoch,

args.batch_size)

auto_scaler =

torch.cuda.amp.grad_scaler.GradScaler(growth_interval=200)

global_step = 0

Main training loop - removed train_sampler check

for epoch in range(args.epochs):

for _, (img, local_labels) in enumerate(loader_train):

img = img.cuda()

local_labels = local_labels.long().cuda()

with torch.cuda.amp.autocast(False):

local_embeddings = backbone(img)

local_embeddings.float()

loss = module_partial_fc(local_embeddings, local_labels)

auto_scaler.scale(loss).backward()

if global_step % args.gradient_acc == 0:

auto_scaler.step(opt)

auto_scaler.update()

opt.zero_grad()

lr_scheduler.step()

global_step += 1

with torch.no_grad():

callback_func(

lr_scheduler,

float(loss),

global_step,

auto_scaler.get_scale()

)

print(f"Completed epoch {epoch}")

print("Training completed")

Otherwise, all the code provided by Unicom basically remained the same.

Flow Charts/Diagrams

Documentation
No documentation to add really just yet

Results Visualization + Proof of Work
The results output clearly shows minimization of the loss-function output (see the bolded
output below), which is a good sign!

rank:73 total:73 lr:[0.00000040][0.00000402] step:20 amp:65536
required:2.9 hours 18.461
rank:82 total:82 lr:[0.00000040][0.00000405] step:30 amp:65536
required:2.7 hours 18.532
rank:73 total:73 lr:[0.00000041][0.00000409] step:40 amp:65536
required:2.7 hours 18.396
rank:64 total:64 lr:[0.00000041][0.00000414] step:50 amp:65536
required:2.7 hours 18.344
.

.

.
rank:86 total:86 lr:[0.00000000][0.00000000] step:20620
amp:664613997892457936451903530140172288 required:0.0 hours 0.001
rank:85 total:85 lr:[0.00000000][0.00000000] step:20630
amp:664613997892457936451903530140172288 required:0.0 hours 0.001
rank:93 total:93 lr:[0.00000000][0.00000000] step:20640
amp:664613997892457936451903530140172288 required:0.0 hours 0.001

One thing that was kind of dumb on my part was that I forgot to actually save the generated
model weights (oops) after running the 32-epoch, multi-hour training session. Consequently, I
don’t have time to do any performance benchmarking this week. Regardless, the decreasing
loss output looks very promising!

Next Week’s Proposal
- Understand the various “hyperparameters” be�er. For this week, I really just

cargo-culted the default parameters that were in the Unicom code.
- Re-run the training script – but save the model weights!
- Performance benchmarking – I want to compare this unicom-trained VLM4Bio-based

model against an out-of-the-box pretrained CLIP model on a few bio-related datasets.

