
Week 7 Report
Thomas Deatherage
NFHM/BioCosmos
4 October 2024

Time Slot

1) What progress did you make in the last week?
- Weekly meeting with GaTech NFHM collaborators.
- Weekly meeting for LLM/UI stuff with Ben and Bree
- Weekly GaTech<>UF meeting
- Worked on fine-tuning florence-2’s model (not done).

2) What are you planning on working on next?
- Finish florence-2 fine tuning experiment
- Focus on LLMs

3) Is anything blocking you from getting work done?
- Nope.

Abstracts & Summaries

1) InternVL: Scaling up Vision Foundation Models and Aligning for
Generic Visual-Linguistic Tasks
Conference/Journal: IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2024
Abstract: The exponential growth of large language models (LLMs) has opened up numerous
possibilities for multi-modal AGI systems. However the progress in vision and vision-language
foundation models which are also critical elements of multi-modal AGI has not kept pace with
LLMs. In this work we design a large-scale vision-language foundation model (InternVL) which
scales up the vision foundation model to 6 billion parameters and progressively aligns it with the
LLM using web-scale image-text data from various sources. This model can be broadly applied to
and achieve state-of-the-art performance on 32 generic visual-linguistic benchmarks including
visual perception tasks such as image-level or pixel-level recognition vision-language tasks such
as zero-shot image/video classification zero-shot image/video-text retrieval and link with LLMs
to create multi-modal dialogue systems. It has powerful visual capabilities and can be a good
alternative to the ViT-22B. We hope that our research could contribute to the development of
multi-modal large models.

Summary: The document presents "InternVL," a large-scale vision-language foundation model
designed to align a vision encoder with a large language model (LLM) for improved performance
in various visual and visual-linguistic tasks. Key features of InternVL include:

Model Architecture: InternVL comprises a vision encoder, scaled to 6 billion parameters, and an
8 billion parameter LLM middleware, which enhances integration and representation alignment
between visual and linguistic inputs.

Training Approach: The model employs a progressive image-text alignment strategy, starting with
contrastive learning on large-scale noisy data followed by generative learning on more refined
datasets. This helps stabilize training and improve model performance effectively.

Applications and Performance: InternVL achieves state-of-the-art results across 32 generic
visual-linguistic benchmarks encompassing tasks such as image classification, image-captioning,
and multi-modal dialogue systems. It demonstrates strong representations in both visual and
linguistic modalities, enhancing its versatility for various applications.

Overall, InternVL bridges the gap between vision and language models, contributing significantly
to advancements in multi-modal artificial general intelligence (AGI)
Link:
https://openaccess.thecvf.com/content/CVPR2024/html/Chen_InternVL_Scaling_up_Vision_Fou
ndation_Models_and_Aligning_for_Generic_CVPR_2024_paper.html
Code: https://github.com/OpenGVLab/InternVL
Relevance: Very promising LLM, especially with its emphasis on vision capabilities.

Scripts and Code Blocks

The past two weeks (reports 5 and 6) were spent working on performance evaluation of trait grounding
and trait referral with the florence-2 VLM model. This week I tried to make that performance better with
fine-tuning. However, fine-tuning is a very slow, resource intensive-process. It has also proven to not be
trivial to implement. Consequently, I don’t have that working yet. But I’m pretty close.

To reiterate – the goal in fine-tuning is to explore to what extent florence-2 might work as the model for
certain BioCosmos sub tasks. For example, could BioCosmos delegate trait identification tasks to the
model and expect quality results?

I’ve repeated the current script in its entirety below. The basic idea is to build on top of the florence-2
base model with the fish-vista training set. This is done by translating the training data into something the
model can use (I’m using LoRA and PEFT to help with this since these tools can help improve training
efficiency and speed, and reduce resource consumption). We do this via a series of iterative loops or
“epochs”.

https://openaccess.thecvf.com/content/CVPR2024/html/Chen_InternVL_Scaling_up_Vision_Foundation_Models_and_Aligning_for_Generic_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Chen_InternVL_Scaling_up_Vision_Foundation_Models_and_Aligning_for_Generic_CVPR_2024_paper.html
https://github.com/OpenGVLab/InternVL

import os

import torch

from torch.utils.data import Dataset, DataLoader

from transformers import AutoProcessor, AutoModelForCausalLM, AdamW,

get_linear_schedule_with_warmup

from peft import LoraConfig, get_peft_model

from PIL import Image

import numpy as np

import pandas as pd

import json

from tqdm import tqdm

import logging

import psutil

import gc

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s

- %(message)s')

if torch.cuda.is_available():

dtype = torch.float16

else:

dtype = torch.float32

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_id = 'microsoft/Florence-2-base-ft'

model = AutoModelForCausalLM.from_pretrained(model_id,

trust_remote_code=True, torch_dtype=dtype).to(device)

processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

LoRA Configuration

lora_config = LoraConfig(

r=8,

lora_alpha=8,

target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "linear",

"Conv2d", "lm_head", "fc2"],

task_type="CAUSAL_LM",

lora_dropout=0.05,

bias="none",

inference_mode=False,

use_rslora=True,

init_lora_weights="gaussian",

)

Apply LoRA to the model

model = get_peft_model(model, lora_config)

model.print_trainable_parameters()

def log_memory_usage():

process = psutil.Process(os.getpid())

logging.info(f"CPU Memory: {process.memory_info().rss / 1e9:.2f} GB")

if torch.cuda.is_available():

logging.info(f"GPU Memory: {torch.cuda.memory_allocated() /

1e9:.2f} GB / {torch.cuda.memory_reserved() / 1e9:.2f} GB")

class FishDataset(Dataset):

def __init__(self, csv_file, image_dir, seg_dir, trait_map_path,

processor):

self.data = pd.read_csv(csv_file)

self.image_dir = image_dir

self.seg_dir = seg_dir

self.processor = processor

with open(trait_map_path, 'r') as f:

self.trait_map = json.load(f)

self.valid_indices = []

self.skipped_count = 0

for idx, row in self.data.iterrows():

img_name = row['filename']

img_path = os.path.join(self.image_dir, img_name)

seg_name = os.path.splitext(img_name)[0] + '.png'

seg_path = os.path.join(self.seg_dir, seg_name)

if os.path.exists(img_path) and os.path.exists(seg_path):

self.valid_indices.append(idx)

else:

self.skipped_count += 1

logging.warning(f"Skipping image {img_name} due to missing

files.")

logging.info(f"Skipped {self.skipped_count} images due to missing

files.")

logging.info(f"Dataset contains {len(self.valid_indices)} valid

images.")

def __len__(self):

return len(self.valid_indices)

def __getitem__(self, idx):

true_idx = self.valid_indices[idx]

img_name = self.data.iloc[true_idx]['filename']

img_path = os.path.join(self.image_dir, img_name)

seg_name = os.path.splitext(img_name)[0] + '.png'

seg_path = os.path.join(self.seg_dir, seg_name)

image = Image.open(img_path).convert('RGB')

seg_mask = np.array(Image.open(seg_path))

Get all traits present in the image

traits = [self.trait_map[str(i)] for i in np.unique(seg_mask) if

str(i) in self.trait_map and i != 0]

Create a prompt for the new tassk

This is a new task i made up. I want to explore the difference

in fine-tuning existing tasks vs. fine-tuning a brand new task.

I really don't know what the outcome will look like

prompt = f"<SPECIES_TRAIT_GROUNDING>{', '.join(traits)}"

Create polygons for each trait

polygons = []

for trait_id, trait_name in self.trait_map.items():

if int(trait_id) != 0: # Exclude background

trait_mask = (seg_mask == int(trait_id)).astype(np.uint8)

contours, _ = cv2.findContours(trait_mask,

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

if contours:

polygon = contours[0].reshape(-1).tolist()

polygons.append({"trait": trait_name, "polygon":

polygon})

return prompt, polygons, image

def segmentation_loss(pred_polygons, target_polygons):

TODO -- Not Done yet! Adapt the existing IoU function from the

grounding.py script . . .

Implement a custom loss function for polygon prediction

loss = torch.tensor(0.0, device=device)

for pred, target in zip(pred_polygons, target_polygons):

Calculate IoU or other relevant metric between predicted and

target polygons

Add to the loss

pass

return loss

def collate_fn(batch):

prompts, polygons, images = zip(*batch)

inputs = processor(text=list(prompts), images=list(images),

return_tensors="pt", padding=True)

Ensure all required inputs are present

if 'input_ids' not in inputs:

inputs['input_ids'] = processor.tokenizer(list(prompts),

return_tensors="pt", padding=True)['input_ids']

Convert specific tensors to the desired dtype and device, keeping

others as integers

inputs = {k: v.to(device=device, dtype=dtype if k not in ['input_ids',

'attention_mask'] else torch.long)

for k, v in inputs.items()}

return inputs, polygons

def fine_tune_florence2(train_dataset, val_dataset, model, processor,

num_epochs=3, batch_size=1, learning_rate=5e-5,

gradient_accumulation_steps=4, checkpoint_dir="./checkpoints"):

model.to(device)

train_dataloader = DataLoader(train_dataset, batch_size=batch_size,

shuffle=True, collate_fn=collate_fn)

val_dataloader = DataLoader(val_dataset, batch_size=batch_size,

collate_fn=collate_fn)

optimizer = AdamW(model.parameters(), lr=learning_rate)

total_steps = len(train_dataloader) * num_epochs //

gradient_accumulation_steps

scheduler = get_linear_schedule_with_warmup(optimizer,

num_warmup_steps=100, num_training_steps=total_steps)

for epoch in range(num_epochs):

model.train()

total_train_loss = 0

optimizer.zero_grad()

for step, (batch, target_polygons) in

enumerate(tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{num_epochs}")):

try:

outputs = model(**batch)

lm_loss = outputs.loss

Extract features for segmentation

features = outputs.last_hidden_state[:, 0, :] # Using the

first token's features

Segmentation prediction

seg_logits = model.seg_head(features)

seg_loss = segmentation_loss(seg_logits, target_polygons)

loss = lm_loss + seg_loss

loss = loss / gradient_accumulation_steps

loss.backward()

if (step + 1) % gradient_accumulation_steps == 0:

optimizer.step()

scheduler.step()

optimizer.zero_grad()

total_train_loss += loss.item() *

gradient_accumulation_steps

if step % 100 == 0:

log_memory_usage()

torch.cuda.empty_cache()

gc.collect()

except Exception as e:

logging.error(f"Error during training step: {e}")

continue

avg_train_loss = total_train_loss / len(train_dataloader)

logging.info(f"Epoch {epoch+1}/{num_epochs} - Average training

loss: {avg_train_loss}")

Save checkpoint . . .kernel keeps crashing . . .

checkpoint_path = os.path.join(checkpoint_dir,

f"checkpoint_epoch_{epoch+1}.pt")

torch.save({

'epoch': epoch,

'model_state_dict': model.state_dict(),

'optimizer_state_dict': optimizer.state_dict(),

'loss': avg_train_loss,

}, checkpoint_path)

logging.info(f"Checkpoint saved: {checkpoint_path}")

Validation

model.eval()

total_val_loss = 0

with torch.no_grad():

for batch, target_polygons in tqdm(val_dataloader,

desc="Validation"):

try:

outputs = model(**batch)

lm_loss = outputs.loss

features = outputs.last_hidden_state[:, 0, :]

seg_logits = model.seg_head(features)

seg_loss = segmentation_loss(seg_logits,

target_polygons)

loss = lm_loss + seg_loss

total_val_loss += loss.item()

except Exception as e:

logging.error(f"Error during validation step: {e}")

continue

avg_val_loss = total_val_loss / len(val_dataloader)

logging.info(f"Epoch {epoch+1}/{num_epochs} - Average validation

loss: {avg_val_loss}")

log_memory_usage()

torch.cuda.empty_cache()

gc.collect()

return model

def main():

train_dataset = FishDataset(

csv_file='./fish-vista/segmentation_train.csv',

image_dir='./fish-vista/AllImages',

seg_dir='./fish-vista/segmentation_masks/images',

trait_map_path='./fish-vista/segmentation_masks/seg_id_trait_map.json',

processor=processor

)

val_dataset = FishDataset(

csv_file='./fish-vista/segmentation_test.csv',

image_dir='./fish-vista/AllImages',

seg_dir='./fish-vista/segmentation_masks/images',

trait_map_path='./fish-vista/segmentation_masks/seg_id_trait_map.json',

processor=processor

)

Add a segmentation head to the model

model.seg_head = torch.nn.Linear(model.config.hidden_size,

len(train_dataset.trait_map)).to(device)

fine_tuned_model = fine_tune_florence2(train_dataset, val_dataset,

model, processor)

Save the fine-tuned model

fine_tuned_model.save_pretrained("./fine_tuned_florence2_species_trait")

processor.save_pretrained("./fine_tuned_florence2_species_trait")

logging.info("Fine-tuning completed and model saved.")

if __name__ == "__main__":

main()

Flow Charts/Diagrams
Same general chart of florence-2 performance evaluation architecture from last week. I’m going to do
this again, but against the fine-tuned florence-2 model once it’s ready.

Documentation
Nothing new this week.

Results Visualization + Proof of Work
The fine tuning is still a WIP, so no results to show yet

Next Week’s Proposal
- Finish fine tuning.
- Shift gears and focus on LLMs

