APRIL 15, 2025 @ (LAREMONT CENTER FOR THE MATHEMATICAL SCLENCES

GEORGIA INSTITUTE OF TE CHNOLDGY ADVISED BY JOHN ETNYRE

SIERRA KNAVEL (she/her)

BETTI NUMBERS AND INDECOMPOSABILITY OF GENUS-G LEFSCHETZ FIBRATIONS

DUTLINE:	feel free to interrupt
	with guestions.
A. BACKURUUND	
i. Lefschetz fibrations	
il relationship to mapping class	group
B. CURRENT PROGRESS	
i. T., of a Lefschetz fibration	
ii. results on new b, bound	S
iii. indecomposability of a q	jenus-2 family
C. FUTURE DIRECTIONS	
i future questions + technic	ques
ii. (if time) another proof	of Matsumoto's relations

Remark:

Lefschetz fibrations A. BACKGROUND: 4-manifolds A symplectic 4-mfd is a smooth 4-mfd X Smooth 4-mfds equipped with w, a closed, nondegenerate 2-form. Symplectic 4-mfds $W_{std} = \sum_{i=1}^{n} dx_i \wedge dy_i$ (on R^n)

A. BACKGROUND: Lefschetz fibrations

Why physicists care about symplectic an-manifolds:

A. BACKGROUND: Lefschetz fibrations Symplectic Structures: S Physics Z gives all natural constructions of 4-manifolds seeks to classify and "understand" all possible ones STOPOLOGY 3 So what do the topologists know?

A. BACKGROUND: Lefschetz fibrations

symplectic manifolds have the structure of a Lefschetz pencil Lefschetz fibrations in symplectic geometry, 1998 Lefschetz pencils

have symplectic structures

The topology of symplectic manifolds, 2001

A. BACKGROUND: Lefschetz fibrations { symplectic } (:1) { genus-g 2-mfds } Lefschetz fibrations over S² } Upshot: nearly surface bundles, combinatorial data, straightforward invariant computations Q: What is a Lefschetz fibration?

A. BACKGROUND: Lefschetz fibrations Singular fiber Regular fiber nonseparating separating genus 2 Zz = vanishing cycle :

A. BACKAROUND:	mapping Class group
Remark 1:	
genus of regular tiber	
genus of the L.T.	X ⁴
Remark 2	
the monodromy	
determines the LF	

A. BACKAROUND: Mapping Class group
monodromy of a LF:
I embedded S' in
base space S²
2. pre-image

$$= I \times Zg / ([to] \times Zg) \sim (ti \cdot 3 \times Zg))$$

3. monodromy $\phi = the$
self-diffeo of a regulari
fiber Zg to itself

mapping Class group A. BACKGROUND: Remarks: • \$ is self-diffeo of Zg to itself \$ e Mod (Zg) I×Σq $\varphi = \tau_{\gamma_n} \circ \dots \circ \tau_{\gamma_2} \circ \tau_{\gamma_1}$ where T are positive Denn twists of order 1

A. BACKAROUND: mapping class group $\phi = id Mod(z_g)$ motivation for 1. S' loop around only regular fibers, then 9 $\phi = Id \mod(z_g)$ IXZg

A. BACKAROUND: mapping Class group
motivation for
$$\phi = id_{Mod}(z_g)$$

2. S' loop around a
critical value q, then
 $\phi = T\gamma$
where $\gamma = vanishing$
cycle corresponding to
singular fiber $f^{-1}(q)$
Recall:
 $\int_{S_1}^{Recall} = vanishing cycle$

mapping class group A. BACKAROUND: Lefschetz fibrations over S²: If $Z_g \longrightarrow X^4$ is a Lefschetz J_f S^2 fibration, then $\phi_N = \phi_5$. · · · · f = Tyn Ty2 . Ty2 PN φs = id mod(Zg) 5° () ps ⇒ Tyno...oTy, = id mod(Ig)

Research questions surrounding	$f: X \to S^2$, a	Lefschetz	fibration							
1. What are all possible monodution for X with a fixed fiber g	romies enus?									
2. How to find new monodromies (Q about id fact. of Mcg)	3 ² .									
3. What is fundamental group of or signature, Euler char, 1 st Be	$x + x^2$ $x + no_{x}$									
4. Which X are indecomposable	2									

B. CURRENT PROGRESS $f: X \rightarrow S^2$, a lefschetz fibration Research questions surrounding answered for g=0,1 1. What are all possible monodromies somewhat for g=2 for X with a fixed fiber genus? no hope? g≥3 2. How to find new monodromies? → current methods not exhaustive (Q about id fact of mcg) only when monodromy 3. What is fundamental group of X? ... or signature, Euler char, 1st Betti no,... is (somewhat) known mostly unknown g>2 4. Which X are indecomposable?

Results for any genus:Proposition 1
$$(K 202*)$$
Let $f:X^{4} \rightarrow S^{2}$ be a genus-g nontrivial Lef. fib.
then $0 \leq b_{1}(X) \leq 2g-2$, this is sharp for $g=2$.Proposition 2 $(K 202*)$ Let $f:X^{4} \rightarrow S^{2}$ be a genus-g Lef. fib. with
monodromy $\phi = id \in Mod(Zg)$.
If ϕ is transitive w.r.t. $Mod(Zg)$, then $\pi_{1}(X) = 0$.

B. CURRENT PROGRESS

Lemma 3 (K 202*) Let f: X⁴ - S² be a genus - 2 nontrival Lef. fib. with n nonseparating and s separating vc's. Then $2n-5 \doteq 5$ This bound is sharp. Lemma 4 (K 202*). Let f: X⁴ - S² be a genus - 2 nontrival Lef. fib. Then X of type (2k, 4k-5) have $b_1 = 2$ and are indecomposable lef. fibrations (if they exist).

Let's begin with the following result:

Lemma 3 (K 202*) -

Let f: X⁴→S² be a genus-2 nontrivial Lef. fib.

with n nonseparating and s deparating vcs. Then $2n-5 \ge 5$ This bound is sharp.

Defn: A Lefschetz fibration with genus-g fibers is of type $(n, s_1, s_2, ..., s_k)$ for $k = \lfloor \frac{9}{2} \rfloor$ if it has n nonseparating and s; sepanating vanishing cycles.

B. CURRENT PROGRESS GENUS-2 LF. OF TYPE (n,s) -16 -12 no. of separating - 10 vanishing -8 cycles 8 18 10 12 14 16 ها. 4 20 no. of non-separating vanishing cycles Lemma 4 (K 202*) PROOF: indecomposability: vector argument Let f: X"-S² be a genus-2 nontrivial Lef. fib. Then X of type (2k, 4k-5) have $b_1=2$ and are $b_1(X) = 2$: $b_1 = \frac{1}{2}(X + \sigma) + b_2^+ - 1$ indecomposable Lef. fibrations (if they exist). and $b_2 \ge s+1$ and $b_1 \le 2$

How do we know how to compute

 $b_2^+(X), b_2^-(X), b_1(X) \text{ or } \mathcal{V}(X)?$

Fact: simple closed curves on Zz are hyperelliptic.

[Margalit-Winauski]

hyperelliptic: branched cover with 6 fixed points S² with 6 fixed points

Consequences:

- separating vanishing cycles are lifts of two copies of full twists around fixed points

nonsep. vc.s are lifts of half twists between fixed points of S²

can explicitly see how each s and n contribute to X and signature, J

How do we know how to compute

 $b_2^+(X)$, $b_2(X)$, $b_1(X)$ or $\mathcal{X}(X)$?

Answer: hyperelliptic LFs are a well-structured subset

How do we know that

 $b_1(x) \leq 2$? (Proposition 1)

B. CURRENT PROGRESS How do we know that $b_1(x) \leq 2$? (Proposition 1) Proposition 1 (K 202*) -Let $f: X^4 \rightarrow S^2$ be a nontrivial genus-2 Lef. fib. then $O \leq b_1(X) \leq 2$ Proof: Fact: For a, b isotopy classes of scc's in \mathbb{Z}_2 , for any $k \ge 0$, $\Psi(\tau_b^{k})[a] = [a] + k i(a,b)[b]$ I: Mod(Zg) → Sp(2g, Z) symplectic representation of Mod(Zg)

B. CURRENT PROGRESS How do we know that $b_1(x) \leq 2^{p}$ (Proposition 1) Proposition 1 (K 202*) -Let $f: X^4 \rightarrow S^2$ be a nontrivial genus-2 Lef. fib. then $O \leq b_1(X) \leq 2$ Proof: Fact: For a, b isotopy classes of scc's in \mathbb{Z}_2 , for any $k \ge 0$, $\Psi(\tau_b^{k})[a] = [a] + k i(a,b)[b]$ Example : 6 $- \tau_b^3(a) \rightarrow$ $T_{h}^{3}(a) = [a] + 3[b]$

Proof:

For a, b isotopy classes of scc's in \mathbb{Z}_2 , for any $k \ge 0$, Fact: $\Psi(\tau_b^{k})[a] = [a] + k i(a,b)[b]$

And we know that sep. curve do not change homology So if all nonsep Ni are homologous, $\Psi(T_{\eta_n}, T_{\eta_1})([\delta])$ can't possibly be equal to $\Psi(T_d)([\delta])$

Then each nonsep vanishing Wale looks like

$$\eta_{i} = a_{i}[\alpha] + b_{i}[\beta] + c_{i}[\gamma] + d_{i}[\beta]$$
At least two VC's, say η_{e} and n_{k} , are distinct.
So $H_{1}(X)$ is some subgroup of $\underline{\mathcal{I}} \oplus \overline{\mathcal{I}} \oplus \overline{\mathcal{I$

B. CURRENT PROGRESS

CONJECTURES: (for all genus-2 LFs) • [Me] & [Me] are always a port of an integral basis for #4 • At least one class [mi] intersects. [me] or [me] homologically once MOTIVATION: II, (X, x.) has at most 2 generators ie a longstanding conjecture

Proposition 2
$$(1 \times 2024)$$

Let $f: X^{u} \rightarrow 5^{2}$ be a genus-g lef. fib. with
monodromy $\phi = id \in Mod(Zg)$.
If ϕ is transitive with $Mod(Zg)$, then $\pi_{1}(X) = 0$.
Seibert-Tian, '99] Nontrivial holomorphic genus g^{2} ?
Lefschetz fibrations with only non-separating
vanishing cycles are simply connected
"On the holomorphicity of genus 2^{2}
Lefscherz fibrations" 2,2003

Picture proof: Some immersed Loop in X X4 F some loop in S²

C. FUTURE DIRECTIONS

THANKS

FOR