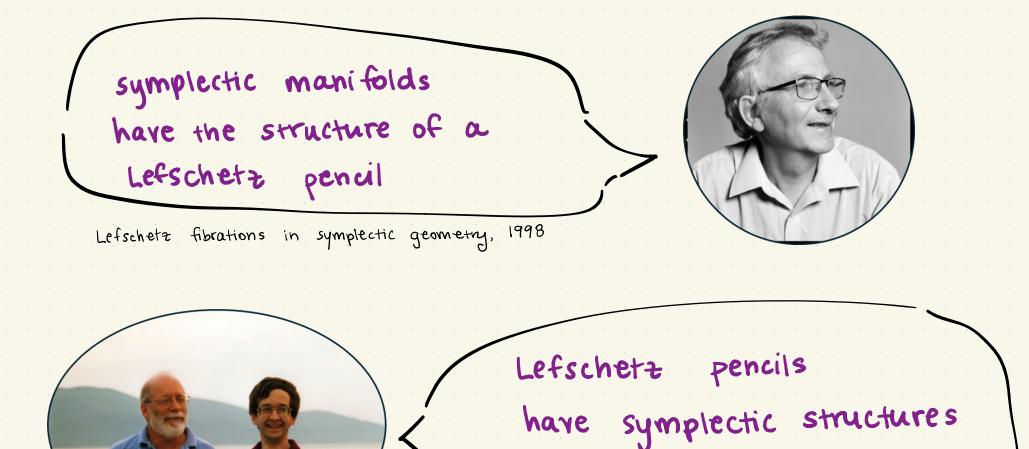
Lefschetz fibrations: genus two and beyond! Sierra Knavel (she/her) Georgia Tech, advised by John Etnyre AWM Symposium, May 16-19 2025



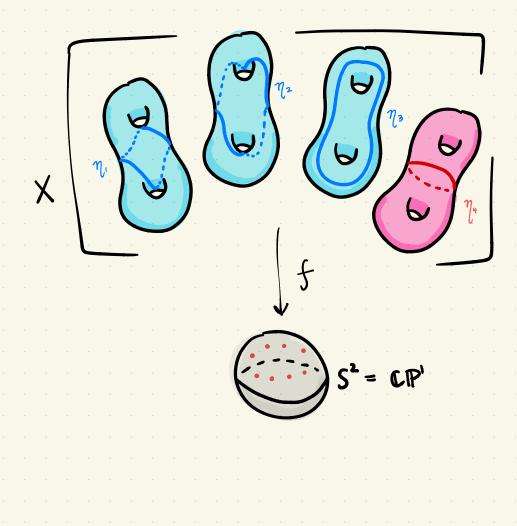
The topology of symplectic manifolds, 2001

- 4-mfd	ls w/ "almost" a CP's worth of Zg
exa	mple: $f: CP^2/B \longrightarrow S^2$
	Every algebraic surface [Lefschetz]
blow up 11	$\# \overline{\mathbb{CP}^2}$
blow up	$\#_{n} \overline{\mathbb{CP}^{2}}$
blow up	$\#_n \overline{\mathbb{CP}^2}$
• • • • • • • • • • • • •	
efschetz fibratic	
blow up U efschetz fibratic example:	

Example of a genus-2 Lefschetz fibration:

- $S^2 = CP'$
- This is the genus-2 member of Matsumoto's family of Lefschetz fibrations
 - 8 vanishing cycles and ... 8 singular fibers
 - with monodromy $\phi = (T_{\eta_{4}} \circ T_{\eta_{3}} \circ T_{\eta_{2}} \circ T_{\eta_{1}})^{2}$

Example of a genus-2 Lefschetz fibration:



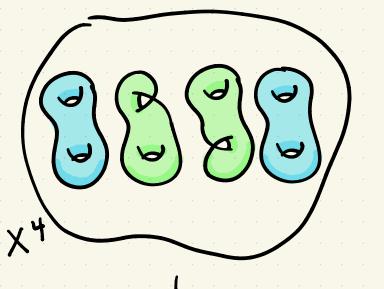
Why is it an important example?

• [Kovkmat] constructs $f: X^{4} \rightarrow \delta^{2}$ w| $\tau_{0} = G$

• small, highly not simply connected

used to construct new &
 exotic LFs

Definition: Lefschetz fibration



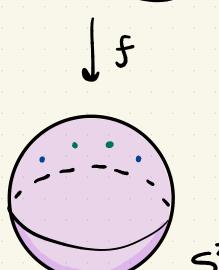
3. each f⁻¹(q;) eX has local coord. charts in which f(z,w) = zw z,w E C
4. f⁻¹(b) for b a regular value is a regular fiber (a closed genus-g surface)

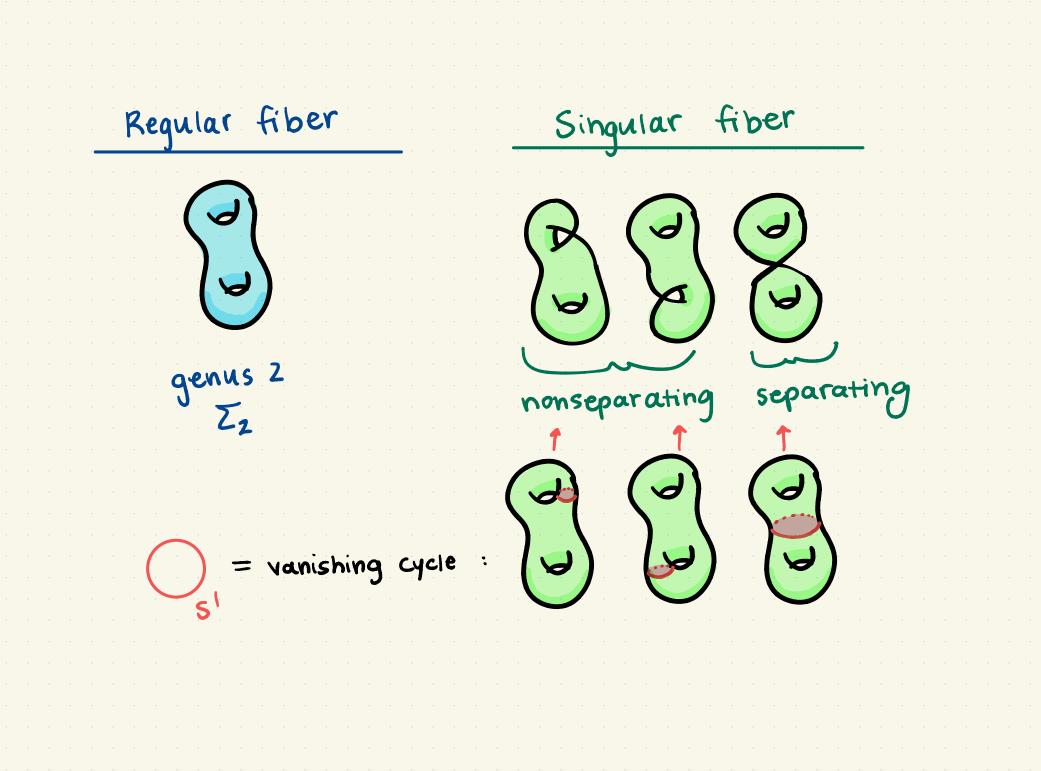
2

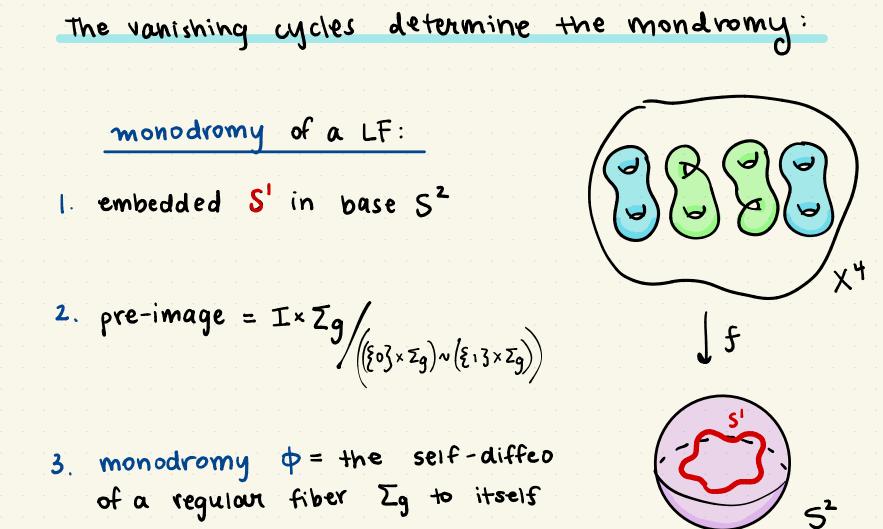
1. f: X4 -> S2 is a smooth surjection

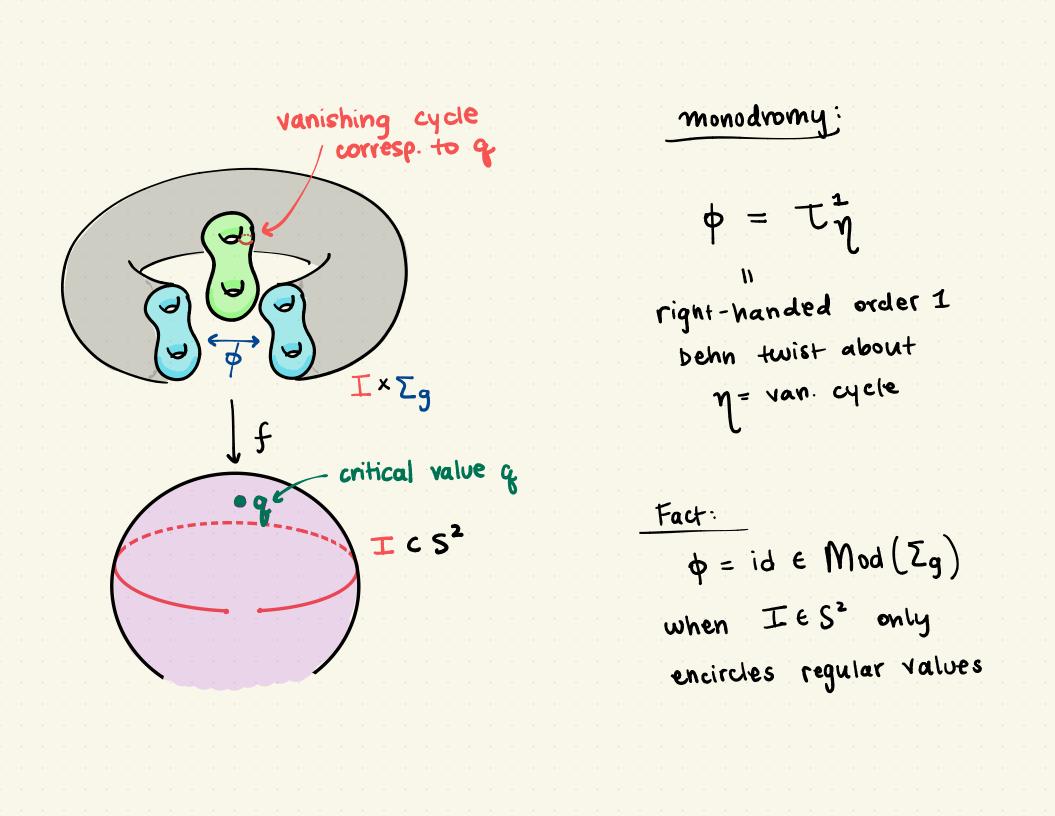
H1, D2, ..., Gn

finitely many critical values





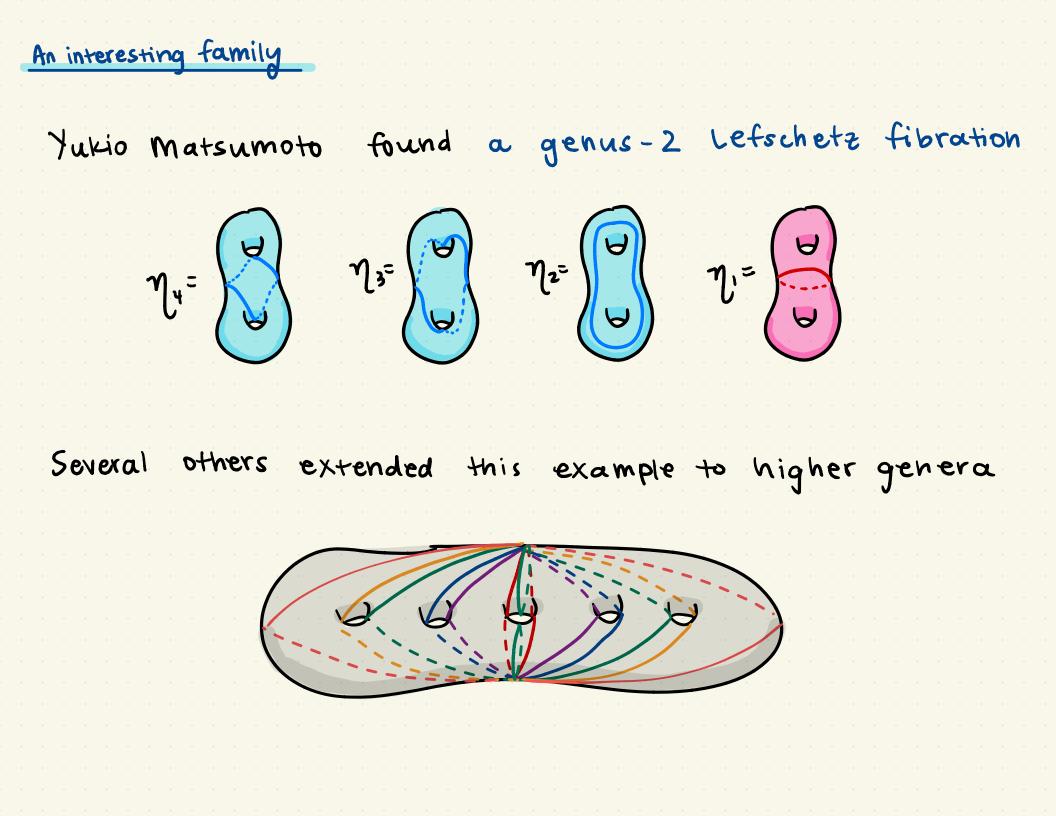




For a lefschetz fibration $f: X^4 \longrightarrow S^2$ R $\phi_N = \phi_S$ Tyz PN = id mod (Zg) , ps Tyno...oTy, = id mod(Ig)

So what do we want to know about	these	objects?
1. What are all possible monodromies		
for X with a fixed fiber genus?		
$\cdot \cdot $		
2. How to find new monodromies? (Q about id. fact. of mcg)		
3. What is fundamental group of X?		
3. What is fundamental group of X? or signature, Euler char, 1 st Betti no,		
4. Which X are indecomposable?		

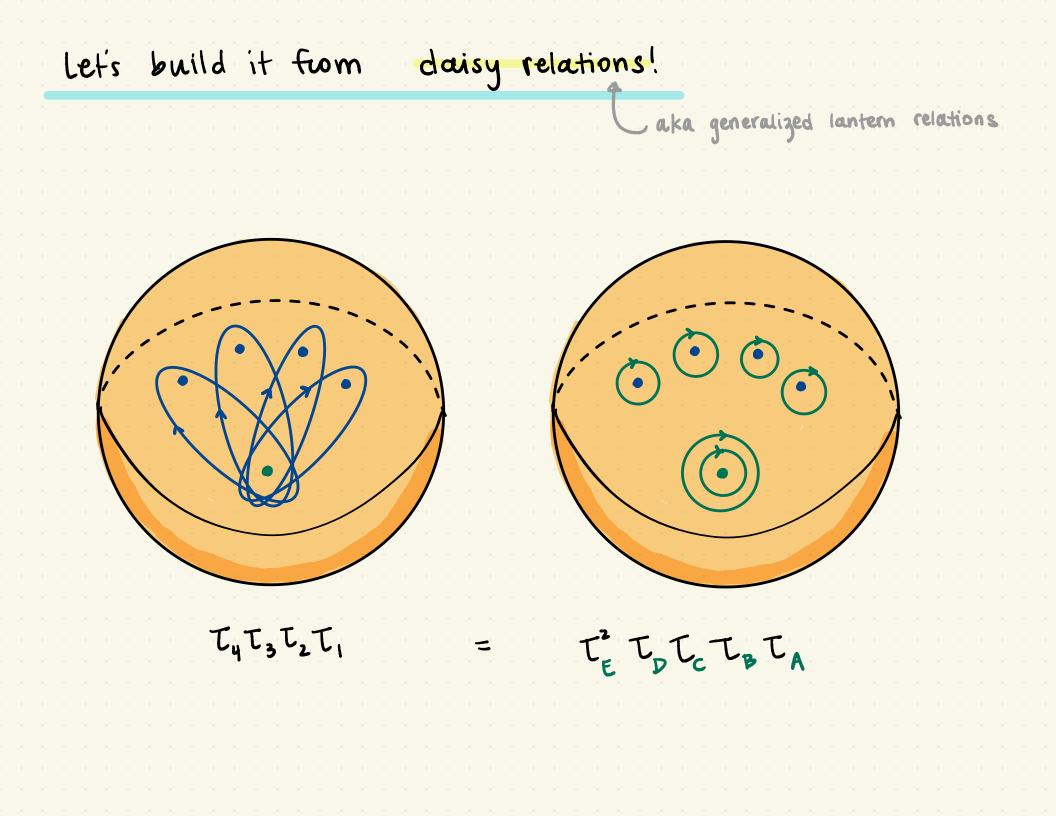
So what do we want to know about these objects? answered for g=0,1 1. What are all possible monodromies somewhat for g=2 for X with a fixed fiber genus? no hope? g≥3 2. How to find new monodromies? current methods not exhaustive (a about id. fact. of mcg) > only when monodromy is (somewhat) known 3. What is fundamental group of X? ... or signature, Euler char, 1st Betti no,... > mostly unknown g=2 4. Which X are indecomposable?

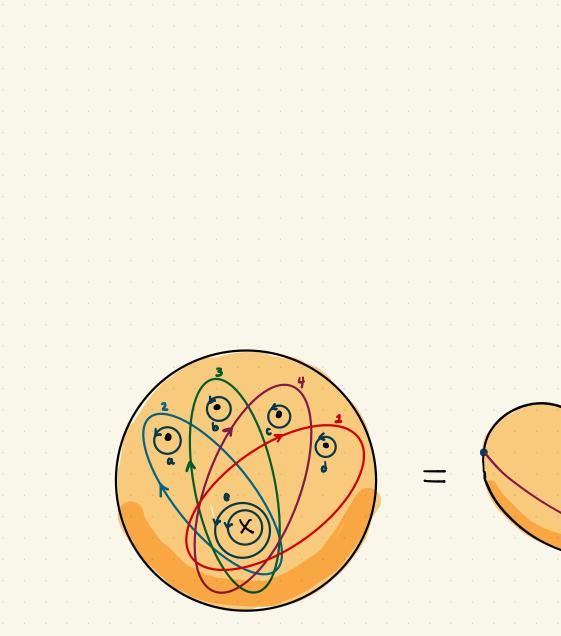


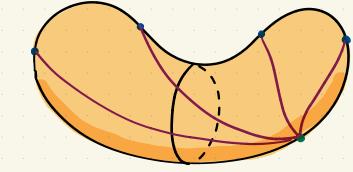
has at least 2 (symplectic) sections
first non-simply connected family
non-hyperelliptic for odd genera
built from atomic singular fibers, configurations of sing fibs, and Mathematica code

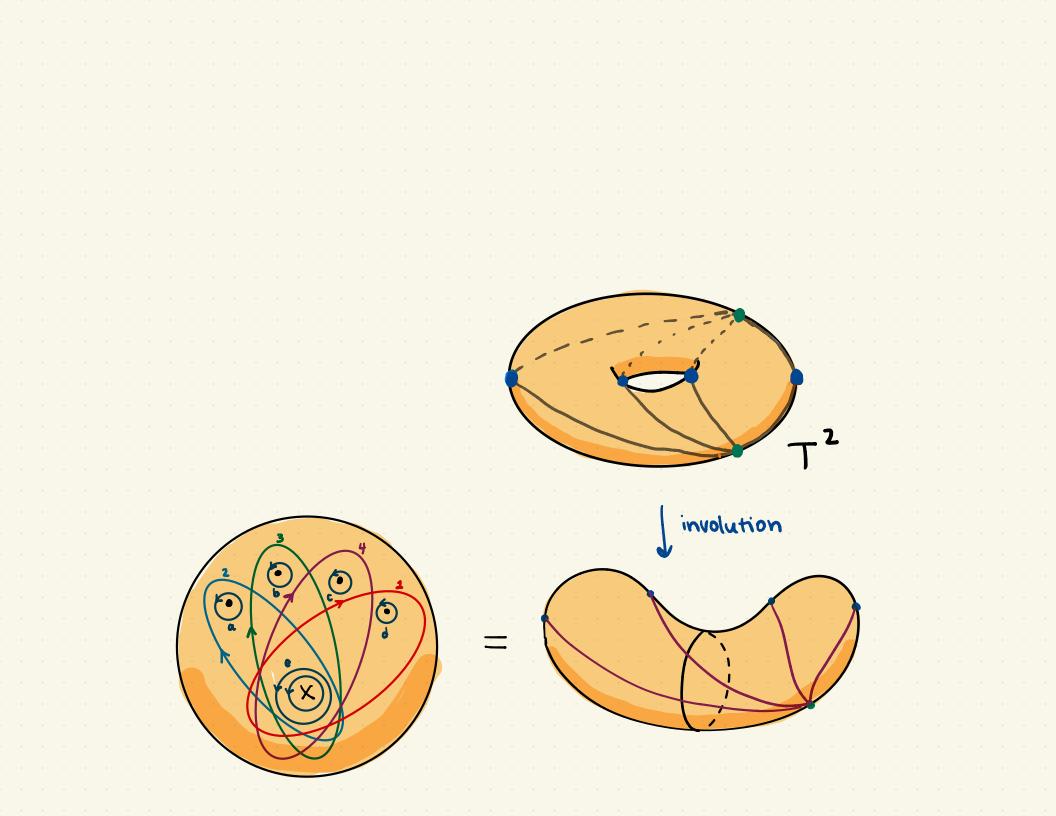
has at least 2 (symplectic) sections
first non-simply connected family
non-hyperelliptic for odd genera
built from atomic singular fibers, configurations of sing. fibs, and Mathematica code

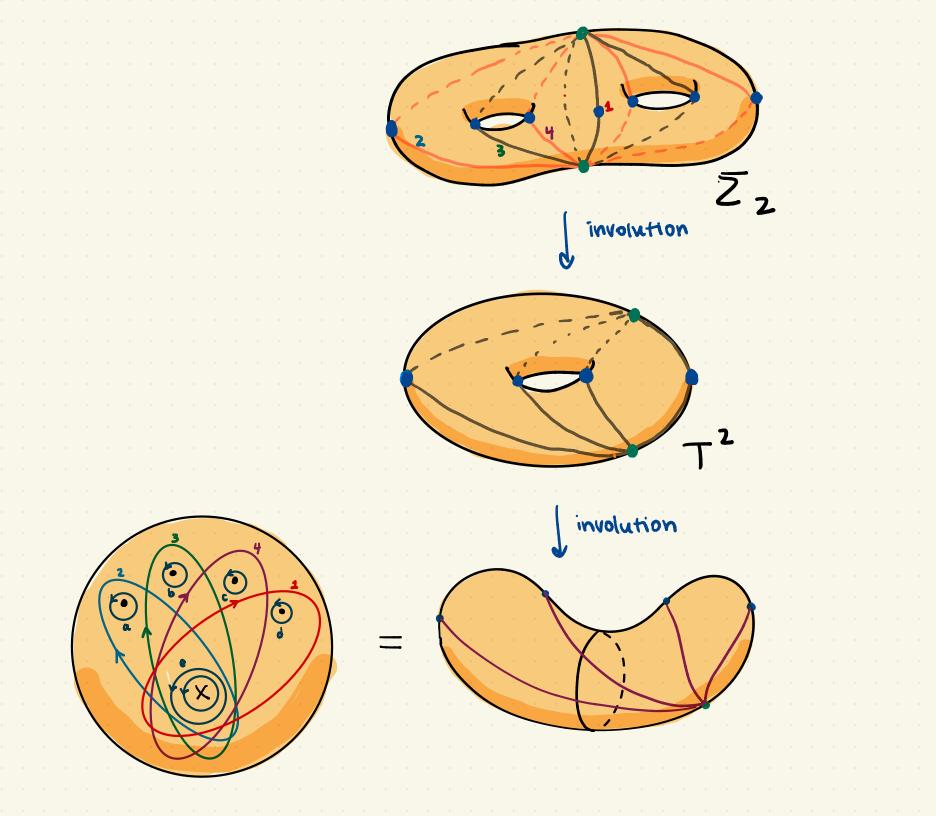
Why no top. proof?











What else do we know about

nontrivial genus-g Letschetz fibrations?

Proposition (K 202*) -Let $f: X^4 \rightarrow S^2$ be a genus-g nontrivial Lef. fib. then $0 \le b_1(X) \le 2g-2$, this is sharp for g=2. Motivation Conjecture (Korkmaz, Stipicz, Bakyur, ...) I no genus Lefschetz fibration with 3 generators of π_1

What else do we know about

nontrivial genus-g Lefschetz fibrations?

Proposition (K 202*) -Let $f: X^{4} \rightarrow S^{2}$ be a genus-g nontrival Lef. fib. then $0 \le b_{1}(X) \le 2g-2$, this is sharp for g=2.

Of course $b_1(\Sigma_g \times S^2) = 2g$

What else do we know about

nontrivial genus-g Letschetz fibrations?

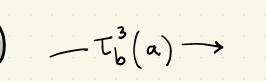
Proposition (K 202*) -

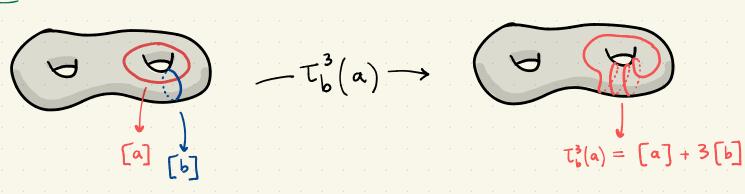
Let f: X4-S2 be a genus-g nontrival Lef. fib. then $0 \le b_1(X) \le 2g-2$, this is sharp for g=2.

Fact: For a, b isotopy classes of scc's in \mathbb{Z}_2 , for any $k \ge 0$, $\Psi(\tau_b^k)[a] = [a] + k \cdot \hat{i}(a,b)[b]$

Example:

proof





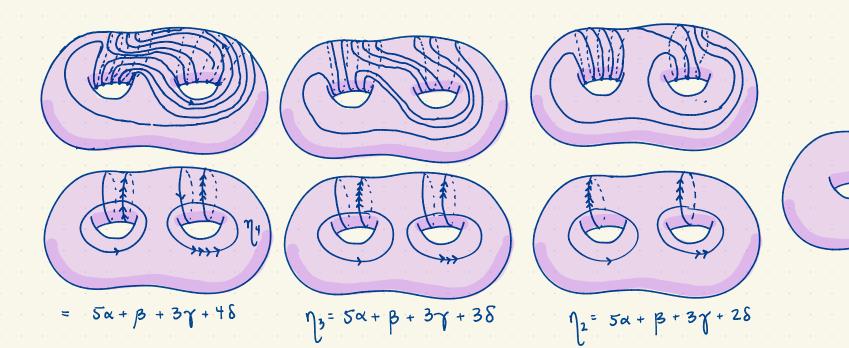
What else do we know about

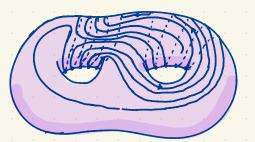
P

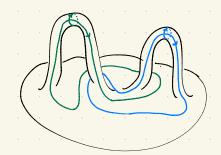
nontrivial genus-g Letschetz fibrations?

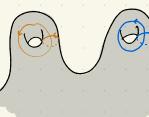
J1=8

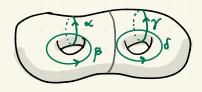
Let $f: X^4 \rightarrow S^2$ be a genus-g nontrivial Lef. fib. then $0 \le b_1(X) \le 2g-2$, this is sharp for g=2.

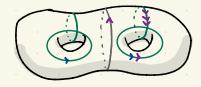


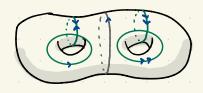




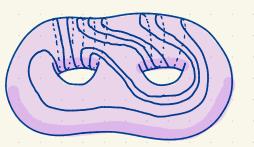








 $\overline{\nabla} a \overline{\nabla} b = b \overline{\nabla} a \sigma$ $a \overline{\nabla} b \overline{\sigma} = \sigma b \overline{\sigma} a$ $\overline{\sigma} b \overline{\sigma} \overline{a} = \overline{a} \sigma b \overline{\sigma}$ $\overline{\sigma} b \overline{\sigma} \overline{a} = \overline{a} \sigma b \overline{\sigma}$ $b \overline{\sigma} \overline{a} \sigma = \sigma \overline{a} \sigma b$ $\overline{\sigma} \overline{a} \sigma \overline{b} = \sigma \overline{b} \sigma \overline{a}$ $\sigma \overline{b} \overline{\sigma} a = \sigma \overline{b} \sigma \overline{a}$ $\overline{b} \overline{\sigma} a \overline{\sigma} = \overline{\sigma} a \sigma \overline{b}$



FOR ISFENING!

