
Enabling	distributed,	
compute-intensive	
FaaS on	the	edge	with	
COMPSs

Francesc	Lordan

14/04/2019 Edge Computing	Workshop@ASPLOS’19



Outline

• Motivation
• Programming Model:	COMPSs
• Decentralizing	the	COMPSs	runtime
• Use	Case:	Cagliari	Airport
• Conclusion



Motivation



IoT/Edge	Platforms

4

3	types of	elements composing the system:

Events/Data	Generators (sensors)
elements	monitorizing	certain	condition	and	informing about it

Continuosly generating informationà Streams of	data
Eventually notifying a	changeà Events

Event-reactors/	Data	Consumers	(displays)
elements on which the platform realizes actions (changing its state)

Computing	elements
elements	within	the	infrastructure	with	ability	to	process	and	transform	
information



5

Cloud-Edge	Continuum



Computation on IoT/Edge platforms
3	purposes for computation:

• Sense-process-actuate:
A	sensor	detects something and	triggers a	computation to	give a	proper response	to	such
event.

• Stream processing:
A	sensor	continuously provides data	that needs to	be	processed.	

• Batch Jobs:
Analyse big amounts of	data	collected by the sensors



Programming Model:
COMPSs



BSC	vision	on	programming	models	

8

General	purpose
Task	based

Single	address	space

Intelligent	runtime,	
parallelization,	
distribution,

interoperability

Program	logic
independent	of	

computing	platform
Applications

Power	to	the	runtime

Programming	Model:
High-level,	clean,	abstract

Middleware	API

Simple	Parallel
Programming	Model
• What	do	I	need	to	compute?
• What	data	do	I	need	to	use?
• Provide	Hints

Let	the	difficult	parts	to	the	
runtime
Act	on	behalf	of	the	user

Enable	Monitoring	and	
Analysis
Generate	data	to	evaluate	how	
application	performs



COMP	Superscalar	(COMPSs)
• General	purpose	programming	language	+	annotations/hints
• Sequential	programming	with	no	API	calls
• Agnostic	of	the	computing	infrastructure
• Task-based:	task	is	the	unit	of	work

• Builds	a	task	graph	at	runtime	that	express	potential	concurrency
• Implicit	workflow

• Exploitation	of	parallelism
• …	and	of	distant	parallelism



public class Matmul {

public static void main (String[] args) {

int[][] A;

int[][] B;

...

int[][] C = multiply(A, B); 

...

}

}

public class Simple {

public static int[][] multiply (

int[][] A, int[][] B) {

// Matrix multiplication code

// C = AB

...

return C;

}

}

CEI.java
public interface CEI {

@Method(declaringClass = ”Simple”)

public int[][] multiply (

@Parameter(direction = IN) int[][] A, 

@Parameter(direction = IN) int[][] B

);

}

Matmul.java Simple.java

COMPSs Example - Java



COMPSs Runtime

COMPSs Master

COMPSs runtime

Access Processor

Scheduler

Resources

Loader Bindings-commons
C Python

Applicationmain(args)

Task Task

Task



Decentralizing the
COMPSs runtime



Environment differences
COMPSs’	usual	flow:
• 1	application
• Infrastructure	is	stable
• 1	node	(MASTER):

• Spawns	tasks
• Orchestrates	the	execution	over	the	available	resources	(WORKERs)

COMPSs	for	Edge	Computing
• N	applications	at	the	same	time
• Infrastructure	is	dynamic
• Any	agent	may	generate	new	tasks
• Execution	orchestration	is	a	shared	responsibility



COMPSs Agent

COMPSs agent

Access Processor

Scheduler

Resources

Agent InterfaceStart App	Request
• Class
• Method
• Params
• CEI

Task

Application

Loader
Bindings-commons

C Python



Agents interaction

Computing	Agent

Local
devices

Scheduler

Access	Processor

Remote
agent

Computing	Agent

Local
devices

Scheduler

Access	Processor

Remote
agent



Computing	agents hierarchy

Computing	Agent

Local
devices

Scheduler

Access	Processor

Remote
agent

Computing	Agent

Local
devices

Scheduler

Access	Processor

Remote
agent

Remote
agent

Remote
agent

Computing	Agent

Local
devices

Scheduler

Access	Processor

Remote
agent

Computing	Agent

Local
devices

Scheduler

Access	Processor

Remote
agent

Computing	Agent

Local
devices

Scheduler

Access	Processor

Remote
agent

Remote
agent



Use	Case:
Cagliari	(IT)	airport



Smart	Fog-Hub Service
In	2017	more	than	4	billion	passengers	concentrated	in	airports

• Features
• track	the	presence	of	people	and	objects	in	the	field
• proximity	marketing	services
• suggestions	on	best	use	of	airport	services
• Recommender	system	based	on	consumers’	behavior

• Objectives
• Reduce	latency	and	response	times
• Capability	to	distribute	computing	in	case	of	overloading
• Pleasant	experience	for	travelers	while	in	the	airport	field



Customer Experience

.

Flight AZ626 now 
boarding, gate B32

Sardinian 
handcraft

2

3

4

1

App install,
topics setting



Android	App



Dashboard



Use	Case	deployment



(A)

(B)

(C)

(D)

Benchmarking	scenarios



Test	Results



Conclusions



Summary
• IoT/Edge infrastructures are	composed of	autonomous nodes with network
and	computing capabilities

• COMPSs
• Developers code being unaware of	the parallelism and	infrastructure-related concerns
• Detects tasks and	the parallelism inherent in	the application
• Orchestrates the execution of	these tasks on the available infrastructure
• Supports computation on the three scenarios (batch,	stream and	sense-process-actuate)

• COMPSs agents
• Allows devices to	remain autonomous and	compute	in	an isolated manner
• By interacting with other agents,	and	agent has	access to	the available computing power

• The airport use	case	shows	the viability and	the benefits of	the presented
solution



THANK	YOU!

www.bsc.es

francesc.lordan@bsc.es



COMPSs



COMPSs Runtime
• COMPSs	applications	executed	in	distributed	mode	following	the	master-
worker	paradigm

• Sequential	execution	starts	in	master	node
• Tasks	are	offloaded	to	worker	nodes	
• All	data	scheduling	decisions	and	data	transfers	are	performed	by	the	
runtime

Task Dependecy Graph Computing infrastructure

COMPSs 
Runtime Resource	Mgmt.

Task	Execution
SchedulingTask	

Analysis
Data	Mgmt.

Monitoring

Files, 
objects

Tasks

Annotated
application

code



Resource 2

1. Identify tasks

main program {

}

2. Select tasks

taskA(...);

taskB(...);

(C++/Java)
task	selection	interface	{

}
(Python)
@task	decorator

taskA

taskB
Task

Unit	of	parallelism

. . .

taskA

Asynchrony

taskB

Resource 1 Resource N

Programming	Steps



Programming Model Example
for (i = 0; i < 3; i++) {

increment(counter1);
increment(counter2);
increment(counter3);

}
printCounters(counter1, counter2, counter3);

counter1 counter2 counter3

1st iteration

2nd iteration

3rd iteration

public interface SimpleItf {

@Method(declaringClass = “SimpleImpl")
void increment(

@Parameter(type = FILE, direction = INOUT)
String counterFile

);

}
Parameter
metadata

Implementation



Advanced	Features

• Constraints	to	support	heterogeneous	tasks
• @Constraints(…)

• Versioning
• @Implements(…)

• Combination	of	binary	execution	
• @Binary(…)

• Integration	with	Programming	Models
• @MPI(..)	@Decaf(…)
• COMPSs	+	OmpSs

• Nested
• @COMPSs(…)



Execution	Environments
• Interactive	Nodes

• Clouds

• Clusters

• Containers



Scheduling
Policies

Runtime	Extensions

Runtime System

Resource 
Management

Job Submission & 
Data Transfer

Scheduling

Task Analysis Data Access & Locality

Monitoring
& Tracing

Resource
Providers

Comm. 
Protocols

Persistent 
Objects

project.xml resources.xml

Execution	commands:
• runcompss (interactive	&	cloud)
• enqueue_compss (clusters)
• Runcompss_docker (socker clusters)



mF2C



Background – Open	Fog

The		architecture	 is	an	extension	of	the	traditional	cloud	computing	model

• Processes	are	moved	from	the	cloud	to	the	edge	of	the	network,	in	Fog	nodes

• Deployments	can	reside	on	multiple	layers	of	a	network	topology,	

• Deployments	retain	all	the	benefits	of	cloud	computing,	such	as	containerization,	
virtualization,	orchestration,	 resource-efficient	management

Fog	Nodes	peculiarities

• Autonomous	processing

• Local	storage	and	IP	communications

• Hosted	in	open	(even	hostile)	fields

• Capable	of	acting	in	mobility



mF2C	architecture



Use	case	architecture
• Cloud – based	on	a	OpenStack	instance,	
wired	connected	with	the	fog	layers,	
providing	scalable	computing	power	for	
Machine	Learning	algorithms

• Edge	Fog	– with	a	fog	aggregator	based	on	
Nuvlabox with	8GB,	providing	real-time	
computing	and	storage	resources	and	6	rPI
with	1GB	hub	providing	session	
management	and	fast	response	to	the	
edge	devices

• Edge	IoT – Android	smartphones	
connected	to	the	edge	nodes	through	wifi,	
and	using	an	Android	app	to	interact	with	
the	system		



• Proximity processing
• Client – call a	request for a	list of	nearby POIs using geographic position
• Server	– calculates the POIs in	proximity and	returns a	JSON	array

• Client
Smartphone XIAOMI with Android 5.0.2, running app calling a Rest HTTP API

• Server
• A	VM	runs a	dockerized image with proximity calculation
1. rPI3	with 1GB	RAM
2. VM	running	on a	public cloud (4-core	processor and	4GB	RAM)

Testbed



Interaction with
IoT devices



Interaction with sensors

• Every	sensor	is	attached	to	one	device	with	computing	capabilities

• Events:	
the device trigger a	function execution on any COMPSs agent

• Streams:
the device publishes the stream of	data	directly



• Through a	Controller class
• Handles all the communication with the device
• Offers a	simple	API	to	interact with the device

• Each instance of	this controller class interacts with one device
• Device can	be	controlled by any agent if the object is transferred

public void task(Streetlamp sl) {

…
sl.on();
… 

}

Interaction with displays/devices

class Streetlamp {

public void on() {
…

}

public void off() {
…

}
}



• Using the storage framework
• Controller class is a	Persistent Object
• One Controller instance is made persistent for each device using a	universal	ID
• Any agent able can	interact with any registered resource by using an ID

public void task() {

…
Streetlamp sl;
sl = Storage.getByAlias(“light21758”);
sl.on();
… 

}

Interaction with displays/devices

class Streetlamp
extends StorageObject {

public void on() {
…

}

public void off() {
…

}
}

Streetlamp sl = new Streetlamp();
sl.makePersistent(“light21758”);

Storage
Framework

COMPSs task

Device Manager


