# **Towards Special-Purpose Edge Computing**

**Prashant Shenoy** 

University of Massachusetts

# Rise of Edge Computing

- Cloud computing popular for running diverse applications
- IoT and mobile applications increasingly rely on the cloud
- Edge computing bridges the gap between:
  - Resource-constrained IoT/mobile devices
  - Distant cloud servers
- Beneficial for apps that are
  - Latency-sensitive
  - Bandwidth-intensive
  - Privacy-sensitive



#### Special-purpose Computing Trends

- Traditional general-purpose computing
  - Server and client machines designed for general-purpose use
  - Supports diverse applications (interactive, batch, parallel, distributed)
  - OS resource management designed to support diverse needs
- Technology trend: hardware continues to get cheaper
- Era of special-purpose computing
  - GPUs were the first special-purpose hardware
  - Now: Intel CPU with built-in FGPAs, network accelerator, ...
  - Cloud offerings reflect this trend
    - GPU-optimized, FPGA, SSD-optimized, CPU (arm, x86), memory-optimized servers



#### Specializing Edge Resources

- Edge computing resources are increasingly specialized
- Common use case: Al at the Edge



Nvidia Jetson Nano GPU











**GAP8 IoT Processor** 

Cost O(\$10-100), Power ~ few watts, accelerate specific workloads

# Specialized Edge Computing

- Cheap hardware: specialize each edge deployment for workload
- Example: IoT-driven Machine Learning Analytics on the Edge
  - "Server-class" performance on low-cost hardware



|            | Movidius | x86 server |
|------------|----------|------------|
| Imagenet   | 46.3ms   | 24.7ms     |
| Squzzeznet | 56.5ms   | 22.9ms     |

 Question: What are architectural and research challenges for realizing specialized edge computing?

#### Talk Outline

- Motivation
- Architectural Implications
- Research Challenges
- Conclusions

#### Two-tier Cloud-enabled IoT Architecture







- Computational offloading to cloud
- Two tier model
- Defacto for current IoT products

#### Three-tier Edge-assisted Architecture





- Offload to edge+cloud
- Three-tier IoT architecture
- Edge is still resourceconstrained
  - Split processing
  - Edge aggregation

#### Three-tier Architecture Variants



- General-purpose edge servers
- More capable edge
- Use case: AR/VR offloading
- Latency and bandwidth benefits

# Two-tier Specialized Edge





- Specialized edge nodes
- Accelerate specific workloads
- "Server-class" performance
- Little/no cloud reliance

Computation has moved from cloud back to edge!

## Two-tier Specialized Edge Variants





- Devices also specialized
- Specialized edge and specialized device
- Split processing
- Further reduces cloud reliance





#### Three-tier Architecture Revisited

• Three-tier architecture in an era of specialization



#### **Architectural Summary**

From two-tier to three-tier to specialized three-tier architecture



Traditional cloud (2-tier)



Traditional edge (3-tier)



#### Talk Outline

- Motivation
- Architectural Implications
- Research Challenges
- Conclusions

## Lack of Generality

- General-purpose hardware can run a diverse set of applications
- Specialized edge can only run a single class of application
  - Lower hardware reuse across application classes (no multitenancy)
- Multiple specialized hardware configurations needed to support different application classes
  - Potentially one config per application class
  - Increases hardware costs and management complexity

## Resource Multiplexing

- General purpose nodes are time shared
  - Multiple applications can run concurrently [OS scheduling]
  - Increases system utilization and lower idling
- Specialized hardware not amenable to time sharing
  - Multiple application of same type can not share FPGA/TPU etc
  - Hardware resource idle if application can not maximize utilization
- One app to one node mapping: lower multiplexing, higher costs
- Counter-argument: hardware is cheap, deploy "lots" of cheap nodes

#### Cloud versus Edge Economics

- Cloud: greater multiplexing benefits
  - Can host larger number of "bursty" applications
  - Multiplex app that peak at different times
- Edge: smaller number of servers per site
  - Lower smoothing : reduces multiplexing benefits
- Lower economy of scale for edge clouds
  - More costs to host same number of apps
  - Benefits need to outweigh costs.
  - Specialization exacerbates these issues!





#### Hardware Heterogeneity

- Specialization increases hardware heterogeneity
  - Different hardware for each application class
  - Different choices in different deployments (VPU vs TPU)
- Complicates application programming



# Split Application Processing

- Application needs to be distributed across tiers
  - What function to put where?
- Complicates application programming



## Research Challenges Summary

- Lack of generality
- Lower Resource Multiplexing
- Worse Economics for Edge

- Hardware Heterogeneity
- Split applications

Greater hardware complexity

Greater application complexity

# Macroprogramming

- what is macroprogramming
  - Origins in sensor networks (circa 2005)
  - Specify aggregate system behavior rather than device behavior
  - Run-time application instantiation

- Macroprogramming benefits for specialized edge computing
  - Hides hardware diversity from programmers
  - Write once, run anywhere
  - Program the collective, not the nodes



## Macroprogramming Platform

Macroprogramming run-time platform



## Model Compression and Splitting

- Machine learning analytics for specialized edge
- Split machine learning inference models across multiple tiers
  - Compact coarse-grain model on device
  - Larger model on specialized edge node
- Cloud used for training the model: download, split, and deploy



# **Automated Model Splitting**

- Automatically and adaptively split the model between tiers
  - how/where to partition the network between tiers to optimize energy-accuracy-latency tradeoffs



# **Concluding Remarks**

Edge computing: significant benefits from specialization

- Many open challenges due to
  - Hardware complexity
  - Application complexity

 Need better software, run-time, and language tools to realize full potential

#### **Thanks**

• Questions?

• More at: http://lass.cs.umass.edu

• Acknowledgments: M. Srivastava, D. Ganesan, B. Marlin, D. Irwin