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Abstract—The advent of Deep Learning (DL) has radically
transformed the computing industry across the entire spectrum
from algorithms to circuits. As myriad application domains
embrace DL, it has become synonymous with a genre of
workloads across vision, speech, language, recommendations,
robotics, and games. The key compute kernel within most DL
workloads is general matrix-matrix multiplications (GEMMs),
which appears frequently during both the forward pass (infer-
ence and training) and backward pass (training). GEMMs are
a natural choice for hardware acceleration to speed up training,
and have led to 2D systolic architectures like NVIDIA tensor
cores and Google Tensor Processing Unit (TPU).

Unfortunately, emerging GEMMs in DL are highly irregular
and sparse, which lead to poor data mappings on systolic archi-
tectures. This paper proposes SIGMA, a flexible and scalable
architecture that offers high utilization of all its processing
elements (PEs) regardless of kernel shape and sparsity. Within
SIGMA includes a novel reduction tree microarchitecture
named Forwarding Adder Network (FAN). SIGMA performs
5.7× better than systolic array architectures for irregular
sparse matrices, and roughly 3× better than state-of-the-art
sparse accelerators. We demonstrate an instance of SIGMA
operating at 10.8 TFLOPS efficiency across arbitrary levels of
sparsity, with a 65.10 mm2 and 22.33 W footprint on a 28 nm
process.

I. INTRODUCTION

Deep learning (DL) has emerged as the premier algorith-
mic technique for analyzing data across multiple domains,
especially in visual understanding, speech perception, and
automated reasoning. The application of DL consists of two
steps; namely training and inference. During training, a Deep
Neural Network (DNN) model uses a loss function and
optimization process to minimize model error on the training
dataset. During inference, the trained DNN model is used to
classify data points.

Given latency sensitivity and energy-efficiency demands
for DNN inference, a suite of custom accelerators have been
proposed [3], [10], [21], [27], [33] to run trained models
efficiently by capturing various forms of data reuse [10],
[28]. However, the right acceleration platform for training
current and future models, is still an open question, which
is the focus of this work.

The DL training process is extremely compute intensive.
This is elucidated in an OpenAI study [6], which shows that

Figure 1: (a) GEMM operation. (b) Example GEMM dimen-
sions from common Deep Learning workloads.

the compute requirements for training has grown 300,000
times from AlexNet (2012) to AlphaGo Zero (2018). GPUs
are currently the most popular acceleration platform in use
for training; and recent research focus on parallelizing large
DNN models over multiple GPU nodes. Some companies
like Google and Microsoft have built their own specialized
training platforms such as the cloud TPU [4] and Brainwave
FPGAs [14] respectively.

The core compute component of DL training (and in-
ference) is the GEMM operation [1]. Fig. 1a shows the
GEMM dimensions (M, N, K) and operation; while Fig. 1b
shows example dimensions found in modern DL workloads.
During forward pass, DNNs with fully-connected (FC) layers
and multilayer perceptron (MLPs) naturally map to GEMM
operations, with MK representing inputs and KN representing
weights. For Convolutional Neural Networks (CNNs), GPUs
remap the conv operation into a GEMM via the Im2Col
operation [18] or other efficient ordering operations. During
the backward pass, two GEMM operations arise: MN x
(KN)T and (MK)T x MN for computing the error gradient
w.r.t inputs and weights respectively.



GEMMs comprises around 70% of the total compute cycles
during training (as we show in Sec. II); and therefore is
a primary target for hardware acceleration. State-of-the-art
training accelerators use systolic arrays as the compute fabric
for accelerating GEMMs - with sizes ranging from tiny 4x4
engines within each Streaming Multiprocessor in the NVIDIA
Volta GPU [31] to a large monolithic 128x128 engine in
the Google Cloud TPU [4]. Systolic arrays are built by
interconnecting MAC units to a tightly-coupled 2D grid.
They are efficient for running GEMMs by enabling reuse of
the (M,K) or (K,N) matrix over the rows and columns of the
array, reducing data accesses and instruction overheads.

As DNN models evolve at a rapid rate, it is imperative
to design the underlying acceleration substrate to remain
efficient for future models and training techniques. While
GEMMs continue to remain the favorite abstraction to unroll
tensors to during the forward and backward passes, architects
need to be cognizant of three trends:

• Many GEMMs have irregular (or non-square) dimensions
arising from minibatches and weight factorization [34].

• GEMMs exhibit varying degrees of weight sparsity from
pruning, and activation sparsity from non-linearities
(like ReLU, pooling, and dropout). The number of
nonzeros varies throughout training iterations (from 10%
to 90%) [48].

• DNN models are being developed at a rapid rate as AI
becomes evermore pervasive, making it impractical to
pick a specific set of matrix dimensions or sparsity ratios
to design accelerators for.

Based on our observations, we recommend three key
requirements for future GEMM engines.

• Flexibility: GEMM engines should be able to efficiently
run matrices of arbitrary dimensions.

• Sparsity Support: GEMM engines need support for
unstructured sparsity in both weights and activations
in order to fully utilize hardware resources.

• Scalability: GEMM engines need to scale efficiently
for integration into different kinds of accelerators. For
example, tiny tensor cores in CPUs/ GPUs to large cores
in a future TPU.

Unfortunately, state-of-the-art GPUs and TPUs fare poorly
on some of the requirements, as we discuss later in Sec. III.
GPUs [31] provide some flexibility in terms of tiling irregular
GEMMs into 4x4 chunks and mapping over tensor cores,
but add complexity for scheduling and accumulation across
SMs. TPU, being a large inflexible 128x128 array, can lead
to compute under-utilization if the GEMM dimensions do
not align with the dimensions of the physical array. GPUs
cannot exploit both input and weight sparsity. Even when
only one type of sparsity is present, current CUDA libraries
require the datatype to be FP32 and the sparse data to be

structured. TPU do not natively support sparsity since its
rigid internal connectivity and per-cycle systolic dataflow
prevent skipping multiplications with at least one operand
that is zero. And finally, while systolic arrays scale well due
to a regular 2D structure (as is evident from 4x4 versions in
GPUs to a 128x128 version in the TPU), larger arrays take
proportionally longer to load data and collect final outputs.

In this work, we demonstrate the microarchitecture of a
flexible and scalable GEMM accelerator named SIGMA that
can handle (a) arbitrary amounts of sparsity, (b) arbitrary
irregularity in GEMM dimensions, while guaranteeing close
to full compute utilization. SIGMA’s key novelty is a highly
Flexible Dot Product Engine (Flex-DPE), that can map
GEMMs of arbitrary shapes and sparsity distributions via a
rich interconnect fabric. Further, Flex-DPE uses tree-based
topologies - enabling data loading and collection times of
O(1) and O(log2N) respectively, instead of O(

√
N) for an

equivalent sized square systolic array. The full SIGMA engine
connects multiple Flex-DPEs together via a simple global
network-on-chip (NoC). The NoC allocate a cluster of Flex-
DPEs for one GEMM. Each cluster is called a Flexible Dot
Product Unit (Flex-DPU). SIGMA can thus morph into a
large Flex-DPU running one GEMM or into multiple small
variable-sized Flex-DPUs running different GEMMs.

Our key contributions are the following:

1) Analysis of modern DL training workloads to make
the case for accelerating sparse, irregular GEMMs.

2) A novel accelerator named SIGMA for handling
irregular and unstructured sparse GEMM operations.

3) A novel reduction network, named Forwarding
Adder Network (FAN), for efficient partial sum
accumulation.

4) Layout implementation of SIGMA for scalability
and backend analysis.

The rest of the paper is organized as follows: Sec. II
discusses modern training workloads and their GEMM
characteristics. Sec. III dissects state-of-the-art deep learning
accelerators and design considerations. Sec. IV proposes the
SIGMA microarchitecture, and Sec. V describes the physical
implementation and hardware costs. Sec. VI evaluates the
performance of SIGMA against the state-of-the-art. Sec. VII
discusses the related works, and Sec. VIII concludes.

II. DL TRAINING CHARACTERIZATION

In this section, we analyze GEMM kernel shapes and
sparsity levels from modern deep learning applications.

Target Workloads. For the kernel characterization ex-
ercise, we consider three workloads: Transformer [42],
Google Neural Machine Translation (GNMT) [45], and
Neural Collaborative Filtering (NCF) [20]. We also leverage
”Baidu DeepBench” [2], which identifies key GEMM kernels
encountered across various CNNs/ RNNs/ LSTMs. For
Transformer, we use a 324 Million parameter model [43]
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Figure 2: Time breakdown for different ops on V100 for (a)
Transformer and (b) GNMT. Matrix Multiply consume around
70% of total runtime.

with the LM1B (billion word corpus) dataset. For GNMT,
we evaluate the state of art 8-layer GNMT model with WMT-
German-English dataset.

Time-Breakdown of Compute Primitives. Figure 2
shows the time break-up of different operations when training
GNMT and Transformer on a NVIDIA V100 GPU [31]. We
observe that approximately 70% of time is spent on matrix
multiplications (MatMul) operations or operations that can
cast as MatMuls. Thus, MatMul is a key compute primitive
to accelerate in hardware to speed-up training.

GEMM shapes. Transformer, GNMT, NCF and Deep-
Bench [2] have matrices of different sizes and shapes as
shown in Fig. 1b. Training is performed in different batch
sizes, which lead to different input matrix dimensions. The
observed shapes of the operand matrices vary from tall-skinny
(rows dominate over columns) to fat-short (columns dominate
over rows) - this is due to low minibatch sizes. Thus, GEMM
accelerators need scalability and flexibility to handle large
and irregular GEMM sizes efficiently.

Sparsity within GEMMs. As the objective of this work
is not focused on algorithm techniques to generate sparse
models, we leverage a pruning approach similar to Zhu et
al. [48] via a slow sparsification technique that increases the
sparsity level of weights from zero to a final sparsity level
in a fixed set of pruning steps.

For GNMT [45] with ∼210M parameters, we achieve
close to state-of-the-art accuracy with 90% weight sparsity
(resulting in ∼22M parameters), similar to results outlined in
[48]. The pruning is applied to embedding, decoder projection
layer and all LSTM layers in both the encoder and decoder.
Workloads like transformer and ResNet-50 also exhibits
good accuracy with around 80% and 70% weight sparsity
respectively [15]. Activation sparsity in DNN models comes
from ReLU and dropout layers.

Improper handling of sparse matrices wastes compute
resources and causes unnecessary but expensive movement
of zeros across the memory hierarchy. As matrices are getting
bigger and sparser, the need for sparsity support becomes
more important. Thus, GEMM accelerators need support
to handle both weight and activation sparsity efficiently.

III. INEFFICIENCY OF GPUS AND TPUS

In this section, we demonstrate the inefficiencies with
current GEMM accelerators, and discuss the design choices

Figure 3: GPU performance evaluation on different GEMMs.

that eventually lead to our proposed design.

A. Irregular and Sparse GEMMs on GPU
We measured the compute efficiency on V100 GPUs with

and without sparsity for various GEMM dimensions. In
Fig. 3a, we run some of the deep learning MatMul kernels
(dense irregular without any sparsity) for workloads described
in Sec. II on a single card V100 GPU and measure the
efficiency with FP32 and FP16 data type. FP16 data type
can take advantage of the systolic arrays (“tensor cores”) in
V100 for GEMM computation. While FP16 uses the tensor
cores to boost the efficiency compared to the FP32 version,
they still operate at a fraction of the peak efficiency due to
irregularity in kernel dimensions; whereas a dense regular
GEMM (2k, 2k, 2k) with FP16 tensor cores provide up to
76% efficiency.

We then introduce sparsity to the above MatMul kernels
and use NVIDIA cuSPARSE [5] libraries, which support
sparse matrices computation. cuSPARSE libraries API cur-
rently support only one of the matrices to be sparse with
only FP32 data type. In this experiment, we induce random
sparsity of 50% and 80% to one of the matrices while keeping
the other matrix dense. From Fig. 3b, we observe on average
4x reduction in efficiency compared to the equivalent dense
FP32 matrix computation by adding sparsity. We expect the
efficiency to decrease further when both matrices are sparse.
Current GPU systems cannot efficiently map sparse GEMM
computation onto their compute engine when there is no
structure in the sparsity, and thus we need to fundamentally
re-architect how we design a system that can take advantage
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Figure 4: (a) Example GEMM matrices. (b) Mapping comparison between systolic array and SIGMA Flex-DPE for dense regular
GEMMs. (c) Dense irregular GEMMs comparison. (d) Sparse irregular GEMMs comparison. (e) Alternative sparse irregular
Flex-DPE mapping. (Note: M-str means MK matrix is streaming, N-sta, means KN matrix is stationary, etc.)
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Feature SIGMA Goals Systolic Array Limitation SIGMA Structure SIGMA Structure Property

Flexibility Efficiently map
irregular matrices Rigid aspect ratio Flex-DPE 1D substrate with ability to mimic any 2D

aspect ratio via non-blocking distribution

Sparsity Weight and
activation sparsity

Data forwarding every cycle in
horizontal/ vertical directions

Distribution network with
data-dependent routing

Only non-zeros distributed.
Variable sized simultaneous dot-products.

Scalability Map large GEMMs
Data distribution and reduction
scales as O(

√
N)

Benes distribution and
spatial reduction network

O(1) distribution and
O(log2N) reduction time.

Table I: Desired features for a GEMM accelerator, limitations of systolic arrays, and SIGMA’s approach.

of sparse computation to achieve high efficiency for deep
learning workloads.

B. Irregular and Sparse GEMMs on TPU

Google’s TPUs are a poster-child for large GEMMs due
to their 128×128 systolic array. However, across a suite of
GEMMs from modern DL workloads, we observe that it is
common to have less than 50% of the array utilized when
running irregular matrices, as we show later in Sec. VI. In
addition, systolic arrays cannot inherently address sparsity.
The reasons for these inefficiencies are discussed next.

C. GEMMs on Systolic Arrays vs. SIGMA

Systolic arrays face under-utilization in many different
scenarios due to two inherent features: a rigid shape, and a
simple but rigid interconnect. In Fig. 4, we contrast a systolic
array against an abstract view of SIGMA’s Flex DPE (which
will be presented in detail later in Sec. IV-A). Fig. 4a shows
three example GEMM operations: (i) dense regular, (ii) dense
irregular and (iii) sparse irregular matrices. The shaded boxes
in the figure highlight quantitative metrics such as utilization,
runtime, multicast behavior, and SRAM reads/writes for each
example. For the purposes of this example, it is sufficient to
assume that SIGMA’s Flex-DPE has two specialized networks
between the PEs and the SRAMs on the sides of the array (not
shown in the figure) - a distribution network and a reduction
network. The specific implementation of these networks is
discussed later in Sec. IV.

Dense Regular Matrices. Fig. 4b shows how the dense
regular matrices are mapped. In the example, we use a KN
matrix stationary, and MK matrix streaming dataflow (N-
sta, M-str). An alternate term for this dataflow is weight-
stationary, and is used by the Google TPU [23], [37]. Partial
sums are generated at each cross-point and accumulated over
the columns. The systolic array and Flex-DPE designs are
able to fully utilize its PEs by mapping all of KN matrix
onto its PEs. They key differences between the two are that
(i) a systolic array sends the streaming matrix in a store
and forward manner, while SIGMA multicasts the data to
the corresponding PEs in one cycle, and (ii) the systolic
array uses a linear reduction while SIGMA uses a tree-based
reduction, as we describe later in Sec. IV.

Dense Irregular Matrices. Fig. 4c shows how dense
irregular matrices are mapped. A systolic array design suffers
from under-utilization due to its rigid structure. Despite the
fact that there are 16 elements in the dense irregular KN
matrix and 16 PEs in the systolic array, only half of the matrix

can be mapped at a time. This is due to the rigid shape of
the systolic array. All partial sums are accumulated down a
column via forwarding; mapping the other half of the dense
irregular N-matrix onto the systolic array at the same time
will lead to incorrect functionality, since the accumulated
output (a.A+b.I) should not get added to (a.E + b.M). The
second half of the N-matrix will therefore have to be loaded
once the first half of the matrix is computed, more than
doubling the computation time. In contrast, the Flex-DPE
is able to map all of the dense irregular stationary elements
at one go, utilizing all PEs completely. This is enabled by
having a flexible reduction network that can accumulate both
sets of outputs (a.A+b.I) and (a.E + b.M) separately and
concurrently, as we describe later in Sec. IV. This not only
provides a runtime advantage, but also an energy advantage
since the M-matrix only needs to be read and streamed
through the array once.

Sparse Irregular Matrices. Fig. 4d shows how sparse
irregular matrices are mapped. Not only does a systolic
array suffer under-utilization from irregular matrices, but
also from sparsity. To maintain correctness of the final
output, a systolic array must map the non-zero values onto
the compute unit. This limitation comes due to the rigid
forwarding network between PEs. The Flex-DPE design
is able to map only non-zero elements because of the
flexible distribution and reduction networks. There are two
different dataflows enabling sparse compute in a Flex-DPE.
The N-sta, M-str dataflow for Flex-DPE in Fig. 4d maps
only non-zero elements onto the compute, giving it 100%
stationary utilization, making it more efficient than the
systolic array. However, the streaming matrix may send zero-
valued elements. This is because all non-zero stationary
elements are mapped if there is at least one streaming value
that needs to be multiplied with it.

Fig. 4e shows the N-str, M-str dataflow (i.e., No Local
Reuse [10]) for the Flex-DPE that fully utilizes the compute.
This is done by streaming only necessary multiplication
pairs and not keeping any values stationary. We provide
more details about the distribution and reduction network
architecture that can enable this feature in Section IV. The
equivalent dataflow is not possible for the systolic array as
it does not allow arbitrary pairings of vectors from the M
and N matrices due to its rigid cycle-by-cycle forwarding
network.

Distribution and Reduction Latency. Another point to
notice from the quantitative data in Fig. 4b-e is that the
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Figure 5: Walk through from bitmap to SIGMA mapping. This example uses M-stationary, N-streaming dataflow (see Fig. 4d).

data loading and accumulation time in systolic arrays is
always proportional to the array dimensions, while SIGMA’s
networks allow O(1) distribution and O(log2N) reduction.

Summary. Table I summarizes the sources of inefficiency
in systolic arrays and how SIGMA addresses each. Architec-
tural details are provided next.

IV. SIGMA ARCHITECTURE

The fundamental building block within SIGMA’s compute
fabric is a processor named Flexible Dot Product Engine
(Flex-DPE), described in Sec. IV-A. Several Flex-DPEs are
connected together via a simple NoC to create the full SIGMA
compute fabric. Each GEMM operation reserves a contiguous
group of Flex-DPEs, creating a Flexible Dot Product Unit
(Flex-DPU), described in Sec. IV-B. The memory-system is
similar to the TPU [4], [23]. Fig. 8 depicts the high level
schematic of SIGMA.
A. Microarchitecture of Flex-DPE

A k-sized Flex-DPE houses k multipliers, k− 1 adders,
local buffers, control unit, and flexible interconnects. The
multipliers are laid out in a logical 1-D structure. Fig. 5
shows an overview. A 1D substrate enables us to run matrix-
matrix (M*M) multiplications as multiple vector matrix

multiplications (V*M), similar to Brainwave [14]. Recall
from Fig. 4 that a k-sized square systolic array has

√
k

columns and
√

k rows, with each column computing an
independent dot-product when running a weight [23] or input-
stationary dataflow [37]. In contrast, a k-sized Flex-DPE can
be configured to create myriad combinations of dot-products:
one dot-product of size k, two dot-products of size k/2,

√
k

dot-products of size
√

k (like the systolic array), and so
on. In fact, the flexible distribution and reduction networks
also enable creation of multiple variable-sized dot-products,
which is crucial for sparsity. In Sec. V, we study how the
Flex-DPE scales with area and power.

1) Distribution Network: Benes Topology: The role of a
distribution network within any GEMM engine is to load
the stationary matrix (MN or KN), and stream the other
matrix, as shown in Fig. 4. In a systolic array, the distribution
network behavior is implemented via the horizontal and
vertical forwarding links between PEs. This leads to an O(k)
data loading time for a k× k systolic array.

In SIGMA, we adopt a Benes network [7] to support the
flexibility demonstrated in Fig. 4. Benes is a non-blocking
N-input N-output multistage network with 2log(N)+1 levels,
each with N tiny 2x2 switches. The switches, as shown in

6



Figure 6: (a) Fowarding Adder Network Topology. (Not shown are flip flops across each stage of the forwarding links). (b) Spatial
FP32 reduction interconnect comparisons of i) post-layout area, ii) post-layout power, iii) speedup, and iv) Energy-delay Product
(EDP). (c) Simplified FAN routing algorithm for adder inputs and functionality (Note: variables i and adderID are equivalent).

Fig. 5-Step(iv), require two control bits; one for selecting
the vertical output and one for diagonal output. Numerous
Benes routing algorithms have been proposed [7], [8], [29].
The non-blocking property of Benes allows any source to
communicate with any destination without any intermediate
contention. We use latch-free switches (except for timing
closure) at each-stage, allowing a O(1) data communication
across the Benes network. We also support multicasts within
the Benes network to avoid having to read the same data
element multiple times from SRAM.

Other design-choices are also feasible for the distribution
network. A crossbar gives the same non-blocking behavior
as Benes and has much simpler routing, but it does not
scale well (N2). Blocking interconnects such as buses [10],
trees [11], [27], butterfly and mesh networks [9], are still
valid design choices due to their low wire costs, but will
cause performance degradation due to increased distribution
delays.

2) Reduction Network: FAN Topology: Dot-product reduc-
tion can be implemented in three ways.

Spatio-Temporal Reduction: The TPU weight-stationary
systolic array implementation performs reduction via for-
warding along the column, requiring O(k)-cycles for a k× k
array. The time taken is independent of the actual size m of
the dot-product which may be smaller.

Temporal Reduction: Designs like EIE [19] perform in-
place reduction within PEs. The time taken is still linear

like spatio-temporal, but equal to O(m) - i.e., the dot-product
size.

Spatial Reduction: In SIGMA, we implement a spatial
tree-based reduction, as it requires O(log2m) cycles, for a
m-sized dot-product. The challenge with realizing this log2m-
cycle reduction, however, is that non-powers of two sized
reductions are hard to map over traditional binary adder
trees. Suppose we are trying to accumulate three separate
dot-products for (a0, a1, a2, b0, b1, c0, c1, c2) on an eight-
wide adder tree. Following the natural binary-tree topology,
a2-b0 and b1-c0 will reach the same adder as they go up
the tree, which is incorrect functionally.

FAN Topology. To address this issue, we propose a novel
adder-tree topology named Forwarding Adder Network (FAN)
that places forwarding links between different levels of adders
over a traditional binary adder tree. The topology and variable
labels of a 32-wide FAN are shown in Fig. 6a. VecIDs and
adderIDs are numbered in increasing order from left to right,
and each adderID has a corresponding adderLvl value. Below
is a pseudocode describing the link connections between
adders to create FAN of any power of 2 size.
// Adders at level 0 connect to vecID directly
// Adder links start from level 1

for (int i = 0; i < numAdders; i++) do
int adderID = i; // they are the same
for (int lvl = 1; lvl <= adderLVL[i]; lvl++) do

connect with adder: adderID - 2ˆ(lvl-1);
connect with adder: adderID + 2ˆ(lvl-1);
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Routing Algorithm. The routing algorithm for FAN is
shown in Fig. 6c. For every adder, if vecID[adderID] equals
to vecID[adderID+1], accumulation is enabled. If the vecIDs
are not equal and the adder is in the zeroth level, the bypass
link is enabled. For example, in Fig. 6a, Adder 12 needs to
bypass ‘c’ and ‘d’ to the next adder levels. From the second
adder level onward, there is a N-to-2 mux before every FP32
Adder. To determine which inputs get selected, comparators
are used to identify cluster regions.

Benefits and Overhead. FAN offers similar benefits as
the ART topology proposed in MAERI [27] in terms of
creating dot-products of variable sizes. However, FAN is
much more lightweight. This is because MAERI’s ART is
built using three input adders (two from parent nodes, one
from a sibling node), which makes it extremely prohibitive,
especially when working with FP32 data type (commonly
used during DNN training). Fig. 6b shows the performance
evaluation between linear reduction (i.e., temporal or spatio-
temporal), ART, and FAN. For performance calculations, we
use 100 stationary folds (when stationary elements need to
be replaced) with stream dimension of 1000 each. As shown
in Fig. 6b-iii, taking logN cycles rather than N cycles before
starting the next fold significantly improves performance as
the number of PEs increases. Our findings show that 512-
PE FAN only has a 10% and 31% area power overhead
over linear, compared to ART which has a 92% and 86%
overhead respectively. FAN also provides EDP benefits over
linear starting from 128-PE. At 512-PE, FAN’s EDP is 45%
and 34% lower than linear and ART respectively. From our
results, we conclude that FAN is both high performance and
scalable.

3) Execution within Flex-DPE: The Flex-DPE design
allows mapping for dense or sparse, and regular or irregular
GEMMs. In Fig. 4, we have seen how different combinations
of matrices are mapped onto Flex-DPE. Fig. 5 depicts the
steps involved in generating the mapping for sparse matrices
which we will describe later.

B. Composing Flex-DPEs into a Flex-DPU using a NoC

To extract maximum possible parallelism from the avail-
able multipliers, SIGMA can dynamically compose a number
of Flex-DPE units together to form a logical ensemble which
we call Flex-DPU. A Flex-DPU is responsible for running
one GEMM. Multiple Flex-DPUs can be scheduled in parallel
to run multiple GEMMs. The NoC connecting the Flex-DPEs
together is similar to that of tiled accelerator architectures,
such as Tangram [16] and Simba [39].

A simple switch is present at the intersection of each
Flex-DPE to arbitrate the flow of the data. These switches
are connected together in a 2D mesh. They are statically
configured when mapping the GEMMs, and do not require
any dynamic routing or flow-control like conventional NoCs.
The amount of bandwidth on this NoC (i.e., number of
unique elements of the row/column that can be transferred

Figure 7: Matrix memory overhead with dimensions M=1632
and K=36548. Format comparisons include: None, CSR, CSC,
COO, RLC-4, RLC-2, and Bitmap in the following order.

per-cycle) is a design-time configurable parameter.
Within a Flex-DPU, the switch forwards data across Flex-

DPEs, providing seemless multicasts of data like a bus. We
describe this with an example in Sec. IV-E. Across Flex-
DPUs, the switches provide hop-by-hop data forwarding,
similar conventional NoCs.

C. Supporting Unstructured Sparsity

Compression Format. One of the key benefits of support-
ing sparsity is low-memory footprint; and consequently more
energy savings by avoiding zero-valued element transfers.
There are a few well recognized compression formats such
as CSC, CSR, COO, and RLC (Run-length compression).
We use a Bitmap format within SIGMA, where each element
has a corresponding bit to indicate if a given element is
zero or non-zero in the corresponding matrix [17], [24],
[35], [36]. Fig. 7 compares the metadata overhead of various
compression formats with varying levels of sparsity. The
dimensions and sparsity levels in the plot reflect what
we observe in our workloads (see Sec. II). The metadata
overhead for COO/ CSR/ CSC changes drastically at various
sparsity regions. This is because each nonzero element require
indices of log2(dimension) bits, etc. The Bitmap format
has a constant meta-data overhead irrespective of sparsity,
making it attractive for SIGMA which targets arbitrary
unstructured sparsity. At low-levels of sparsity, we find
Bitmap having lower footprint than COO/ CSR/ CSC. Bitmap
has comparable overhead to RLC [10], [19], at sparse ratio of
∼30% to ∼70%. We observe that RLC is better at reducing
meta-data over Bitmap at >∼70% sparsity, but is worse at
<∼30% sparsity. We evaluate RLC using 4-bit (RLC-4) and
2-bit (RLC-2) run lengths. Alternate compression formats
can be supported over SIGMA by only changing the front
end controller to ensure proper mapping.

Sparsity Controller. For each GEMM, a global controller
determines how sparse matrices are decoded and mapped
onto SIGMA. The controller operates on the bitmap meta-
data and calculates how many Flex-DPEs are needed. Internal
counters and tables are implemented to determine the indices
where dense computations are needed. We describe the details
with a walkthrough example in Sec. IV-E.
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Figure 8: SIGMA high level diagram and comparison table
aginst a TPU-like design. We report only the area-power of
the compute array, not the SRAMs. Effective TFLOPs is
calculated by multiplying the base dense TFLOPs with the
average efficiency computed across GEMMs in Sec. VI.

D. Dataflows Supported by SIGMA

SIGMA’s flexible substrate enables it to support myriad
dataflows. For all workloads, we use both Weight (i.e., KN)
stationary and Input (i.e., MK) stationary dataflows (Fig. 4d),
and pick the one that provides higher efficiency. In these two
dataflows, spatial dot-products of dynamic size are created
depending on the matrix dimensions and sparsity of the
stationary matrix. The columns/rows of the streaming matrix
are reused spatially by broadcasting to the rows/columns
of the stationary matrix (which are reused temporally at
each multiplier). SIGMA can also run a No Local Reuse
(i.e., MN-str, KN-str dataflow from Fig. 4e). This dataflow
can provide 100% utilization of the compute, but comes at
the cost of requiring higher interconnect bandwidth.

E. Walkthrough Example
The following steps (corresponding to Fig. 5) depicts a

walk-through example showing how SIGMA utilizes the
bitmap format to map sparse GEMMs onto Flex-DPEs. Here,
the number of multipliers per Flex-DPE (Nmult ) is four.

• Step i) Gather two bitmap-compressed matrices. In this
example, MK is stationary and KN is streaming.

• Step ii) Conduct row-wise OR across the streaming
bitmap and store the outputs to REGOR (temporary
registers). Then, do element-wise AND between the
corresponding REGOR row and stationary bitmap column
to generate stationary’ bitmap.

• Step iii) The number of ones in stationary’ bitmap
corresponds to the number of useful stationary values

Figure 9: Design space exploration for Flex-DPE dimensions
(256 Flex-DPE-64 is 256 Flex-DPEs of size 64), with aggregated
energy consumption (all workloads) and Performance/Area as
metrics.

(Nstat). Since Nstat is 8 and Nmult is 4 in this example,
2-Flex-DPE units are needed to form a single Flex-DPU.

• Step iv) Unicast the stationary values to the multiplier
buffers. The routing is straightforward, as all stationary
input data travel vertically down. In this example, the
input bus has a 4X bandwidth, so it is only able to fill
one Flex-DPE each cycle.

• Step v) To generate source and destination pairs for each
Flex-DPE, a counter value is assigned to each non-zero
element in the stationary’ and streaming bitmaps. For
stationary’ bitmap, the counter starts at 0 and increments
from left-right, top-bottom. The counter resets when it
reaches Nmult -1, which marks the end of one Flex-DPE.
Counter values increments top-bottom in the streaming
bitmap and resets at the start of each column. Then, a
streaming bitmap column compares to each row of the
corresponding stationary’ bitmap. If both values are 1,
the counter values are stored in the Flex-DPE SRC-DEST
tables. The row-id is recorded to determine partial sum
regions. Additionally, an initial output bitmap is generated
based on if there are any non-zero computations.

• Step vi) Generate distribution routing bits base on the
SRC-DEST table entries. For this example, a naive rout-
ing algorithm with limited functionality is to subtract the
src-index with the dest-index. Other routing algorithms
have been proposed [7], [8].

• Step vii) Finally, the streaming values are broadcasted to
all Flex-DPEs within a Flex-DPU from the routing bits
calculated in Step vi. For reduction, the accumulation
ID is processed and then used as the vecID in FAN,
described in Section IV-A2. Multicasts, multiplications,
and reductions are all happening in a pipelined fashion.
Once all the columns have been streamed in and outputs
are generated, the Flex-DPE units are freed up to be
utilized for another GEMM operation.

V. IMPLEMENTATION

Fig. 8 compares the post place-and-routed area and power
of a 128×128 systolic array versus SIGMA with 128 Flex-
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Metric Description

Loading Latency Load Stationary Matrix. Not overlapped with compute.

Streaming Latency Stream non-stationary Matrix through Distribution Network.
Overlaps with Partial-sum generation and Accumulation.

Add Latency Last reduction before next stationary matrix loaded.
Not overlapped with compute.

Total Latency Loading + Streaming + Add Latency
Stat. Utilization Percent non-zeros after Stationary Matrix mapped.
Compute Efficiency Useful (non-zero) MAC Latency / Streaming Latency
Overall Efficiency Useful (non-zero) MAC Latency / Total Latency

Table II: Comparison Metrics.

Figure 10: Comparison of different SIGMA dataflows (de-
scribed in Fig. 4). with regards to cycle breakdown, utilization,
and efficiency. Table II describes the legend.

DPEs, each of size 128. Both designs have identical input
bandwidth of 128 words per cycle from SRAM. SIGMA’s key
overheads are the highly flexible, non-blocking distribution
and reduction networks that lead to a 37.7% area overhead.
However, the performance speedups provided by SIGMA
(shown later in Sec. VI-C) lead to an average 3.2× improve-
ment in Effective TFLOPs/ Watt. We expect a further power
performance gain of 7× when scaling from a 28nm design
to a 12nm design. This is based on FP32 FLOPs growth
between NVIDIA K20X to NVIDIA T4 where compute grew
by ∼2× while power reduced by ∼3.5×. SIGMA is pipelined
at 1-cycle distribution, 1-cycle multiplication, and 1-cycle
for each level of reduction. The critical path for SIGMA is
the distribution, but it is possible to match the maximum
operating frequency of TPU by pipelining the distribution
further so that the new critical path becomes the FP compute.
Additionally, we estimate a global controller with 1024 AND
gates, 1024 OR gates, 1024 counters, and 128 SRC-DEST
tables to consume approximately 1.4mm2.

For 16384 total PEs, we performed a design-space explo-
ration for sizing Flex-DPE units to find the most energy and
area efficient configuration. Fig. 9 depicts that a Flex-DPE
of size 128 Flex-DPE consumes the least energy, while a
Flex-DPE size of 512 is the most area efficient. We decide
to use Flex-DPE-128 to match the per-cycle SRAM read
bandwidth of the TPU.

VI. EVALUATION
A. Methodology

Target GEMMs. We use GEMM dimensions and sparsity
observed during training of GNMT, Transformer, NCF and

Figure 11: Performance comparison between TPU and progres-
sive features added in SIGMA. Table II describes the legend.
SIGMA Fl adds flexibility over a TPU structure by allowing
irregular dimensions. (128x128, 256x64, 512x32 and vice versa)
SIGMA Fl+Sc adds scalability with our proposed reduction
network FAN. SIGMA Fl+Sc+Sp adds sparsity support to
increase utilization.

DeepBench models (described earlier in Sec. II). Input and
weight sparsity were observed to be ∼10-50% and ∼80%.

Baseline Accelerators. We compare SIGMA against other
state-of-the-art accelerators: TPU [4], EIE [19], SCNN [33],
OuterSPACE [32], Eyeriss v2 [11], Packed Systolic [26], and
Cambricon-X [47]. We scale the number of PEs to a constant
number of 16384 in all designs. SIGMA assumes 128 Flex-
DPEs, each with 128 MACs, and input SRAM bandwidth of
128x (number of unique data elements that can be distributed).
For our evaluations, we allow greater input bandwidth to
distribute larger chunks of the streaming matrix in one cycle.
For sparsity performance, all combinations of matrices and
sparsity were tested and then averaged. Most of the sparse
accelerators were designed for inference and specialized for
convolutions; we extended them to run GEMMs by setting
equal input and filter dimensions.

Simulation Infrastructure. To evaluate the performance
of SIGMA and other baselines, we developed a cycle-accurate
analytic model. The model evaluates the performance based
on the number of compute units, buffers per compute unit,
interconnect topology, input bandwidth, and dataflow. The
TPU was modeled using SCALE-sim [37].

Comparison Metrics. Table II defines comparison metrics
we use across our evaluation graphs.
B. Characterizing SIGMA’s Features

We start by characterizing the benefits of the various
features of SIGMA to help pick the optimal design-point.

Dataflow Comparison Fig. 10 demonstrates the impact
of dataflows when running a suite of representative GEMMs.
We observe that the MK-str,KN-str dataflow, while being
ideal in terms of no wasted computations, suffers in overall
latency. This is because it requires extremely high bandwidth
(thus serialization), due to no reuse within the Flex-DPE.
For the other two dataflows, the stationary matrix maps only
non-zeros, getting 100% utilization, and the overall efficiency
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Figure 12: Speedup and efficiency of (a) rectangular systolic and SIGMA configs over TPU 128×128 for dense workloads, and
(b) SIGMA over TPU 128×128 with different input and weight sparsity (MK80 means 80% sparsity in the MK matrix, etc).

Figure 13: SIGMA energy reduction over TPU and average
performance/ area over TPU’s compute array.

Figure 14: Comparison between SIGMA and other sparse
accelerators with 80% and 30% sparsity on the two matrices.

gets determined by the sparsity of the streaming matrix. In
our evaluations, we run both dataflows and report the higher
performing dataflow.

Benefits of SIGMA’s features Fig. 11 revisits the dis-
cussion from Sec. III-C and quantitatively demonstrates the
benefits of SIGMA’s three key features in comparison to
systolic arrays: (i) flexible dimensions - enabled via FAN for
variable sized dot-products within Flex-DPEs, (ii) scalable
interconnects, namely, Benes and FAN, providing O(1) and
O(log2N) distribution and reduction time respectively, and
(iii) sparsity support to map only useful non-zero data.

For dense regular GEMMs (most left in Fig. 11), SIGMA
provides speedup over TPU from its O(1) distribution and

O(log2N) reduction. (TPU has O(sqrtN) distribution and
reduction.) SIGMA’s networks reduce Add latency (defined in
Table II). The number of cycles saved accumulates whenever
the stationary matrix needs to be replaced.

For dense irregular GEMMs, TPU is underutilized if a
side of the stationary matrix is smaller than the MAC array
dimension. In the example where a 16-500000 sized matrix
is stationary; because of a small dimension size of 16, a
128×128 TPU will have a utilization of 12.5%. SIGMA
enables full utilization by using rich interconnects that cluster
variable dimensions together. Since more PEs are utilized,
fewer stationary matrix load iterations are required. This
leads to lower loading, add, and streaming latencies.

For sparse irregular GEMMs, TPU is required to map all
elements stationary, while SIGMA maps only the nonzeros
stationary. With sparsity support, SIGMA shows 100% sta-
tionary utilization. Due to increased utilization and compute
efficiency, fewer cycles are needed to load and reduce data.
Fig. 11 shows two versions of sparse irregular GEMMs.
The M-str,N-sta example is dominated by streaming latency
because the larger matrix is being streamed in, while the
loading latency dominates in M-sta,N-str because the larger
matrix is held stationary and leads to more folding iterations.
The compute efficiency for M-sta,N-str is significantly higher
because the sparser matrix is held stationary.
C. Performance and Energy versus TPU

Speedup. Fig. 12a and Fig. 12b evaluate dense and sparse
GEMMs performance respectively. In Fig. 12a, we use three
aspect ratios for the TPU. For e.g., 512×32 have 512 rows,
each of which can read a data element per cycle. Either the
MK or KN matrix is kept stationary. For the 2048-4096-32
GEMM, a K dimension of 32 leads to under-utilization in the
128×128 and 256×64 TPUs, but aligns with the columns of
the 512×32 TPU, giving a huge performance jump. SIGMA,
due to its flexibility, experiences a similar jump. The TPU
overall efficiency drops steeply while operating a 1024-16-
500000 sized GEMM. If a square-shaped TPU maps the
KN (500000-16) matrix stationary, the low value of N leads
to a 87.5% decrease in utilization. If it decides to map
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Accelerator Limitation SIGMA Solution

TPU [23] Low utilization from no sparsity support and rigid structure Flexible interconnects to map non-zero data and irregular
GEMMs.

EIE [19] Not scalable due to all-to-all PE broadcasts and
a BW link of one element per cycle

Partition compute to Flex-DPEs (small all-to -all networks)
connected by a high BW bus

SCNN [33] Requires partitioning to use Cartesian product on GEMMs.
High inter-PE communications for accumulating outputs.

Multicast GEMM partial sums close to each other
so they can be reduced spatially

OuterSPACE [32] Partial sum accum. within linked list
has at best O(NlogN) complexity

Spatial accum. with our reduction network
has O(log2N) complexity

Eyeriss v2 [11] Limited weight dist. flexibility and linear reduction More flexibility with shared all-to-all network and
spatial accumulation with novel reduction network FAN.

Packed Systolic [26] Need algorithmic adjustments and still
contains stationary zeros

Bitmap to ensure no zero-valued elements are stationary
and no algorithmic changes required.

Cambricon-X [47] Basic adder tree limits multiplier utilization,
allows one common partial sum at a time

FAN enables full multiplier utilization by allowing different
partial sums to be accumulated separately.

Table III: Qualitative Comparision of SIGMA against state-of-the-art accelerators.

MK (1024-500000) stationary, numerous folds are required
since there are only 16K PEs, leading to a large amount of
O(N) reductions. SIGMA accelerates this GEMM by creating
flexible dimensions and leveraging its O(logN) reduction
structure as described in Table I. In SIGMA, the overall
efficiency is close to 100% throughout, except for small
GEMMs (such as 2048-1-128), where smaller sizes cause
loading latency from limited bandwidth to dominate. On
average, SIGMA provides speedup of 2x over TPUs on
dense GEMMs, stemming from higher utilization and faster
reduction. This results to an overall average efficiency of 82%
compared to 59% in the TPU. In Fig. 12b we run GEMMs
with varying sparsity over SIGMA. We observe that there is
a roughly 6× improvement over TPU, which suffers from
an average overall efficiency of less than 10% due to the
mapped zeros. SIGMA maps no zeros and shows an average
overall efficiency of 40%, which gets limited by the sparsity
of the streaming matrix.

Energy. In Fig. 13 we see that SIGMA is on an average
3× more energy efficient and 5× more area efficient than
TPU for sparse workloads. Despite SIGMA consuming twice
as much power (Fig. 8), the energy benefit comes from ∼6×
speedup. With more sparsity induced in future workloads,
we expect energy gains to be significantly more.

D. Performance against Sparse Accelerators
Fig. 14 presents the speedup of SIGMA over state-of-

the-art sparse accelerators. The key inefficiencies in other
accelerators are presented in Table III. Of all the sparse
accelerators, SIGMA is the only one that can support full
spatial-reduction with arbitrary sized dot-products. For two
GEMMs, we find SIGMA slower than Eyeriss v2 since the
latter can buffer both operands in its local SRAM for further
reuse, while SIGMA keeps only one operand stationary, and
has to stream the other multiple times (even if it will be reused
in future). Other designs like EIE also have local SRAM
buffers, but we observe that its inter-PE communication
bottleneck overshadows the memory benefits. On average,
we observe SIGMA performing 3X faster than the other
sparse accelerators. We tested four combinations between the
matrices and sparsity level and selected the best performing

one for each accelerator.

VII. RELATED WORK

Training. A few prior works address training on dense ma-
trices. Pipelayer [40] and Neurocube [25] proposes ReRAM
based acceleration, but does not address scalability and
sparsity. Hypar [41] addresses the scaling problem in training
and proposes optimal techniques to extract parallelism.
Schuiki et al. [38] and Liu et al. [30] propose processing in
memory approaches to combat the communication problem
when scaling training. ScaleDEEP architecture was developed
to target DNN training, and consists of many processing tiles
with specialized memory subsystem and interconnect [44].
However none of these methods simultaneously address the
irregularity, sparsity, and scalability as SIGMA does.

Sparsity. Table III contrasts SIGMA against state-of-
the-art sparse accelerators. Other recent designs include
PermDNN [13], which uses permuted diagonal matrices for
inference on structured sparse DNN models. Other designs
like UCNN [21] exploits sparsity and weight repetition
by reusing dot products. ExTensor [22] finds intersections
within compressed representations, and only operates on
useful dense computations. Bit-tactical [12] targets sparsity
in inference by skipping zero weights and exploiting bit
level sparsity of inputs. Unlike SIGMA, Bit-tactical lever-
ages scheduling in software to align inputs and weights.
SparseReRAM [46] proposes using small operation units
to exploit both weight and activation sparsity in ReRAMs.
SIGMA targets acceleration of GEMMs with unstructured
sparsity.

Flexibile Interconnects. Eyeriss [10] proposes an efficient
dataflow for leveraging convolutional reuse with reconfig-
urable buses. MAERI [27] uses tree-based interconnects
for distribution and reduction which inspired the 1D Flex-
DPE microarchitecture in SIGMA. However, MAERI does
not handle dynamic weight and activation sparsity, and is
optimized for low-precision CNNs rather than high-precision
GEMMs commonly used during DNN training. Eyeriss
v2 [11] also uses a specialized NoC to handle sparsity, but is
optimized for small mobile CNNs rather than large GEMMs.
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VIII. CONCLUSION

The paper proposes SIGMA as an accelerator to handle
emerging large, sparse, and irregular GEMMs. SIGMA pro-
vides close to 100% compute utilization via high-bandwidth
non-blocking interconnect structures. The overhead for such
flexibility is carefully analyzed via a place-and-routed design.
Our implementation shows 5.7× performance speedup over
TPU designs for sparse irregular workloads. We also observe
a 3× performance speedup over other state-of-the-art sparse
accelerators. Reference RTL:

https://github.com/georgia-tech-synergy-lab/SIGMA
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