

Abstract—Recent advances in die-stacking and 2.5D chip

integration technologies introduce in-package network

heterogeneities that can complicate the interconnect design.

Integrating chiplets over a silicon interposer offers new

opportunities of optimizing interposer topologies. However,

limited by the capability of existing network-on-chip (NoC)

simulators, the full potential of the interposer-based NoCs has not

been exploited. In this paper, we address the shortfalls of prior

NoC designs and present a new family of chiplet topologies called

Kite. Kite topologies better utilize the diverse networking and

frequency domains existing in new interposer systems and

outperform the prior chiplet topology proposals. Kite decreased

synthetic traffic latency by 7% and improved the maximum

throughput by 17% on average versus Double Butterfly and

Butter Donut, two previous proposals developed using less

accurate modeling.

I. INTRODUCTION
The performance and power benefits of technology scaling that

propelled the semiconductor industry for decades have been

diminishing since Dennard’s scaling ended and Moore’s Law slowed

down. However, the demand for computing continues to grow at an

increasing rate. Thus, major chip vendors such as AMD, Intel [1],

NVIDIA, and others have embraced 2.5D interposer-based integration

to scale the performance of individual computation node. One of the

key technologies enabled by the 2.5D systems is the integration of

multiple discrete chips (often called chiplets) within a package either

over a silicon interposer or via other packaging technologies [2, 3].

Furthermore, chiplets could also be integrated using Multi-chip

Module SoCs (MCM-SoCs). Figure 1(a) shows an example of a 64-

core monolithic chip while its chipletized [4] version is shown in

Figure 1(b). Chiplet-based architectures not only help address design

costs and yield issues, but also enable integration of chips built using

heterogeneous technology nodes [2], which is not feasible in a

monolithic design. These architectures are becoming common in

commercial products [1, 2, 5] and also find heavy support from

government programs [6].

In an interposer-based system, chiplets as well as the interposer can

have their own interconnect networks, operating at different clock

domains and/or link widths. This leads to a heterogeneous Network-

on-Chip (NoC) + Network-on-Interposer (NoI) interconnection fabric

across the system. Designing the NoI topology can be critical for the

overall system performance because the interposer is a shared resource

for inter-chiplet communication, off-chip data transfer, and I/O.

Previous work have proposed new topologies for hybrid NoC + NoI

architectures1 [4, 7, 8]. However, they assume the NoCs and NoI are

operating at the same frequency, which might not be economical or

beneficial in commercial products. For an industrial design, it is rather

feasible that the chiplets and the interposer have their own clock

1 These works did not use the term NoI, instead referring to the chip and interposer networks collectively as “hybrid NoC”. In this work, we use the terms NoC and

NoI to distinguish between the networks on individual chiplets and between chiplets on the interposer, respectively.

domains to exploit the maximum potential of chiplet-interposer

integration. Therefore, we revisit the NoI topology design under more

realistic assumptions and constraints.

The computer architecture design and research community heavily

relies on simulators to facilitate exploration and evaluation of

promising designs. An important design aspect that traditional NoC

simulators lack is decoupling the NoI from the core and memory

chiplets. As a result, most existing tools assume NoI frequency and

link width equal to NoC frequency and link width. As we show in this

paper, such a methodology restricted designers and researchers from

evaluating the trade-off of topology designs [4, 7]. Moreover,

insufficient modeling of the NoC + NoI interactions loses out on a wide

plethora of design options. To fully explore the NoC + NoI design

space, accurate modeling of the heterogeneous interconnect is

necessary.

In this paper, we accurately re-evaluate and improve upon prior

academic approaches by designing a new set of topologies, called Kite,

which outperform the current published state-of-the-art topologies in

terms of both core-to-core and core-to-memory traffic. Specifically, by

decoupling the NoI from the NoC frequency and power constraints, we

accurately evaluate the trade-off in using longer links within the NoI.

We adopt implementation-aware design-time metrics, called effective

hop count and effective bandwidth, which account for the frequency

constraints of different link lengths and lead to improved topology

designs. As a result, our Kite topologies use longer links more

efficiently and sustain higher throughputs than what has been

previously concluded. Further, we introduce HeteroGarnet, a simulator

for modeling heterogenous networks and utilize it to measure

performance of NoI topologies

II. BACKGROUND AND MOTIVATION
In this section, we first provide background and discuss previous

work in the field of interposer-based systems. We then motivate the

need for a tool to accurately model such systems.

A. Silicon Interposer Systems
Breaking large monolithic chips into smaller chiplets improves the

collective yield and reduces system cost [4]. In such disintegrated

chiplet-based systems, chiplets are integrated via the interposer.

Therefore, the NoI carries both memory traffic and coherency traffic

Kite: A Family of Heterogeneous Interposer Topologies

Enabled via Accurate Interconnect Modeling

Figure 1: (a) A 64-core monolithic chip connected to 3D DRAM

(b) 4x16-core chiplet system showing the heterogeneous fragments

of NoC + NoI.

Srikant Bharadwaj Jieming Yin Bradford Beckmann Tushar Krishna

Advanced Micro Devices, Inc. Advanced Micro Devices, Inc. Advanced Micro Devices, Inc. Georgia Institute of Technology

Georgia Institute of Technology jieming.yin@amd.com brad.beckmann@amd.com tushar@ece.gatech.edu

srikant.bharadwaj@amd.com

mailto:jieming.yin@amd.com
mailto:brad.beckmann@amd.com
mailto:tushar@ece.gatech.edu
mailto:srikant.bharadwaj@amd.com

2

between chiplets. Chiplet-based systems introduce many research

questions around the right chiplet boundaries and topologies

connecting the chiplets. In addition, the uses of silicon interposers also

lead to new opportunities in designing modern systems. An earlier

study showcased using the interposer to route memory traffic more

efficiently by creating a hybrid NoC + NoI. Taking advantage of the

interposer resource, prior work further proposed to create a network

within the interposer. This NoI is then connected to cores using

µbumps to facilitate communication. The interposer network has been

proposed to be used for both core-to-memory traffic as well as core-to-

core coherency traffic as described below [4, 8].

B. Baseline NoI topologies
Several approaches to build the NoI topology have been discussed

and evaluated in previous works [4, 7]. A simple topology is to connect

a core-level router to an interposer router forming a simple mesh, as

shown in Figure 2(a). However, this design consumes large area and

most of the links are left under-utilized. A natural alternative is to use

a concentrated-mesh network where multiple cores are connected to a

router in the interposer, as shown in Figure 2(b). The concentrated

mesh (CMesh) takes advantage of high-radix routers (degree 8) to

connect to memory controllers in lesser number of network hops.

Compared to mesh, CMesh delivers lower throughput because of lower

bisection bandwidth. Double Butterfly [Figure 2(c)] takes advantage

of longer links and reduces average hop count; in addition, diagonal

links increase the bisection bandwidth [7]. A later study optimized the

NoI topology by utilizing a “misaligned” network. A misaligned

interposer network offsets the location of its routers, such that cores on

the edge of two adjacent chiplets share the same router [4], as shown

in Figure 2(d). They further proposed the ButterDonut topology to

reduce the average hop count as well as inter-chiplet coherency traffic

latency, as shown in Figure 2(e). ButterDonut increases the bisection

bandwidth while keeping the router complexity similar to CMesh. We

follow the nomenclature from the original paper [4] for misaligned

topologies where ButterDonut(X) refers to misalignment in the X-

dimension.

2 While this paper focuses on a hybrid NoC + NoIs using a silicon interposer, most of these arguments are true for modern many-core systems as well.

C. Challenges of hybrid NoC exploration2

The hybrid NoC + NoI architectures pose new design challenges

including routing, composability, yield, thermal, and more. In this

work, we focus on practical NoI topology design constraints.

The decoupled nature of NoC + NoI provides us opportunities to

further optimize the NoI topology. On the other hand, it introduces new

challenges: evaluation of design topologies should include modeling

the operating parameters accurately, such as latency and operating

frequency.

Moreover, given the comparatively low cost of adding more wires

[7], a natural direction is to explore the benefit of increasing the NoI

link bandwidth without affecting the NoC design parameters. An ideal

infrastructure should have the flexibility of configuring the clock

domain and link/flit width for each individual network (NoC or NoI)

element (router, link, etc.).

III. KITE TOPOLOGIES
We propose a novel set of topologies, called Kite, which efficiently

utilizes the links in the network. We first describe the general topology

design metrics, and then describe our proposed methodology while

designing Kite topologies.

A. Design Metric: Effective Hops
The network latency (T) of a packet traversing between any source-

destination pair is defined as [9]:

𝑇 = 𝐻 × 𝑡𝑤 + 𝐻 × 𝑡𝑟 + 𝑇𝑐 + 𝑇𝑠

H is the number of hops between the source-destination pair, 𝑡𝑤 is

per-hop wire delay, 𝑡𝑟 is router delay, 𝑇 𝑐 and 𝑇𝑠 are contention and

serialization delay, respectively. All these delays are in cycles.

𝑡𝑤 , 𝑡𝑟 , and 𝑇𝑠 are design-time metrics, while 𝐻 and 𝑇𝑐 depend on

traffic characteristics at runtime. Since the network topology is fixed

at design-time, it needs to accommodate myriad traffic patterns. A

design-time proxy for latency, independent of runtime traffic

contention, is average hop count (𝐻𝑎𝑣𝑔). 𝐻𝑎𝑣𝑔 is determined by

averaging H over all possible source-destination pairs and is usually

combined with other metrics such as diameter (proxy for worst-case

Figure 2: The target architecture includes 64 cores (small grey boxes) arranged within 4x4 chiplets (blue dotted lines). The red boxes

denote interposer routers which connect to the green memory controllers on the side. Network-on-Interposer topologies considered for

exploration: (a) Mesh, (b) Concentrated Mesh, (c) Double Butterfly [7], and (e) Butter Donut [4] are shown here. (d) Shows a misaligned

[4] interposer router connected to routers from chiplet. (f) Kite Small, (g) Kite Medium, and (h) Kite Large each use a different link-

length as the longest link as shown by the colored lines.

3

latency) and bisection bandwidth (proxy for peak throughput) to

measure the effectiveness of a topology [4, 7]. Reducing 𝐻𝑎𝑣𝑔 is the

gold standard for topology design–and has led to multiple popular

express-link based on-chip (e.g., Flattened Butterfly [10]), on-

interposer (e.g., ButterDonut [4]), and HPC (e.g., SlimFly [11])

topologies.

The catch in 𝐻𝑎𝑣𝑔 , however, is that the operating frequency 𝑓

(time duration of each hop) is often not taken into account. For

example, a topology could use long express links to provide single hop

transmission, but could be restricted by the maximum possible 𝑓 .

Hence the 𝑡𝑤 and 𝑡𝑟 values would go up, making it worse than a

topology with higher 𝐻𝑎𝑣𝑔 but higher 𝑓. This is often not an issue in

NoCs since the (low) operating frequency of the NoC is limited by

CPU/GPU cores and caches, which have plateued since Dennard’s

scaling stopped. However, NoIs need not be coupled to core

frequencies, and could thus operate at a different and (multi-GHz)

operating frequency. This necessitates co-optimizing 𝐻𝑎𝑣𝑔 and the

operating frequency 𝑓. To this end, we define a metric called effective

hop count (𝐻𝑒𝑓𝑓) as the proxy for designing our proposed NoI

topologies.

𝐸𝑓𝑓. 𝐻𝑜𝑝 𝐶𝑜𝑢𝑛𝑡 (𝐻𝑒𝑓𝑓) =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑜𝑝 𝐶𝑜𝑢𝑛𝑡 (𝐻𝑎𝑣𝑔)

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑓)

𝐻𝑒𝑓𝑓 measures the effective time taken to traverse 𝐻𝑎𝑣𝑔 hops

within the network. Extending this implementation specific metric idea

to bisection bandwidth leads us to an effective bisection bandwidth

metric defined as:
𝐸𝑓𝑓. 𝐵𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐵𝑊 = 𝐵𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐵𝑊 × 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑓)

Two topologies that have the same 𝐻𝑎𝑣𝑔 and Bisection BW may

lead to vastly different operatable frequencies (and thus 𝐻𝑒𝑓𝑓 and Eff.

BW) as we show in this work.

B. Classification of Links: k-straight and k-m-diagonal
Taking cue from express-link based topologies, we identify two classes

of links that we call k-straight and k-m-diagonal. k-straight links

directly connect two routers along the same dimension (horizontal or

vertical), physically skipping or bypassing k-1 intermediate routers.

For example, 1-straight links are nearest neighbor links, 2-straight

links connect routers skipping one in the middle, as shown in Figure 2

using purple lines. k-m-diagonal links follow the same rule, with k hops

in one direction and m in another. The orange and green links in Figure

2 show 1-1-diagonal and 2-1-diagonal respectively. We assume that

the longest class of links in the topology limit and determine the overall

operating frequency of the NoI.

C. Kite Topology Construction
We now create new topologies to maximize 𝐻𝑒𝑓𝑓. This is done by

maximizing the usage of long links within the topology. It is important

to note that we combine 𝐻𝑒𝑓𝑓 with other known metrics such as

bisection bandwidth and diameter to quickly compare each topology

and pick the optimal one.

For the purposes of illustration, we assume a system with 16

memory controllers, 4 CPU/GPU chiplets (with 16 cores each), a

concentration factor of 4 at each router, and a maximum router degree

of 8. The Kite topologies adopt the misaligned NoI topology [4] to

reduce the hop count required for inter-chiplet traffic.

All Kite topologies are constructed by picking one of the k-straight

or k-m-diagonal links as the longest link to provide connectivity

between as many routers as possible. After that, any remaining routers

and ports, are connected using shorter links, till the maximum router

degree is met. For the purposes of illustration, we demonstrate this

policy with three different link lengths – 1-1-diagonal, 2-straight, and

2-1-diagonal, constructing three topologies - Kite-Small, Kite-Medium,

and Kite-Large use these as the longest links respectively. The

resulting topologies are shown in Figure 2.

Other variants can be constructed by using longer and/or

heterogeneous links. Like prior work on express topologies [10], the

Kite topologies can be scaled to larger core counts by either increasing

the concentration factor at each router, or following the same design

rule across larger number of routers, or connecting together multiple

copies of the same topology. Without loss of generality, we evaluate

Kite-Small, Medium, and Large in this paper.

D. Technology-Specific Evaluation
We use HeteroGarnet (Section IV) and DSENT [12] to support

router and link power modeling as detailed later in Section V.B. The

maximum operating frequency is determined by the radix of the largest

router and length of the longest wire, as shown in Figure 3. Mesh

topology has the shortest links and low radix routers and hence it can

operate at 4.0 GHz. CMesh can withstand up to 3.6GHz. The

topologies with longer links (i.e., Double Butterfly and ButterDonut),

however, can only be clocked at a maximum of 2.7 GHz. We consider

a 24mm × 36mm [4] active interposer system for our evaluations,

which has a lower µbump area overhead [7]. Figure 3 also shows that

increasing the link width reduces the maximum operating frequency

(i.e., inability to meet faster timing).

E. Kite Topology Analysis
Table 1 summarizes the Kite topologies in comparison to other NoI

topologies over several metrics. Topology-specific metrics are

combined with technology-specific metrics to determine the final

implementation (rightmost column). Compared to state-of-the-art NoI

topologies such as DoubleButterfly and ButterDonut(X), we can see

that Kite topologies provide the lowest 𝐻𝑒𝑓𝑓 owing to their efficient

usage of longest links (which dictate the maximum operational

frequency). Even Kite Small, which has a higher average hop count,

has a lower effective hop rate of 0.68 compared to the 𝐻𝑒𝑓𝑓 of

ButterDonut(X). Table 1 also shows the traditional metric, average

Topology Topology Specific Technology

Specific

Impl.

Specific

R
o

u
te

rs

L
in

k
s

D
ia

m
et

er

A
v

g
 H

o
p

C
o

u
n

t
H

av
g

B
is

ec
ti

o
n

B
W

R
o

u
te

r
D

eg
.

L
o
n

g
es

t
L

in
k

(m
m

)

M
ax

 F
re

q

(G
H

z)

E
ff

.
H

o
p

C
o

u
n

t
H

ef
f

(n
s)

E
ff

.
B

is
ec

ti
o

n

B
W

Mesh 64 11

2

16 6.12 8 5 2.2 4.0 1.49 32.0

CMesh 24 32 8 3.75 4 8 4.4 3.6 1.04 14.4

CMesh(X) 20 40 7 3.25 4 8 4.4 3.6 0.90 14.4

Double

Butterfly

24 40 4 2.85 8 8 9.8 2.7 1.05 21.6

Butter Donut 20 36 4 2.21 12 8 9.8 2.7 0.81 32.4

Kite Small 20 38 4 2.39 8 8 6.2 3.6 0.66 28.8

Kite Medium 20 40 4 2.17 12 8 8.8 3.0 0.72 36.0

Kite Large 20 36 3 2.03 12 8 9.8 2.7 0.75 32.4

Table 1: Comparison of NoI topologies: The average effective hop,

calculated using the max operating frequency, determines the

minimum latency offered by the topology.

Figure 3: Maximum Operating Frequency, for NoI topologies with

different link widths at 22nm technology.

0

2

4

16 32 36 64 72

M
ax

fr

eq
u

en
cy

(G
H

z)

NoI Link Width (Bytes)

Mesh
CMesh
CMesh(X)
DoubleButterfly
ButterDonut
KiteSmall
KiteMedium
KiteLarge

4

number of hops required by flits to reach the memory controllers. The

state-of-the-art topology ButterDonut(X) takes advantage of the long

links to deliver an average memory hops of 2.21. The Kite Medium

and Kite Large topologies make full use of the longest links resulting

in a low average hop of 2.17 and 2.03, respectively.

While a low network latency is beneficial, topologies should

support high bandwidth as well. Table 1 shows the bisection bandwidth

of the topologies. While Kite Small fails to offer a good bisection

bandwidth. Both Kite Medium and Kite Large offer the same

bandwidth as ButterDonut(X).

These results show that even though topologies like CMesh may

have a high average hop count, they could perform better when their

maximum operating frequencies are considered. While the state-of-

the-art topologies have a lower average hop count, they face a

disadvantage because their longer links must operate at a lower clock

frequency.

While abstract metrics such as hop count and bisection bandwidth

provide a proxy for the measuring performance of topology, it has been

necessary to evaluate topologies over synthetic and real application

traffic to understand the true performance of topology designs.

However, evaluating complex heterogeneous topologies such as Kite

requires the support of tools.

IV. HETEROGARNET – NOC SIMULATOR3
Traditional NoC topologies were largely explored along three

dimensions of cost: number of links, number of routers, and number of

router ports. These dimensions are insufficient to qualitatively and

quantitatively explore the complete space of design possibilities for

hybrid NoC + NoIs because of two major differences. First, their

physical interconnects can be diverse, where interconnect materials

(e.g., on-chip wires, TSVs, µbumps) and widths can be different across

the whole system. Second, their system structures can be diverse,

where multiple small systems operating at different voltages and/or

frequencies are connected to form a larger system on a chip or package.

Exploring the design space in such directions needs the support of tools

that can model such heterogeneity. This motivated us to develop

HeteroGarnet, building upon the widely used Garnet NoC model

within gem5. Table 3 shows the new features of HeteroGarnet for

supporting accurate modeling of heterogenous networks.

V. METHODOLOGY
In this section, we discuss the overall methodology for NoI

topology exploration.

A. System Configuration
We use HeteroGarnet for evaluation. We also integrated

HeteroGarnet into the widely used gem5 simulator. For a fair

comparison, we evaluate a system similar to previous studies [4, 7].

This involves 64 cores integrated to stacks of 3D DRAM using silicon

interposer. Apart from mesh, all interposer networks use a 4-core-to-

3 Detailed information about the features and use-cases of HeteroGarnet are available at http://synergy.ece.gatech.edu/tools/heterogarnet/

1-interposer-router concentration with synchronization buffers at all

the clock-domain crossings. The 3D DRAM has 16 channels with each

channel connected to exclusive or shared interposer router depending

on the topology. The rest of the details are summarized in Table 2.

Workloads. We use both synthetic traffic and real applications for

topology evaluation. The uniform random synthetic traffic includes

50% coherence traffic (between any pair of cores) and 50% memory

traffic (between cores and memory channels). Within each

coherence/memory traffic, half of the traffic is Read and half is Write.

Read request and write response messages are 8-Byte in length, while

read response and write request messages are 72-Byte.

Routing and Deadlock-Freedom. To keep the comparison fair,

we use shortest path routing combined with escape virtual channels

(VC) [13] for all topologies. In Mesh, CMesh, and CMesh(X), the

escape VCs are restricted to deadlock free dimension order routing.

For other topologies, we do not allow double-back turns in escape VCs.

Any routing optimization would be orthogonal to our results.

B. Technology Model
HeteroGarnet is coupled with DSENT to extract the power and

area estimations for the interconnect. For simplicity, we only report the

area and power of the NoI, as other parts of the NoC are same in all the

evaluations. Results are collected using a 22nm bulk/SOI low-Vt

process node, with core-to-core minimal distance of 2.0 mm and

µbump overhead of 0.2mm. All the topologies were swept over a

frequency range to find their maximum operating points and power and

area at those frequencies are reported.

VI. DESIGN EVALUATIONS
In this section, we evaluate different interposer topologies using

the methodology and infrastructure discussed in previous sections.

A. NoC and NoI Split Clock Domains
HeteroGarnet enables us to evaluate a chiplet-interposer system

where NoCs and NoI operate at different clock frequencies. In this

experiment, we first reproduce results using the traditional

methodology adopted by previous works, that is, NoCs and NoI

operate at the same frequency. Then, we apply our new methodology

to evaluate the performance impact when NoI is operating at its

maximum frequency. Such a methodology will allow us to see the

trade-off of designing an NoI with longer links.

Memory Traffic Latency. Figure 4(a) provides the load-latency

curves of the evaluated NoI topologies when the entire NoC + NoI is

operating at 1.8GHz (Traditional Methodology). We see that Mesh and

CMesh suffer from high average latency even at low injection rate.

Topologies such as Butter Donut, Kite Medium, and Kite Large take

advantage of long links and thus are able to provide low latency. These

topologies also deliver low latency at higher injection rates because of

higher bisection bandwidth. Overall, Kite Large reduces latency by 1%

while improving the saturating load by 8% over ButterDonut. The

above observation motivates for long links within the NoI.

However, if the NoC + NoI is modeled faithfully (HeteroGarnet

Methodology), we will draw a different conclusion. Figure 4(b) shows

Parameter Value

Virtual Networks 2 Mem/2 Coherence (4VCs each)

NoC topology (Chiplet) Mesh, 16-Byte links

Router Latency 4 Cycles

Synthetic Core + NoC Frequency

(Section VI.A-VI.D)

4 GHz

GPU Core + NoC Frequency

(Section Error! Reference source

not found.)

1.7 GHz

Memory Controller Frequency 1.8 GHz

Memory link width 16-Byte

Clock-Domain-Crossing latency 1 cycle in slower clock domain

SerDes latency 2 cycles

Table 2: Simulation parameters for evaluations.

Features

T
o

p
a

z

[2
4

]

B
o

o
k

S
im

2

[2
1

]

G
a

rn
et

[2
3

]

S
u

p
er

S
im

[2
5

]

 H
et

e
ro

-

G
a

rn
et

Synthetic Traffic ✓ ✓ ✓ ✓ ✓

Full System ✓ ✓ ✓✓ ✓✓

Variable Delay Router

✓

✓ ✓

Message-class exclusive links ✓

Heterogeneous Frequency

✓ ✓

DVFS Support

 ✓

Heterogeneous Link Width

 ✓

On-package Interconnects

 ✓

Table 3: Summary of features supported by HeteroGarnet

compared to other openly available NoC simulation tools.

http://synergy.ece.gatech.edu/tools/heterogarnet/

5

the load-latency curves for the same set of topologies, with each

operating at its maximum operational frequency. We see that

topologies that have shorter links take advantage of the higher

operating frequency and thus deliver better latency and improved

throughput. In fact, the misaligned topology CMesh(X) outperforms

ButterDonut in terms of latency at low injection rates by 4%. The

DoubleButterfly topology, which was proposed as an improvement

over CMesh topology, is only able to beat a regular CMesh topology

at higher injection rates. This shows that while longer links can reduce

hop count, the trade-off of operating at a lower frequency can take

away some of the latency advantage.

The Kite based topologies, however, take full advantage of the

longest links and offer low latency at lower injection rates and

improved throughput at higher injection rate compared to their non-

efficient counter parts. All Kite topologies offer lower latency than

ButterDonut(X) while Kite Medium and Kite Large have improved

saturation limits. Kite Small offers the lowest latency at low injection

rates, improving over ButterDonut(X) by 10%. These latencies echo

our estimations using the 𝐻𝑒𝑓𝑓 metric in Section III. Kite Medium,

thanks to its low 𝐻𝑒𝑓𝑓 and high bisection bandwidth, has a low latency

as well as better throughput. It improves over the latency offered by

7.5% while improving the saturating load limit by 17%. It is important

to note that Kite Medium uses shorter links compared to Butter Donut

and Kite Large and still outperforms. The Kite topologies’ efficient

usage of their longest links pays off both in terms of low latency and

higher saturation limits for memory traffic.

Coherency Traffic Latency. Similar trend is observed with

coherency traffic as well. Figure 4(c)-(d) presents the load-latency

curves for coherency traffic with four chiplets comprising of 16 cores

each [Figure 1(b)] with about 75% of the total coherency traffic going

through the interposer. Figure 4(d) shows the latency experienced by

coherency traffic when the NoI are operated at the maximum frequency

possible with respective topologies (HeteroGarnet Methodology).

Unlike observations with Traditional Methodology, both CMesh and

CMesh(X) deliver better latency than Double Butterfly, Butter Donut,

and Kite Large. Kite Small delivers the lowest zero-load latency,

improving over Butter Donut by 11%, but fails to provide comparable

throughput. Kite Medium offers an economical performance by

improving latency and maximum throughput as well.

These results show that accurate modeling of hybrid NoC avoids

the pitfalls of inaccurate conclusions. Unlike previous works, our

results show that while longer links build low-hop count topologies,

they come at a cost of operating frequency. An efficient usage of long

links will lead us to better designs such as showcased by the Kite

topologies. Although Kite Medium performed best in our evaluations,

any of the Kite variants could be optimal depending on the design and

technology constraints.

B. NoI Link Width
Considering that a lot of topologies saturate at relative low

injection rates, we increase the link width of NoI while keeping the

core level NoC link width constant at 16 Bytes. We introduce

Serializer-Deserializer (SerDes) units at the NoI boundaries with a

latency of two cycles. Figure 5 compares a 36-Byte topology to its 16-

Byte variant. All the topologies gain advantage in the form of improved

throughput at higher injection rates. However, the latency at minimum

injection rates is lower for a 16-Byte topology because of the lack of

SerDes latency. Kite Small with 36-Byte, specifically, loses out

considerably on its low latency. Butter Donut, Kite Medium, and Kite

Large scale similarly when the link width is increased to 36-Bytes. The

36-Byte Kite Medium delivers the best performance by improving the

maximum channel load by 37% compared to a 16-Byte Butter Donut.

Figure 4: Memory traffic latency for NoI topologies (a) at equal freq. (1.8GHz) and (b) at max. freq. of each topology as shown in GHz in

legend. Coherency traffic latency (c) at equal freq. (1.8GHz) and (d) at max. freq. of each topology. Average packet latency (0.03 injection)

for different interposer topologies scaled to (e) different chiplet sizes and (f) different core counts.

10

15

20

25

30

0.00 0.02 0.04 0.06A
v

er
ag

e
M

em
o

ry
 T

ra
ff

ic

L
at

en
cy

 (
n

s)

Injection Rate
(a) Memory - Traditional

Mesh

CMesh

DB

BD(X)

Cmesh(X)

KiteSmall

KiteMedium

KiteLarge
15

17

19

21

23

25

27

0.00 0.02 0.04

A
v

er
ag

e
C

o
h

er
en

cy

T
ra

ff
ic

 L
at

en
cy

(n
s)

Injection Rate
(c) Coherency -Traditional

9

10

11

12

13

14

15

16

17

4 8 16 32 64

A
v

er
ag

e
L

at
en

cy
 (

n
s)

No. of cores in each chiplet
(e) Chiplet Scaling

9

11

13

15

17

0.00 0.02 0.04 0.06 0.08

A
v

er
ag

e
M

em
o

ry

L
at

en
cy

 (
n

s)

Injection Rate
(b) Memory - HeteroGarnet

Mesh@4.1

CMesh@3.6

DB@2.7

BD(X)@2.7

Cmesh(X)@3.6

KiteS@3.6

KiteM@3.0

KiteL@2.7
8

9

10

11

12

0.00 0.02 0.04 0.06

A
v

er
ag

e
C

o
h

er
en

cy

T
ra

ff
ic

 L
at

en
cy

(n
s)

Injection Rate
(d) Coherency - HeteroGarnet

0

10

20

30

40

50

60

70

64 128 256

A
v

er
ag

e
 L

at
en

cy
(n

s)

Number of cores
(f) System Scaling

Figure 5: Load versus Memory traffic latency at varying injection

rates comparing Kite Small at different link widths.

8

10

12

14

16

18

20

0.00 0.02 0.04 0.06 0.08 0.10

A
v

er
ag

e
M

em
o

ry

L
at

en
cy

 (
n

s)

Injection Rate

BD(X)16
BD(X)36
KiteSmall16
KiteSmall36
KiteMedium16
KiteMedium36
KiteLarge16
KiteLarge36

6

C. Area and Power
The overhead of operating any logic at higher frequencies and link

widths is the effect on area and power. Area on interposer is critical to

maintain the minimal active logic [4] as described in Section II.C.

Furthermore, high power consumption would not justify the

performance improvements at higher frequencies. The Mesh topology

suffers from high power and area cost because of the large number of

routers present in the system. The Kite topologies have similar area

and power overhead compared to ButterDonut. Our best performing

topology, Kite Medium-32Byte has an area overhead of only 3.83

mm2. This is only 1.3% of the total geometric area of the interposer

since the shape of the interposer is defined by the cores and memory

controller.

D. Scalability of NoI topologies
Figure 4(e) shows the average packet latency experienced by packets

at different chiplet sizes. Scaling the chiplet size down to four cores

increases the amount of coherency traffic within the interposer

topology, resulting in higher latencies because of contention. On the

other hand, having a single 64-core monolithic chiplet leads to all the

coherency traffic being routed within the chiplet, and therefore

restricting the coherency packets from using the optimized interposer

topology. This leads to a degradation in average access latency at larger

chiplet size. All topologies, including the Kite family, experience this

trade-off with the 16-core chiplet being an optimal size. Kite Medium

and Kite Small outperform other topologies even at other chiplet sizes

and show that efficient interposer topologies scale well with chiplet

size.

Figure 4(f) shows the average packet latency at injection rate of

0.03 with increasing number of cores. In general, the latency

experienced by packets increases as we increase the number of cores

because of increase in hops. The Kite family outperforms other

topologies at all core counts, with the Kite Medium performing better

even at a core count of 256.

E. Real Application
We integrated HeteroGarnet into gem5 [15] and evaluated a subset

of Rodinia [16] and HPC proxy applications [17] using a 64 CU AMD

GPU model [18]. Figure 6 shows the overall runtime of these

applications normalized to the Double Butterfly based interposer NoC.

We see that the performance improvement with Kite Medium is more

visible in the case of memory intensive applications like xsbench,

snapc, and hpgmg. Overall, compared to Double Butterfly and

ButterDonut topologies, Kite Medium results in a performance

improvement of about 12% and 9.2%, respectively.

VII. CONCLUSIONS
With the increasing complexity of NoCs in diverse modern system

architectures, the need for an accurate heterogenous interconnect

modeling has become vital to reach improved designs. In this paper,

we proposed Kite topology family for chiplet-interposer systems.

Compared to state-of-the-art NoI topologies, Kite topologies reduce

network latency and improve throughput. We further presented

HeteroGarnet NoC simulator that enabled accurate cycle-level

modeling of the heterogeneities present in modern day hybrid NoCs.

Using a technology-specific design metric and the new simulator, we

identified the pitfalls in traditional methodology and integrated a

methodology that caters to the heterogeneities. While topology

exploration is one use case of HeteroGarnet, we hope that this work

draws attention in NoC community and helps designers and

researchers better understand the importance of accurate interconnect

modeling.

ACKNOWLEDGEMENT
We would like to thank Gabriel Loh and the anonymous reviewers

of DAC-2020 for their feedback and suggestions.

© 2020 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of

Advanced Micro Devices, Inc. Other product names used in this publication are

for identification purposes only and may be trademarks of their respective

companies.

REFERENCES

[1] Intel, "Intel Foveros Interconnect.," 2019. [Online].

[2] K. Lepak et al., "The Next Generation AMD Enterprise Server," in
HOTCHIPS, 2017.

[3] N. Beck et al., "‘Zeppelin’: An SoC for multichip architectures," in
2018 IEEE International Solid - State Circuits Conference - (ISSCC),
2018.

[4] A. Kannan et al., "Enabling interposer-based disintegration of multi-
core processors," IEEE Micro, pp. 546-558, 2015.

[5] A. Arunkumar et al., "MCM-GPU: Multi-Chip-Module GPUs for
Continued Performance Scalability," in ISCA, 2017.

[6] D. Green, "Common Heterogeneous Integration and IP Reuse
Strategies (CHIPS)".

[7] J. Yin et al., "Modular Routing Design for Chiplet-Based Systems," in
2018 ACM/IEEE (ISCA), 2018.

[8] N. E. Jerger, T. Krishna and L.-S. Peh, "On-Chip Networks, Second
Edition," Synthesis Lectures on Computer Architecture, vol. 12, pp. 1-
210, 2017.

[9] N. D. E. Jerger et al., "NoC Architectures for Silicon Interposer
Systems," IEEE Micro, pp. 458-470, 2014.

[10] J. Kim et al., "Flattened Butterfly Topology for On-Chip Networks,"
IEEE Computer Architecture Letters, 2007.

[11] M. Besta and T. Hoefler, "Slim fly: a cost effective low-diameter
network topology," 2014.

[12] C. Sun et al., "DSENT - A Tool Connecting Emerging Photonics with
Electronics for Opto-Electronic Networks-on-Chip Modeling," in
NOCS, 2012.

[13] J. Duato, "A theory of deadlock-free adaptive multicast routing in
wormhole networks," IEEE Transactions on Parallel and Distributed
Systems, vol. 6, no. 9, pp. 976-987, 1995.

[14] N. Binkert et al., "The gem5 simulator," in SIGARCH Comput. Archit.
News, 2011.

[15] S. Che et al., "Rodinia: A benchmark suite for heterogeneous
computing," in IISWC, 2009.

[16] J. R. Tramm et al., "XSBench-the development and verification of a
performance abstraction for Monte Carlo reactor analysis," PHYSOR,
2014.

[17] A. Gutierrez et al., "Lost in Abstraction: Pitfalls of Analyzing GPUs
at the Intermediate Language Level," in HPCA, 2018.

[18] A. Shilov, "AMD previews EPYC ‘Rome’processor: Up to 64 Zen 2
cores," 2018.

[19] N. Jiang et al., "A detailed and flexible cycle-accurate Network-on-
Chip simulator," in 2013 IEEE (ISPASS), 2013.

[20] O. Villa et al., "Scaling the power wall: a path to exascale," in SC,
2014.

[21] N. Agarwal et al., "GARNET: A detailed on-chip network model
inside a full-system simulator," in ISPASS, 2009.

[22] P. Abad et al., "TOPAZ: An Open-Source Interconnection Network
Simulator for Chip Multiprocessors and Supercomputers," in NOCS,
2012.

[23] N. McDonald et al., "SuperSim: Extensible Flit-Level Simulation of
Large-Scale Interconnection Networks," 2018. [Online].

[24] C. Nicopoulos et al., "ViChaR: A Dynamic Virtual Channel Regulator
for Network-on-Chip Routers," IEEE Micro, 2006.

[25] I. Karlin, J. Keasler and J. R. Neely, "Lulesh 2.0 updates and changes,"
2013.

Figure 6: Normalized application runtime with key NoI

topologies operated at their max frequencies.

0.75
0.80
0.85
0.90
0.95
1.00

N
o

rm
al

iz
ed

R

u
n

ti
m

e

DB BD KiteMedium KiteLarge

