
 

 

Abstract—Recent advances in die-stacking and 2.5D chip 

integration technologies introduce in-package network 

heterogeneities that can complicate the interconnect design. 

Integrating chiplets over a silicon interposer offers new 

opportunities of optimizing interposer topologies. However, 

limited by the capability of existing network-on-chip (NoC) 

simulators, the full potential of the interposer-based NoCs has not 

been exploited. In this paper, we address the shortfalls of prior 

NoC designs and present a new family of chiplet topologies called 

Kite. Kite topologies better utilize the diverse networking and 

frequency domains existing in new interposer systems and 

outperform the prior chiplet topology proposals. Kite decreased 

synthetic traffic latency by 7% and improved the maximum 

throughput by 17% on average versus Double Butterfly and 

Butter Donut, two previous proposals developed using less 

accurate modeling.  

I. INTRODUCTION 
The performance and power benefits of technology scaling that 

propelled the semiconductor industry for decades have been 

diminishing since Dennard’s scaling ended and Moore’s Law slowed 

down. However, the demand for computing continues to grow at an 

increasing rate. Thus, major chip vendors such as AMD, Intel [1], 

NVIDIA, and others have embraced 2.5D interposer-based integration 

to scale the performance of individual computation node. One of the 

key technologies enabled by the 2.5D systems is the integration of 

multiple discrete chips (often called chiplets) within a package either 

over a silicon interposer or via other packaging technologies [2, 3]. 

Furthermore, chiplets could also be integrated using Multi-chip 

Module SoCs (MCM-SoCs). Figure 1(a) shows an example of a 64-

core monolithic chip while its chipletized [4] version is shown in 

Figure 1(b). Chiplet-based architectures not only help address design 

costs and yield issues, but also enable integration of chips built using 

heterogeneous technology nodes [2], which is not feasible in a 

monolithic design. These architectures are becoming common in 

commercial products [1, 2, 5] and also find heavy support from 

government programs [6].  

In an interposer-based system, chiplets as well as the interposer can 

have their own interconnect networks, operating at different clock 

domains and/or link widths. This leads to a heterogeneous Network-

on-Chip (NoC) + Network-on-Interposer (NoI) interconnection fabric 

across the system. Designing the NoI topology can be critical for the 

overall system performance because the interposer is a shared resource 

for inter-chiplet communication, off-chip data transfer, and I/O. 

Previous work have proposed new topologies for hybrid NoC + NoI 

architectures1 [4, 7, 8]. However, they assume the NoCs and NoI are 

operating at the same frequency, which might not be economical or 

beneficial in commercial products. For an industrial design, it is rather 

feasible that the chiplets and the interposer have their own clock 

 
1 These works did not use the term NoI, instead referring to the chip and interposer networks collectively as “hybrid NoC”. In this work, we use the terms NoC and 

NoI to distinguish between the networks on individual chiplets and between chiplets on the interposer, respectively. 

domains to exploit the maximum potential of chiplet-interposer 

integration. Therefore, we revisit the NoI topology design under more 

realistic assumptions and constraints. 

The computer architecture design and research community heavily 

relies on simulators to facilitate exploration and evaluation of 

promising designs. An important design aspect that traditional NoC 

simulators lack is decoupling the NoI from the core and memory 

chiplets. As a result, most existing tools assume NoI frequency and 

link width equal to NoC frequency and link width. As we show in this 

paper, such a methodology restricted designers and researchers from 

evaluating the trade-off of topology designs [4, 7]. Moreover, 

insufficient modeling of the NoC + NoI interactions loses out on a wide 

plethora of design options. To fully explore the NoC + NoI design 

space, accurate modeling of the heterogeneous interconnect is 

necessary. 

In this paper, we accurately re-evaluate and improve upon prior 

academic approaches by designing a new set of topologies, called Kite, 

which outperform the current published state-of-the-art topologies in 

terms of both core-to-core and core-to-memory traffic. Specifically, by 

decoupling the NoI from the NoC frequency and power constraints, we 

accurately evaluate the trade-off in using longer links within the NoI. 

We adopt implementation-aware design-time metrics, called effective 

hop count and effective bandwidth, which account for the frequency 

constraints of different link lengths and lead to improved topology 

designs. As a result, our Kite topologies use longer links more 

efficiently and sustain higher throughputs than what has been 

previously concluded. Further, we introduce HeteroGarnet, a simulator 

for modeling heterogenous networks and utilize it to measure 

performance of NoI topologies 

II. BACKGROUND AND MOTIVATION 
In this section, we first provide background and discuss previous 

work in the field of interposer-based systems. We then motivate the 

need for a tool to accurately model such systems. 

A. Silicon Interposer Systems 
Breaking large monolithic chips into smaller chiplets improves the 

collective yield and reduces system cost [4]. In such disintegrated 

chiplet-based systems, chiplets are integrated via the interposer. 

Therefore, the NoI carries both memory traffic and coherency traffic 
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Figure 1: (a) A 64-core monolithic chip connected to 3D DRAM 

(b) 4x16-core chiplet system showing the heterogeneous fragments 

of NoC + NoI. 
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between chiplets. Chiplet-based systems introduce many research 

questions around the right chiplet boundaries and topologies 

connecting the chiplets. In addition, the uses of silicon interposers also 

lead to new opportunities in designing modern systems. An earlier 

study showcased using the interposer to route memory traffic more 

efficiently by creating a hybrid NoC + NoI. Taking advantage of the 

interposer resource, prior work further proposed to create a network 

within the interposer. This NoI is then connected to cores using 

µbumps to facilitate communication. The interposer network has been 

proposed to be used for both core-to-memory traffic as well as core-to-

core coherency traffic as described below [4, 8]. 

B. Baseline NoI topologies 
Several approaches to build the NoI topology have been discussed 

and evaluated in previous works [4, 7]. A simple topology is to connect 

a core-level router to an interposer router forming a simple mesh, as 

shown in Figure 2(a). However, this design consumes large area and 

most of the links are left under-utilized. A natural alternative is to use 

a concentrated-mesh network where multiple cores are connected to a 

router in the interposer, as shown in Figure 2(b). The concentrated 

mesh (CMesh) takes advantage of high-radix routers (degree 8) to 

connect to memory controllers in lesser number of network hops. 

Compared to mesh, CMesh delivers lower throughput because of lower 

bisection bandwidth. Double Butterfly [Figure 2(c)] takes advantage 

of longer links and reduces average hop count; in addition, diagonal 

links increase the bisection bandwidth [7]. A later study optimized the 

NoI topology by utilizing a “misaligned” network. A misaligned 

interposer network offsets the location of its routers, such that cores on 

the edge of two adjacent chiplets share the same router [4], as shown 

in Figure 2(d). They further proposed the ButterDonut topology to 

reduce the average hop count as well as inter-chiplet coherency traffic 

latency, as shown in Figure 2(e). ButterDonut increases the bisection 

bandwidth while keeping the router complexity similar to CMesh. We 

follow the nomenclature from the original paper [4] for misaligned 

topologies where ButterDonut(X) refers to misalignment in the X-

dimension. 

 
2 While this paper focuses on a hybrid NoC + NoIs using a silicon interposer, most of these arguments are true for modern many-core systems as well.  

C. Challenges of hybrid NoC exploration2 

The hybrid NoC + NoI architectures pose new design challenges 

including routing, composability, yield, thermal, and more. In this 

work, we focus on practical NoI topology design constraints. 

The decoupled nature of NoC + NoI provides us opportunities to 

further optimize the NoI topology. On the other hand, it introduces new 

challenges: evaluation of design topologies should include modeling 

the operating parameters accurately, such as latency and operating 

frequency. 

Moreover, given the comparatively low cost of adding more wires 

[7], a natural direction is to explore the benefit of increasing the NoI 

link bandwidth without affecting the NoC design parameters. An ideal 

infrastructure should have the flexibility of configuring the clock 

domain and link/flit width for each individual network (NoC or NoI) 

element (router, link, etc.).  

III. KITE TOPOLOGIES 
We propose a novel set of topologies, called Kite, which efficiently 

utilizes the links in the network. We first describe the general topology 

design metrics, and then describe our proposed methodology while 

designing Kite topologies. 

A. Design Metric: Effective Hops 
The network latency (T) of a packet traversing between any source-

destination pair is defined as [9]: 

𝑇 = 𝐻 × 𝑡𝑤 + 𝐻 × 𝑡𝑟 + 𝑇𝑐 + 𝑇𝑠 

H is the number of hops between the source-destination pair, 𝑡𝑤 is 

per-hop wire delay, 𝑡𝑟  is router delay, 𝑇 𝑐 and 𝑇𝑠  are contention and 

serialization delay, respectively. All these delays are in cycles. 

𝑡𝑤 , 𝑡𝑟 , and 𝑇𝑠 are design-time metrics, while 𝐻  and 𝑇𝑐  depend on 

traffic characteristics at runtime. Since the network topology is fixed 

at design-time, it needs to accommodate myriad traffic patterns. A 

design-time proxy for latency, independent of runtime traffic 

contention, is average hop count ( 𝐻𝑎𝑣𝑔 ). 𝐻𝑎𝑣𝑔  is determined by 

averaging H over all possible source-destination pairs and is usually 

combined with other metrics such as diameter (proxy for worst-case 

 
Figure 2: The target architecture includes 64 cores (small grey boxes) arranged within 4x4 chiplets (blue dotted lines). The red boxes 

denote interposer routers which connect to the green memory controllers on the side. Network-on-Interposer topologies considered for 

exploration: (a) Mesh, (b) Concentrated Mesh, (c) Double Butterfly [7], and (e) Butter Donut [4] are shown here. (d) Shows a misaligned 

[4] interposer router connected to routers from chiplet. (f) Kite Small, (g) Kite Medium, and (h) Kite Large each use a different link-

length as the longest link as shown by the colored lines. 
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latency) and bisection bandwidth (proxy for peak throughput) to 

measure the effectiveness of a topology [4, 7]. Reducing 𝐻𝑎𝑣𝑔 is the 

gold standard for topology design–and has led to multiple popular 

express-link based on-chip (e.g., Flattened Butterfly [10]), on-

interposer (e.g., ButterDonut [4]), and HPC (e.g., SlimFly [11]) 

topologies. 

The catch in 𝐻𝑎𝑣𝑔 , however, is that the operating frequency  𝑓 

(time duration of each hop) is often not taken into account. For 

example, a topology could use long express links to provide single hop 

transmission, but could be restricted by the maximum possible 𝑓 . 

Hence the 𝑡𝑤  and 𝑡𝑟  values would go up, making it worse than a 

topology with higher 𝐻𝑎𝑣𝑔 but higher 𝑓. This is often not an issue in 

NoCs since the (low) operating frequency of the NoC is limited by 

CPU/GPU cores and caches, which have plateued since Dennard’s 

scaling stopped. However, NoIs need not be coupled to core 

frequencies, and could thus operate at a different and (multi-GHz) 

operating frequency. This necessitates co-optimizing  𝐻𝑎𝑣𝑔  and the 

operating frequency 𝑓. To this end, we define a metric called effective 

hop count ( 𝐻𝑒𝑓𝑓 ) as the proxy for designing our proposed NoI 

topologies. 

𝐸𝑓𝑓. 𝐻𝑜𝑝 𝐶𝑜𝑢𝑛𝑡 (𝐻𝑒𝑓𝑓) =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑜𝑝 𝐶𝑜𝑢𝑛𝑡 (𝐻𝑎𝑣𝑔)

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑓)
 

𝐻𝑒𝑓𝑓  measures the effective time taken to traverse 𝐻𝑎𝑣𝑔  hops 

within the network. Extending this implementation specific metric idea 

to bisection bandwidth leads us to an effective bisection bandwidth 

metric defined as: 
𝐸𝑓𝑓. 𝐵𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐵𝑊 =  𝐵𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐵𝑊 × 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑓) 

 

Two topologies that have the same 𝐻𝑎𝑣𝑔 and Bisection BW may 

lead to vastly different operatable frequencies (and thus 𝐻𝑒𝑓𝑓 and Eff. 

BW) as we show in this work. 

B. Classification of Links: k-straight and k-m-diagonal 
Taking cue from express-link based topologies, we identify two classes 

of links that we call k-straight and k-m-diagonal. k-straight links 

directly connect two routers along the same dimension (horizontal or 

vertical), physically skipping or bypassing k-1 intermediate routers. 

For example, 1-straight links are nearest neighbor links, 2-straight 

links connect routers skipping one in the middle, as shown in Figure 2 

using purple lines. k-m-diagonal links follow the same rule, with k hops 

in one direction and m in another. The orange and green links in  Figure 

2 show 1-1-diagonal and 2-1-diagonal respectively. We assume that 

the longest class of links in the topology limit and determine the overall 

operating frequency of the NoI. 

C. Kite Topology Construction 
We now create new topologies to maximize 𝐻𝑒𝑓𝑓. This is done by 

maximizing the usage of long links within the topology. It is important 

to note that we combine 𝐻𝑒𝑓𝑓 with other known metrics such as 

bisection bandwidth and diameter to quickly compare each topology 

and pick the optimal one.  

For the purposes of illustration, we assume a system with 16 

memory controllers, 4 CPU/GPU chiplets (with 16 cores each), a 

concentration factor of 4 at each router, and a maximum router degree 

of 8. The Kite topologies adopt the misaligned NoI topology [4] to 

reduce the hop count required for inter-chiplet traffic. 

All Kite topologies are constructed by picking one of the k-straight 

or k-m-diagonal links as the longest link to provide connectivity 

between as many routers as possible. After that, any remaining routers 

and ports, are connected using shorter links, till the maximum router 

degree is met. For the purposes of illustration, we demonstrate this 

policy with three different link lengths – 1-1-diagonal, 2-straight, and 

2-1-diagonal, constructing three topologies - Kite-Small, Kite-Medium, 

and Kite-Large use these as the longest links respectively. The 

resulting topologies are shown in Figure 2. 

Other variants can be constructed by using longer and/or 

heterogeneous links. Like prior work on express topologies [10], the 

Kite topologies can be scaled to larger core counts by either increasing 

the concentration factor at each router, or following the same design 

rule across larger number of routers, or connecting together multiple 

copies of the same topology. Without loss of generality, we evaluate 

Kite-Small, Medium, and Large in this paper. 

D. Technology-Specific Evaluation 
We use HeteroGarnet (Section IV) and DSENT [12] to support 

router and link power modeling as detailed later in Section V.B. The 

maximum operating frequency is determined by the radix of the largest 

router and length of the longest wire, as shown in Figure 3. Mesh 

topology has the shortest links and low radix routers and hence it can 

operate at 4.0 GHz. CMesh can withstand up to 3.6GHz. The 

topologies with longer links (i.e., Double Butterfly and ButterDonut), 

however, can only be clocked at a maximum of 2.7 GHz. We consider 

a 24mm × 36mm [4] active interposer system for our evaluations, 

which has a lower µbump area overhead [7].  Figure 3 also shows that 

increasing the link width reduces the maximum operating frequency 

(i.e., inability to meet faster timing). 

E. Kite Topology Analysis 
Table 1 summarizes the Kite topologies in comparison to other NoI 

topologies over several metrics. Topology-specific metrics are 

combined with technology-specific metrics to determine the final 

implementation (rightmost column). Compared to state-of-the-art NoI 

topologies such as DoubleButterfly and ButterDonut(X), we can see 

that Kite topologies provide the lowest 𝐻𝑒𝑓𝑓 owing to their efficient 

usage of longest links (which dictate the maximum operational 

frequency). Even Kite Small, which has a higher average hop count, 

has a lower effective hop rate of 0.68 compared to the 𝐻𝑒𝑓𝑓  of 

ButterDonut(X). Table 1 also shows the traditional metric, average 
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Mesh 64 11

2 

16 6.12 8 5 2.2 4.0 1.49 32.0 

CMesh 24 32 8 3.75 4 8 4.4 3.6 1.04 14.4 

CMesh(X) 20 40 7 3.25 4 8 4.4 3.6 0.90 14.4 

Double 

Butterfly 

24 40 4 2.85 8 8 9.8 2.7 1.05 21.6 

Butter Donut 20 36 4 2.21 12 8 9.8 2.7 0.81 32.4 

Kite Small 20 38 4 2.39 8 8 6.2 3.6 0.66 28.8 

Kite Medium 20 40 4 2.17 12 8 8.8 3.0 0.72 36.0 

Kite Large 20 36 3 2.03 12 8 9.8 2.7 0.75 32.4 

Table 1: Comparison of NoI topologies: The average effective hop, 

calculated using the max operating frequency, determines the 

minimum latency offered by the topology.  

 
Figure 3: Maximum Operating Frequency, for NoI topologies with 

different link widths at 22nm technology. 
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number of hops required by flits to reach the memory controllers. The 

state-of-the-art topology ButterDonut(X) takes advantage of the long 

links to deliver an average memory hops of 2.21. The Kite Medium 

and Kite Large topologies make full use of the longest links resulting 

in a low average hop of 2.17 and 2.03, respectively.  

While a low network latency is beneficial, topologies should 

support high bandwidth as well. Table 1 shows the bisection bandwidth 

of the topologies. While Kite Small fails to offer a good bisection 

bandwidth. Both Kite Medium and Kite Large offer the same 

bandwidth as ButterDonut(X). 

These results show that even though topologies like CMesh may 

have a high average hop count, they could perform better when their 

maximum operating frequencies are considered. While the state-of-

the-art topologies have a lower average hop count, they face a 

disadvantage because their longer links must operate at a lower clock 

frequency.  

While abstract metrics such as hop count and bisection bandwidth 

provide a proxy for the measuring performance of topology, it has been 

necessary to evaluate topologies over synthetic and real application 

traffic to understand the true performance of topology designs. 

However, evaluating complex heterogeneous topologies such as Kite 

requires the support of tools.  

IV. HETEROGARNET – NOC SIMULATOR3 
Traditional NoC topologies were largely explored along three 

dimensions of cost: number of links, number of routers, and number of 

router ports. These dimensions are insufficient to qualitatively and 

quantitatively explore the complete space of design possibilities for 

hybrid NoC + NoIs because of two major differences. First, their 

physical interconnects can be diverse, where interconnect materials 

(e.g., on-chip wires, TSVs, µbumps) and widths can be different across 

the whole system. Second, their system structures can be diverse, 

where multiple small systems operating at different voltages and/or 

frequencies are connected to form a larger system on a chip or package. 

Exploring the design space in such directions needs the support of tools 

that can model such heterogeneity. This motivated us to develop 

HeteroGarnet, building upon the widely used Garnet NoC model 

within gem5. Table 3 shows the new features of HeteroGarnet for 

supporting accurate modeling of heterogenous networks.  

V. METHODOLOGY 
In this section, we discuss the overall methodology for NoI 

topology exploration. 

A. System Configuration 
We use HeteroGarnet for evaluation. We also integrated 

HeteroGarnet into the widely used gem5 simulator. For a fair 

comparison, we evaluate a system similar to previous studies [4, 7]. 

This involves 64 cores integrated to stacks of 3D DRAM using silicon 

interposer. Apart from mesh, all interposer networks use a 4-core-to-

 
3 Detailed information about the features and use-cases of HeteroGarnet are available at http://synergy.ece.gatech.edu/tools/heterogarnet/ 

1-interposer-router concentration with synchronization buffers at all 

the clock-domain crossings. The 3D DRAM has 16 channels with each 

channel connected to exclusive or shared interposer router depending 

on the topology. The rest of the details are summarized in Table 2. 

Workloads. We use both synthetic traffic and real applications for 

topology evaluation. The uniform random synthetic traffic includes 

50% coherence traffic (between any pair of cores) and 50% memory 

traffic (between cores and memory channels). Within each 

coherence/memory traffic, half of the traffic is Read and half is Write. 

Read request and write response messages are 8-Byte in length, while 

read response and write request messages are 72-Byte. 

Routing and Deadlock-Freedom. To keep the comparison fair, 

we use shortest path routing combined with escape virtual channels 

(VC) [13]  for all topologies. In Mesh, CMesh, and CMesh(X), the 

escape VCs are restricted to deadlock free dimension order routing. 

For other topologies, we do not allow double-back turns in escape VCs. 

Any routing optimization would be orthogonal to our results. 

B. Technology Model 
HeteroGarnet is coupled with DSENT to extract the power and 

area estimations for the interconnect. For simplicity, we only report the 

area and power of the NoI, as other parts of the NoC are same in all the 

evaluations. Results are collected using a 22nm bulk/SOI low-Vt 

process node, with core-to-core minimal distance of 2.0 mm and 

µbump overhead of 0.2mm. All the topologies were swept over a 

frequency range to find their maximum operating points and power and 

area at those frequencies are reported. 

VI. DESIGN EVALUATIONS 
In this section, we evaluate different interposer topologies using 

the methodology and infrastructure discussed in previous sections. 

A. NoC and NoI Split Clock Domains  
HeteroGarnet enables us to evaluate a chiplet-interposer system 

where NoCs and NoI operate at different clock frequencies. In this 

experiment, we first reproduce results using the traditional 

methodology adopted by previous works, that is, NoCs and NoI 

operate at the same frequency. Then, we apply our new methodology 

to evaluate the performance impact when NoI is operating at its 

maximum frequency. Such a methodology will allow us to see the 

trade-off of designing an NoI with longer links. 

Memory Traffic Latency. Figure 4(a) provides the load-latency 

curves of the evaluated NoI topologies when the entire NoC + NoI is 

operating at 1.8GHz (Traditional Methodology). We see that Mesh and 

CMesh suffer from high average latency even at low injection rate. 

Topologies such as Butter Donut, Kite Medium, and Kite Large take 

advantage of long links and thus are able to provide low latency. These 

topologies also deliver low latency at higher injection rates because of 

higher bisection bandwidth. Overall, Kite Large reduces latency by 1% 

while improving the saturating load by 8% over ButterDonut. The 

above observation motivates for long links within the NoI.  

However, if the NoC + NoI is modeled faithfully (HeteroGarnet 

Methodology), we will draw a different conclusion. Figure 4(b) shows 

Parameter Value 

Virtual Networks 2 Mem/2 Coherence (4VCs each) 

NoC topology (Chiplet) Mesh, 16-Byte links 

Router Latency 4 Cycles 

Synthetic Core + NoC Frequency 

(Section VI.A-VI.D) 

4 GHz  

GPU Core + NoC Frequency 

(Section Error! Reference source 

not found.) 

1.7 GHz 

Memory Controller Frequency 1.8 GHz 

Memory link width  16-Byte 

Clock-Domain-Crossing latency 1 cycle in slower clock domain 

SerDes latency 2 cycles 

Table 2: Simulation parameters for evaluations. 
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✓ 
 

✓ ✓ 

Message-class exclusive links     ✓ 

Heterogeneous Frequency 
   

✓ ✓ 

DVFS Support 
   

 ✓ 

Heterogeneous Link Width 
   

 ✓ 

On-package Interconnects 
   

 ✓ 

Table 3: Summary of features supported by HeteroGarnet 

compared to other openly available NoC simulation tools. 
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the load-latency curves for the same set of topologies, with each 

operating at its maximum operational frequency. We see that 

topologies that have shorter links take advantage of the higher 

operating frequency and thus deliver better latency and improved 

throughput. In fact, the misaligned topology CMesh(X) outperforms 

ButterDonut in terms of latency at low injection rates by 4%. The 

DoubleButterfly topology, which was proposed as an improvement 

over CMesh topology, is only able to beat a regular CMesh topology 

at higher injection rates. This shows that while longer links can reduce 

hop count, the trade-off of operating at a lower frequency can take 

away some of the latency advantage. 

The Kite based topologies, however, take full advantage of the 

longest links and offer low latency at lower injection rates and 

improved throughput at higher injection rate compared to their non-

efficient counter parts. All Kite topologies offer lower latency than 

ButterDonut(X) while Kite Medium and Kite Large have improved 

saturation limits. Kite Small offers the lowest latency at low injection 

rates, improving over ButterDonut(X) by 10%. These latencies echo 

our estimations using the 𝐻𝑒𝑓𝑓  metric in Section III. Kite Medium, 

thanks to its low 𝐻𝑒𝑓𝑓 and high bisection bandwidth, has a low latency 

as well as better throughput. It improves over the latency offered by 

7.5% while improving the saturating load limit by 17%. It is important 

to note that Kite Medium uses shorter links compared to Butter Donut 

and Kite Large and still outperforms. The Kite topologies’ efficient 

usage of their longest links pays off both in terms of low latency and 

higher saturation limits for memory traffic.   

Coherency Traffic Latency. Similar trend is observed with 

coherency traffic as well. Figure 4(c)-(d) presents the load-latency 

curves for coherency traffic with four chiplets comprising of 16 cores 

each [Figure 1(b)] with about 75% of the total coherency traffic going 

through the interposer. Figure 4(d) shows the latency experienced by 

coherency traffic when the NoI are operated at the maximum frequency 

possible with respective topologies (HeteroGarnet Methodology). 

Unlike observations with Traditional Methodology, both CMesh and 

CMesh(X) deliver better latency than Double Butterfly, Butter Donut, 

and Kite Large. Kite Small delivers the lowest zero-load latency, 

improving over Butter Donut by 11%, but fails to provide comparable 

throughput. Kite Medium offers an economical performance by 

improving latency and maximum throughput as well. 

These results show that accurate modeling of hybrid NoC avoids 

the pitfalls of inaccurate conclusions. Unlike previous works, our 

results show that while longer links build low-hop count topologies, 

they come at a cost of operating frequency. An efficient usage of long 

links will lead us to better designs such as showcased by the Kite 

topologies. Although Kite Medium performed best in our evaluations, 

any of the Kite variants could be optimal depending on the design and 

technology constraints. 

B. NoI Link Width 
Considering that a lot of topologies saturate at relative low 

injection rates, we increase the link width of NoI while keeping the 

core level NoC link width constant at 16 Bytes. We introduce 

Serializer-Deserializer (SerDes) units at the NoI boundaries with a 

latency of two cycles. Figure 5 compares a 36-Byte topology to its 16-

Byte variant. All the topologies gain advantage in the form of improved 

throughput at higher injection rates. However, the latency at minimum 

injection rates is lower for a 16-Byte topology because of the lack of 

SerDes latency. Kite Small with 36-Byte, specifically, loses out 

considerably on its low latency. Butter Donut, Kite Medium, and Kite 

Large scale similarly when the link width is increased to 36-Bytes. The 

36-Byte Kite Medium delivers the best performance by improving the 

maximum channel load by 37% compared to a 16-Byte Butter Donut.   

 
Figure 4: Memory traffic latency for NoI topologies (a) at equal freq. (1.8GHz) and (b) at max. freq. of each topology as shown in GHz in 

legend. Coherency traffic latency (c) at equal freq. (1.8GHz) and (d) at max. freq. of each topology. Average packet latency (0.03 injection) 

for different interposer topologies scaled to (e) different chiplet sizes and (f) different core counts. 
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Figure 5: Load versus Memory traffic latency at varying injection 

rates comparing Kite Small at different link widths. 
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C. Area and Power  
The overhead of operating any logic at higher frequencies and link 

widths is the effect on area and power. Area on interposer is critical to 

maintain the minimal active logic [4] as described in Section II.C. 

Furthermore, high power consumption would not justify the 

performance improvements at higher frequencies. The Mesh topology 

suffers from high power and area cost because of the large number of 

routers present in the system. The Kite topologies have similar area 

and power overhead compared to ButterDonut. Our best performing 

topology, Kite Medium-32Byte has an area overhead of only 3.83 

mm2. This is only 1.3% of the total geometric area of the interposer 

since the shape of the interposer is defined by the cores and memory 

controller. 

D. Scalability of NoI topologies 
Figure 4(e) shows the average packet latency experienced by packets 

at different chiplet sizes. Scaling the chiplet size down to four cores 

increases the amount of coherency traffic within the interposer 

topology, resulting in higher latencies because of contention. On the 

other hand, having a single 64-core monolithic chiplet leads to all the 

coherency traffic being routed within the chiplet, and therefore 

restricting the coherency packets from using the optimized interposer 

topology. This leads to a degradation in average access latency at larger 

chiplet size. All topologies, including the Kite family, experience this 

trade-off with the 16-core chiplet being an optimal size. Kite Medium 

and Kite Small outperform other topologies even at other chiplet sizes 

and show that efficient interposer topologies scale well with chiplet 

size. 

Figure 4(f) shows the average packet latency at injection rate of 

0.03 with increasing number of cores. In general, the latency 

experienced by packets increases as we increase the number of cores 

because of increase in hops. The Kite family outperforms other 

topologies at all core counts, with the Kite Medium performing better 

even at a core count of 256.  

E. Real Application 
We integrated HeteroGarnet into gem5 [15] and evaluated a subset 

of Rodinia [16] and HPC proxy applications [17] using a 64 CU AMD 

GPU model [18]. Figure 6 shows the overall runtime of these 

applications normalized to the Double Butterfly based interposer NoC. 

We see that the performance improvement with Kite Medium is more 

visible in the case of memory intensive applications like xsbench, 

snapc, and hpgmg. Overall, compared to Double Butterfly and 

ButterDonut topologies, Kite Medium results in a performance 

improvement of about 12% and 9.2%, respectively. 

VII. CONCLUSIONS 
With the increasing complexity of NoCs in diverse modern system 

architectures, the need for an accurate heterogenous interconnect 

modeling has become vital to reach improved designs. In this paper, 

we proposed Kite topology family for chiplet-interposer systems. 

Compared to state-of-the-art NoI topologies, Kite topologies reduce 

network latency and improve throughput. We further presented 

HeteroGarnet NoC simulator that enabled accurate cycle-level 

modeling of the heterogeneities present in modern day hybrid NoCs. 

Using a technology-specific design metric and the new simulator, we 

identified the pitfalls in traditional methodology and integrated a 

methodology that caters to the heterogeneities. While topology 

exploration is one use case of HeteroGarnet, we hope that this work 

draws attention in NoC community and helps designers and 

researchers better understand the importance of accurate interconnect 

modeling. 
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Figure 6: Normalized application runtime with key NoI 

topologies operated at their max frequencies. 
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