
Single-Cycle Collective Communication Over A Shared Network Fabric

Tushar Krishna
Intel Corporation, VSSAD

Hudson, MA 01749. USA

tushar.krishna@intel.com

Li-Shiuan Peh
Department of EECS. MIT

Cambridge, MA 02139, USA

peh@csail.mit.edu

Abstract—In the multicore era, on-chip network latency and
throughput have a direct impact on system performance. A
highly important class of communication flows traversing the
network is collective, i.e., one-to-many and many-to-one. Scalable
coherence protocols often leverage imprecise tracking to lower
the overhead of directory storage, in turn leading to more
collective communications on-chip. Routers with support for
message forking/aggregation have been previously demonstrated,
supporting such protocols. However, even with the fastest possible
designs today (1-cycle routers), collective flows on a k×k mesh
still incur delays proportional to k since all communication
is across the entire chip. As k increases across technology
generations, the latency of these flows will also go up.

However, the pure wire delay to cross the chip is just 1-
2 cycles today, and is expected to remain roughly invariant.
The dependence of message delays on k arises due to the
requirement to latch messages at every router. In this work, we
remove this requirement. We design a network fabric that enables
messages to (1) dynamically create virtual 1-to-Many (multicast)
and Many-to-1 (reduction) tree routes over a physical mesh, (2)
get forked/aggregated at nodes on the tree, and (3) traverse
the tree - all within a single-cycle across each dimension. For
synthetic 1-to-Many/Many-to-1 flows, we demonstrate 76/82%
reduction in latency, and 1.6/2X improvement in throughput
over a state-of-the-art NoC with 1-cycle routers and support
for collective communication. Across a suite of SPLASH-2 and
PARSEC benchmarks, full-system runtime and energy is reduced
by 14% and 50% for a limited-directory protocol.

I. INTRODUCTION

In a multicore system, there occur scenarios when all

cores need to participate to either service a request or sig-

nal the end of a transaction. This collective communica-
tion can be further classified into one-to-many (multicast)

and many-to-one (reduction) flows. In the message pass-

ing domain, examples include routines like MPI Bcast
and MPI Reduce/MPI Barrier respectively. In the shared

memory domain, these occur in cache coherence protocols

that use imprecise sharer information [1], [2] at the directory,

for area/power/scalability, and instead resort to broadcasting

requests and collecting ACKs to maintain coherence.

Without any network support to handle collective commu-

nication, a root sending/receiving broadcast/ACKs to/from M
cores sends/receives M separate messages, which adds serial-

ization delay and throttles throughput, by at least M , leading to

system slowdown. This observation has spawned a lot of recent

research in NoCs that support message forking [3], [4], [5],

[6], [7], [8], [9] and aggregation [8], [9] at routers. We call this

body of work Baseline+Collective in this paper. There has also

been work in dedicated reduction networks for barriers [10],

The authors acknowledge the support of DARPA UHPC, SMART-LEES
and MARCO C-FAR. This work was performed while Tushar Krishna was a
PhD student at MIT.

[11], [12]. While message forking and aggregation within the

NoC lowers the bandwidth demands of these flows, latency is

still a concern, since by design the root almost always has to

communicate with the furthest cores on-chip1. This means that

even if we can design routers with forking/aggregation support

at only 1-cycle delay at every hop [8], the network delay will

grow proportional to k in a k-node ring or a k×k mesh. As

core count scaling increases k, this starts becoming a concern,

potentially requiring expensive on-chip directory structures to

minimize long distance communication.
Global wire delay is in fact not the problem when it comes

to on-chip latencies. Repeated wires have been shown to trans-

mit up to 13-16mm within 1 ns (i.e., ∼62 ps/mm)2 [13], [14],

[15], [16]. Given maximum chip sizes of ∼20mm×20mm to-

day, repeated wires can thus enable cross-chip communication

within 1-2 cycles at 1 GHz. Absolute wire delay is not going

down with technology scaling [13], [17]. But the trend of fairly

constant clock frequencies (due to the power wall) and chip

dimensions (due to yield) means that the delay in cycles to get

from one end of the chip to the other is expected to remain

1-2. Creating a fully-connected topology is however not a

feasible solution beyond a few cores, and we need routers

to multiplex flows on a shared set of links. These routers lead

to the dependence of latency on the number of hops traversed.
A highly promising approach to remove this dependence

has been to create virtual, reconfigurable single-cycle multi-

hop paths over a regular mesh [15], [16]. The idea is to replace

the clocked drivers at every router by clockless repeaters, and

drive signals across multiple hops within a cycle before they

get latched at the destination router. The maximum number

of hops (tile to tile distance) that can be traversed in a cycle,

or HPCmax , depends on the underlying technology. At 45

nm, HPCmax is 16 for a pure repeated wire with 1mm tiles

at 1GHz, and drops to 11 for a full data-path with a repeater

and crossbar (mux) at every hop. Dynamically creating single-

cycle multi-hop paths on demand has been demonstrated in

SMART [15], [16] and found to be a better solution than both

high-radix topology solutions with dedicated wires between a

subset of nodes, and meshes with 1-cycle routers.
We compare the performance of Baseline+Collective - with

1-cycle-routers, and SMART, against a Baseline mesh (with

1-cycle routers and no collective communication support) and

a Fully-connected NoC with 1-cycle dedicated links between

all NICs (impractical due to area/power reasons). In Figure 1,

we plot the average runtime of a 64-core system running a

1This is mitigated if the furthest cores are not in the destination set.
2Experimental Parameters: repeater spacing = 1mm, wire spacing = 3X the

minimum to nullify the coupling capacitance.

978-1-4799-5347-9/14/$31.00 ©2014 IEEE

2014 Eighth IEEE/ACM International Symposium on Networks-on-Chip (NoCS)

1
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:27:18 UTC from IEEE Xplore. Restrictions apply.

��
����
����
����
����
	�

	���
	���
	���

�
�
�
�� �� ���
��

�
���
���

��
���
�
�

��
���
���

��
���
��

��

��
��

��
���

��

��
��
��
��
��
�
��
 �

�
��

�
��

�	

�

�

��

��

�

!�����
�� "#�$%� !�����
�&'(����)*�� +���,�'(

������

Fig. 1: Impact of NoC designs on runtime for HT [1].
limited-state directory protocol, modeled similar to AMD’s

HyperTransport [1] protocol3 across a suite of SPLASH-2 and

PARSEC benchmarks. Baseline+Collective and SMART give

18.7% and 14.0% performance improvement, respectively,

over the Baseline. However, both these designs leave 26-30%

performance on the table, compared to a Fully-Connected

topology. The goal of this work is to bridge this gap, allowing

collective communication flows to achieve the performance

of a fully-connected topology on a shared mesh. The key

challenge is that all the Baseline+Collective designs require

flits to stop at every router, to get forked/aggregated. The

SMART approach, on the other hand, is to allow flits to bypass
routers completely and only get latched at the destination.

These are conflicting targets since the former requires the

use of intelligent logic within the router, while the latter tries

to bypass all logic within the router. This work presents a

technique to simultaneously achieve both goals.

We present two techniques, SMART-FanOut (SFO) and

SMART-FanIn (SFI) that overlay broadcast and reduc-

tion trees, with dynamically changing roots (i.e., the

source/destination of the broadcast/reduction) over a shared

network fabric, such as a mesh, and traverse these trees within

a cycle leveraging the single-cycle multi-hop capability of re-

peated wires. Across synthetic benchmarks, SFO/SFI demon-

strate 76/82% reduction in latency, and 1.6/2X improvement in

throughput over Baseline+Collective. Full-system simulations

over a limited-directory protocol show a runtime reduction of

14% with SFO+SFI, which is only 12% away from the runtime

of the Fully-connected topology.

The paper is organized as follows. Section II describes

relevant background on SMART. Section III and IV present

SFO and SFI. Section V presents the evaluations. Section VI

contrasts against prior art and Section VII concludes.

II. BACKGROUND: SMART NOC

Single-cycle Multi-hop Asynchronous Repeated Traversal

(SMART) [15] enables traversals across multiple-hops within

one cycle. The key idea is to replace clocked drivers within

every router’s crossbar by clock-less/asynchronous repeaters,

thus dynamically creating a multi-hop repeated link which can

drive signals across 13-16 mm within a GHz [13], [15], [16].

These repeaters are simultaneously setup a cycle in advance

through a flow control mechanism to allow multiple flows to

create virtual single-cycle multi-hop paths cycle-by-cycle.

In conventional NoCs, flits at every router arbitrate among

themselves to gain access to the output ports during Switch

3The distributed directory serves as an ordering point, but does not have
any state. Instead it broadcasts all requests, and collects all ACKs.

Allocation Local (SA-L). The winner of SA-L traverses the

crossbar and output link to the next router, stops, arbitrates

for the next link, and so on. In a SMART NoC, flits arbi-

trate for multiple links and the buffer at the end point, all

within the same cycle. Each output port winner from SA-

L first broadcasts a SMART-hop setup request (SSR) up to

HPCmax-hops from that output port. These SSRs - dedicated

repeated wires that connect every router to a neighborhood of

up to the HPCmax - help preset the intermediate routers for

a multi-hop bypass path. SSRs are log2(1 +HPCmax) bits

wide, and carry the number of hops the flit wishes to traverse.

Following the initial SSR broadcast, every router performs a

second round of arbitration - Switch Allocation Global (SA-

G) - to arbitrate among the SSRs they have received from

the routers in their HPCmax neighborhood and setup three

controls signals: BWena, BMsel and XBsel. BWena decides

whether to latch the incoming flit or not; BMsel at the input of

the crossbar switch chooses between the incoming (bypass) flit

on the link and a buffered (local) flit, and XBsel connects an

input port to an output port. In the next cycle, the flit performs

a multi-hop switch and link traversal till it is stopped at a router

with BWena = 1. Figure 2 provides an illustration. Router R0

creates a 3-hop path that can be traversed within a cycle, and

the control signals at each router are shown.
Competing SSRs. The SA-G arbiters guarantee that only

one flit will be allowed access to any particular input/output

port of a router crossbar; any conflicting flits will be stopped

by pulling BWena high. To decide which flit gets to go

and which has to stop, every router prioritizes SSR requests

according to a fixed priority based on flit distance. For e.g.,

the Prio=Local scheme gives highest priority to the local flit,

followed by the flit from the neighboring router, followed by

the flit from the router two hops away, and so on; If a router

receives an SSR requesting a bypass, but also has its own

flit to send out, it prioritizes the latter by raising BWena to

1, and setting BMsel to local. Single-cycle multi-hop paths

are thus opportunistic, not guaranteed. An alternate priority,

Prio=Bypass, prioritizes flits from the furthest router over the

flits from the nearer ones.
All routers need to collectively agree, in a distributed

manner and during the same cycle, on which flit is performing

a particular multi-hop traversal. This is required to make sure

that the flit is latched at its correct destination, and not mis-

routed beyond the allowed HPCmax hops. This is guaranteed

by enforcing the same relative priority between SSRs at

each router - i.e., all routers need to enforce Prio=Local or

Prio=Bypass. For bypassing routers at turns, a second-level

priority based on direction is also required. Other details about

the design (VC allocation, ordering etc) are not relevant to

understand the rest of this work. In this work, we use the

SMART 1D design, where flits can create single-cycle multi-

hop paths along one dimension at a time, stopping at the

turning routers.

III. SMART-FANOUT: SINGLE-CYCLE BROADCAST

The goal of SMART-FanOut is to accomplish a broadcast

within a single-cycle per-dimension. For e.g., in a 8×8 mesh,

2014 Eighth IEEE/ACM International Symposium on Networks-on-Chip (NoCS)

2
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:27:18 UTC from IEEE Xplore. Restrictions apply.

R0 R1 R2 R3
[BWena, BMsel, XBsel]:

Cin

Win

BWena

XBselBMsel0bypass

local
[0, 0, Cin->Eout] [0, bypass, Win->Eout] [0, bypass, Win->Eout] [1, 0, X]

Fig. 2: Example of a Single-cycle Multi-hop Path from R0 to R3 using SMART. The control signals shown are setup one
cycle before the actual traversal using separate control wires called SSRs. If R2 has to send a flit out in the same cycle, it
can set its BWena to 1 and BMsel to local, prematurely stopping the flit from R0. [15]

it should take 2 cycles to reach all of the 64 routers.
A. Routing over Virtual Broadcast Trees

Broadcasts are routed by creating virtual trees over the

physical mesh, such as a XY-tree as shown in Figure 3(a).

We call this a Shared Virtual Tree (SVT). Each physical

link of the mesh still needs to be arbitrated for, and the

forks within the route (i.e., sending copies out of multiple

ports) are performed by the router, within a cycle [6], [7],

[8]. Broadcasts from multiple sources leads to the overlay of

multiple SVTs arbitrating for the same set of links, resulting

in either shorter bypass paths in SMART due to premature

stopping (if Prio=Local is used) or longer wait times to get

the longer bypass path (if Prio=Bypass is used). We present

a novel broadcast tree called Private Virtual Tree (PVT)
that eliminates contention between broadcasts completely,

enhancing the chances of successfully arbitrating for all links

along the dimension. PVTs originate from the four corner

routers (CR), and use entirely different links to broadcast. All

nodes that wish to broadcast first send the flit as a unicast

to the closest CR, dynamically arbitrating for SMART paths

like other unicasts. Since SMART is the underlying fabric,

this redirection is relatively inexpensive4. Figure 3(b) shows

an example. Suppose Router 22 wants to send a broadcast.

In Step 0, it sends a unicast to CR 40. In Step 1, CR 40

broadcasts the message out of its North output port. We call

this the straight dimension. In Step 2, all routers along the right

edge (including Router 40) broadcast the message along the

West direction. We call this the turn dimension. A copy of the

message is retained at all routers as it proceeds along the multi-

hop path. In Step 3, the broadcast flits are delivered to the NIC.

Steps 0 and 3 are unicasts (to CR and NIC respectively) and

use regular SMART arbitration to resolve contention. Steps 1

and 2 are broadcasts, and PVT ensures no contention for links

among the broadcasts flits, as shown in Figures 3(c) and (d).

CR 00 uses E-N links, 40 uses N-W links, 44 uses W-S links,

and 04 uses S-E links. But there can be contention for links

between a broadcast and unicasts, for which we explore two

arbitration strategies, Complete and Greedy.
B. SMART-FanOut Complete (SFO Complete)

In a complete fanout, a multicast flit at a router proceeds

only if it has access to all links along the straight/turn

dimension during the same cycle. This is ensured by presetting

all routers along the straight and turn dimensions into a full

bypass path (i.e., BMsel=bypass in Figure 2), one cycle after

4Moreover, in many limited directory protocols, broadcasts only emanate
from the corner routers, since these house memory controllers connected to
the directory/LLC, removing the need for this redirection.

the other. These are called Broadcast Slot Straight (BSS) and

Broadcast Slot Turn (BST). BWena is also set to 1 during both

the broadcast slots to retain a local copy of the bypassing flit,

to send it to the NIC. The time interval between two BSSs

is called Broadcast Interval (BI), and is a microarchitectural

parameter. For instance, if BI equals 4, then cycle 0, 4, 8,...

correspond to BSS, and cycles 1, 5, 9,... correspond to BST5.

During BSS, W→E, S→N, E→W and N→S bypass paths are

preset in routers along the bottom, right, top and left edges

respectively, as shown in Figure 3(c). During BST, W→E,

S→N, E→W and N→S bypass paths are preset at all routers,

as shown in Figure 3(d). Steps 1 and 2 occur during BSS and

BST respectively, guaranteeing a 2-cycle chip-wide broadcast.

No unicast flits are allowed to use the reserved paths in these

cycles. This is achieved by blocking SA-G for the appropriate

ports one-cycle before BSS and BST. A subtle point to note is

that arbitration for the NIC (i.e, Step 3) by buffered flits within

the routers (unicast or broadcast) also needs to be blocked

for the broadcast slots. This is because the input bandwidth

of all crossbars at the participating routers is allocated to

the bypassing flits on single-cycle multi-hop paths, so locally

buffered flits at the same input ports cannot use this bandwidth

during this cycle. If the mesh were to be designed exclusively

for broadcasts, the theoretically minimum value of BI is 3:

two cycles for BSS and BST, and one for Step 3 and/or 0.

1) Deadlocks.
Figure 3(b) shows that PVT allows X to Y, Y to X, and

u-turns (e.g., the N port at CR 40). To avoid deadlocks, we

divide the VCs in the broadcast virtual network into 3 classes:

VCto CR, VCbefore turn, VCafter turn. The first is used by

“broadcast” flits to reach the CR via unicast. The flits then

switch to VCbefore turn and traverse the first dimension (X or

Y depending on the particular CR). At the turn, they switch

to VCafter turn. There is no cyclic dependency.

2) Buffer Management.
The VCto CR is used by unicasts and sends a on-off signal

only to its nearest neighbors [15]6. The VCbefore turn and

VCafter turn classes send one-bit on-off signals each up to

HPCmax hops via repeated wires (which are inherently multi-

drop). Step 1 from the CR occurs only if all routers along that

dimension have a free buffer to hold the broadcast flit in the

VCbefore turn class. If not, it waits till its next time slot to

5If HPCmax is less than the number of nodes in a dimension, the leaves
that lie within HPCmax to 2×HPCmax, receive the broadcast one cycle
later by statically shifting BSS and BST across the routers, and so on.

6A flit is conservatively pre-emptively stopped at a router if its neighbor
does not have free VCs, since bypass at the neighbor is not guaranteed.

2014 Eighth IEEE/ACM International Symposium on Networks-on-Chip (NoCS)

3
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:27:18 UTC from IEEE Xplore. Restrictions apply.

02

01

03

00

04

12

11

13

10

14

22

21

23

20

24

32

31

33

30

34

42

41

43

40

44

02

01

03

00

04

12

11

13

10

14

22

21

23

20

24

32

31

33

30

34

42

41

43

40

44

02

01

03

00

04

12

11

13

10

14

22

21

23

20

24

32

31

33

30

34

42

41

43

40

44

02

01

03

00

04

12

11

13

10

14

22

21

23

20

24

32

31

33

30

34

42

41

43

40

44

-1

0

1

2
3

1

1

1

1 2 2

2

2

(c) Broadcast over straight dimension (d) Broadcast over turn dimension(b) Private Virtual Tree (PVT)(a) Shared Virtual XY Tree (SVT)

CR:
Corner
Router

Fig. 3: SMART-FanOut (SFO).
send. Similarly for Step 2. SFO Complete does not send flits

to only a subset of nodes along the dimension.
C. SMART-FanOut Greedy (SFO Greedy)

In a greedy fanout, the broadcast flit traverses its route (PVT

or SVT) opportunistically, trying to reach as many of its leaf

routers as possible within a cycle. While it has a higher chance

of reserving all links along the dimension in a PVT than in a

SVT, competition with unicast flits, and/or insufficient buffers

can lead to shorter express paths, and re-arbitration during

subsequent cycles for the rest of the path.
Broadcast flits arbitrate for multiple output ports (depending

on their route). The winner at each output port sends out an

SSR along that direction, requesting a bypass path till the

end of the dimension, with an additional broadcast bit. During

SA-G, in addition to the appropriate setup of the BMsel and

XBsel signals, BWena is also made high to retain a copy

of the incoming flit at this router. In the next cycle, the

flit performs a multi-hop switch and link traversal along the

dimension. The retained copies arbitrate for the ejection port,

and the turn dimension.
A broadcast’s bypass could get terminated (BMsel = 0 or

local) at a router R before traversing the entire dimension

for the following reasons: (a) it loses SA-G to some locally

buffered flit at R if Prio=Local were used, (b) the neighbor of

R does not have free buffers7.
D. Multicasts

Multicasts are delivered exactly like broadcasts in both

schemes, with copies being retained at every router. This copy

is dropped if the current NIC is not part of the destination set8.

IV. SMART-FANIN: SINGLE-CYCLE REDUCTION

We target the scenario where M nodes send an “ACK”

each to the same destination, where it is ultimately combined

via some reduction operator (ADD, OR, MIN, MAX etc).

Examples include acknowledgments in coherence protocols,

barrier synchronization, MPI reduce routine in MPI, and

so on. M separate ACKs cause latency, throughput and

energy overheads. The goal of SMART-FanIn is to perform

a distributed reduction within the network on a single-cycle

(per-dimension) multi-hop path, so that the destination receives

only one ACK with the result of the reduction - a count of M
if the operator is ADD. We assume an ADD operator, though

any associative and commutative operator works as well.

7We do not allow a non-continuous subset of routers to receive the broadcast
to avoid tracking which routers the broadcast was not delivered to.

8Our design is optimized for broadcasts and dense multicasts. If the
destination set is very sparse, it will be more efficient to send it as separate
unicasts with SMART paths rather than create the broadcast tree.

A. SMART-FanIn Complete (SFI Complete)
In a complete fanin, the destination NIC receives exactly

one ACK representing an aggregate of all ACKs. The waiting

cache/directory controller can proceed as soon as this ACK is

received. Conceptually, all injected ACKs wait indefinitely at

routers, before their ACK count is added into the last ACK

that is injected into the system. But we show an optimized im-

plementation where most ACKs can be dropped immediately

upon injection, and no explicit addition is required.

1) Microarchitecture.
We add 2 extra fields to the SSRs: 1-bit is ACK, and

k-bit ACK id. ACK id is used to identify ACKs from the

same flow. We add a central table called ACK Reduction Table
(ART) with 2k entries, one for each ACK id. Each entry is

only 3-bits: 1-bit reserved, and 2-bit num dir - to hold the

count of the number of directions from where to aggregate

ACKs. An ART entry is reserved by the preceding broadcast

at its root/source, and used by the response ACKs. For each

ACK id, exactly num dir separate ACKs enter each router.

Till num dir is greater than 1, incoming ACKs are stopped

(BWena = 1) and dropped; num dir is decremented by 1. If

num dir equals 1, the incoming ACK is the last ACK this

router is waiting for, and is allowed to bypass or get buffered,

decrementing num dir to 0. The buffered ACK arbitrates for

the switch to proceed further.

2) Walk-through Example.
We present a walk-through example of how SFI Complete

works, using Figure 4. The example is a simple one where

there is only one M -to-1 (M=24) flow in the system, with all

nodes sending ACKs to the root NIC at router 40.

Step #-1 (Broadcast Slot): Suppose the broadcast is sent

out from Router 40 in a YX manner, as shown earlier in

Figure 3(b). The broadcast sets up the control circuitry for the

ACK. At the root CR 40, ART [0] is reserved for the ACKs

by setting reserved to 1, and ACK id 0 is embedded into

the broadcast flit, and will be sent out with the ACKs. The

num dir count is appropriately set at all routers, for the XY

routing by ACKs in this example. At Router 40, it is set to 2

to account for ACKs coming in from W and N9. At Router

00, it is set to 1 as an ACK from only the NIC will enter this

router. At Router 41, it is set to 3 to account for ACKs from

the W, N and NIC10.

9There is no ACK from NIC 40 as it is the source of the broadcast.
10If a multicast, not a full broadcast, was sent out, the num dir would

not count ACKs from those NICs that are not in the destination set.

2014 Eighth IEEE/ACM International Symposium on Networks-on-Chip (NoCS)

4
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:27:18 UTC from IEEE Xplore. Restrictions apply.

02

01

03

00

04

12

11

13

10

14

22

21

23

20

24

32

31

33

30

34

42

41

43

40

44

(c) (d) (b)(a)

0 1 0 0 2 1 0 2 1 0 2 1 0 2

0 1 0 0 2 1 0 2 1 0 2 1 0 3 2

0 1 0 0 2 1 0 2 1 0 2 1 0 3 2

0 1 0 0 2 1 0 2 1 0 2 1 0 3 2

0 1 0 0 2 1 0 2 1 0 2 1 0 2 1

02

01

03

00

04

12

11

13

10

14

22

21

23

20

24

32

31

33

30

34

42

41

43

40

44

0 0 0 1 0 0 1 0 0 1 0 0 2 1

0 0 0 1 0 0 1 0 0 1 0 0 2 1

0 0 0 1 0 0 1 0 0 1 0 0 2 1

0 0 0 1 0 0 1 0 0 1 0 0 2 1

0 0 0 1 0 0 1 0 0 1 0 0 1 0

02

01

03

00

04

12

11

13

10

14

22

21

23

20

24

32

31

33

30

34

42

41

43

40

44

0 1 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 11

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5

10

15

20
24

ACK_id num_dir

02

01

03

00

04

12

11

13

10

14

22

21

23

20

24

32

31

33

30

34

42

41

43

40

44

0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0 0 1 0 0 2 1

0 0 0 1 0 0 1 0 1 0 2

0 0 0 1 0 0 1 0 0 2 1 0 2 1

0 0 0 0 0 0 0 0 0 0

1 2 3

1 2 3 4

1

5

0 1 2X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Row 0

Row 1

Row 2

Row 3

ACK Reduction Table
(ART)

ACK
Count

ACK dropped

Row 4

Row 0

Row 1

Row 2

Row 3

Row 4

Fig. 4: SMART-FanIn (SFI).
Step #0 (ACK injection): All NICs inject ACKs into their

routers. All NICs might not (and probably will not if there

is contention at the NIC/cache) inject in the same cycle. We

assume the same cycle just for the sake of this example. This

is shown in Figure 4(a). The ACKs at Routers 00, 01, 02,

03 and 04 have ART [0].num dir = 1, and get buffered to

arbitrate for the output port (i.e., SA-L) competing with other

buffered flits. All other ACKs have num dir > 1 and are

dropped. ART [0].num dir is decremented by one.

Step #1 (ACK X traversal): The ACKs that win SA-L

(assumed to be all ready ACKs - 00, 01, 02, 03 and 04),

send out SSRs along the X (East) direction, with is ACK
set to 1, and ACK id set to 0. Let us look at the Row 0 in

Figure 4(b). Routers 10, 20, and 30 have ART [0].num dir
as 1, and hence setup a single-cycle multi-hop bypass path

for Router 00 till Router 40. In the next cycle, Router 00

sends the ACK in a cycle to 40, and frees ART [0]. At 10,

20, and 30, ART [0].num dir is decremented to 0, and freed.

The bypassing ACK has effectively aggregated the ACKs at

the routers it bypassed. The same holds for other rows. At

Routers 43, 42, 41, and 40, ART [0].num dir is 2, and so

these incoming ACKs from West are dropped, decrementing

num dir to 1. At Router 44, ART [0].num dir is 1, and

the incoming ACK from West is buffered, becoming the only

active ACK for this M-to-1 flow.

Step #2 (ACK Y Traversal): This aggregating traversal is

repeated along the Y direction. Figure 4(c) shows that Router

44 has ART [0].num dir = 0, and tries to setup a single-cycle

path to Router 40. Routers 43, 42, 41 and 40 setup a multi-

hop bypass path since num dir is 1. The ACK from Router

44 bypasses all these routers, leaving one ACK representing

a count of 24 at Router 40. This ACK is sent up to the NIC.

We have achieved perfect aggregation.

3) Handling arbitrary delays.
If num dir is not 1, BWena is pulled high during SA-

G, and the incoming ACK next cycle is latched. We allow

only the final ACK to bypass through a router to aggregate

all other ACKs. Figure 4(d) demonstrates a snapshot of the

network at a certain cycle, demonstrating some scenarios that

introduce arbitrary delays across the ACKs. Row 0: We can

infer from num dir=0 at 00, 10, 20 and 30 that their ACKs

have already been delivered to 40 as an aggregated ACK, and

then dropped since num dir at 40 is 1. Row 1: The ACK

from 01 is aggregating ACKs at 11, 21, 31 and 41. Row 2:

Router 02 has num dir equal to 0, so its ACK has been sent

to 12 and dropped. The NIC at 12 is injecting an ACK this

cycle that will decrement num dir to zero and get buffered. It

will then be able to perform a multi-hop aggregating traversal

to Router 42. Row 3: The ACK from Router 03 aggregates

ACKs at 13 and 23, but stops at 33, since num dir was 2 as

the ACK from the NIC has not been received yet. Row 4: The

aggregated ACK from 44 tries to perform a multi-hop traversal

to 40, but is dropped at 43, as num dir is 2. Once the ACK

from NIC 33 is injected, it can reach 43, making num dir
0. This ACK would then be able to go to 40, bypassing (i.e.,

aggregating) 42, 41, and 40. We are able to achieve complete

aggregation in this scenario as well, though not all ACKs were

able to create long SMART paths, increasing the latency of

the final received ACK.

4) Route.
The destination of the ACKs (the requester) could be

different from the source of the broadcast (a CR - if PVT

is used - or a memory controller). The requester id field

from the broadcast flit is used to compute num dir for the

ACKs for a pre-decided XY or YX routing.

5) ART entries.
All unique broadcast roots/sources need to choose different

ART entries, thus making sure that ACKs from two separate

active flows do not get assigned the same ACK id. The

minimum number of entries is 4 for PVT and N (number

of cores) for SVT. We use a 64-entry ART (i.e., one per

requesting core), derived empirically. Using an ART reduces

ACK traffic, allowing us to remove a 128-bit buffer from the

response VCs at each input port and use those to build the

ART, thus adding no area or energy overhead [18]. A root is

allowed to reassign an ART entry only after its ACKs have

been received at the destination. If the ACK destination is

the same as the root, this is easy to enforce. But if the ACK

destination is different from the root, the root should not free

the ART entry even after it reaches num dir = 0 (the other

routers should). The destination upon receiving the aggregated

ACK sends a separate message to the root to free the entry.

We piggy back this message on the regular coherence unblock

messages to the directory at the CR, thus adding no overhead.

If there are no free ART entries for a broadcast to reserve,

it marks its ACK id as invalid. The corresponding ACKs do

not try and aggregate, and are instead delivered as separate

unicasts, which is functionally correct.

2014 Eighth IEEE/ACM International Symposium on Networks-on-Chip (NoCS)

5
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:27:18 UTC from IEEE Xplore. Restrictions apply.

+0 1
id num_dir

OR

operand
0 1 1
1

0 1header
operandBWena

!=1Reducer
SSR.ACK_id

Fig. 5: Reducer (OR) on datapath.
6) Deadlocks.
ART entries conceptually represent indefinitely waiting

ACKs. We avoid deadlocks since each ACK flow has a

reserved ART entry at every router, and does not block ACKs

from another flow.
7) Implementing other Reduce operations.
SFI can implement other Reduce operations such as OR,

MAX, MIN, etc, by adding a Reducer block on the datapath,

as shown in Figure 5. The protocol remains exactly the same,

except that the ART has an extra field containing the operand

value of the dropped ACK. The Reducer operates on the

operands from the bypassing ACK and the one from the ART,

and the result is sent out.
8) Timing.
On the control path, we added a check to set BWena to

1 if ART [ACK id].num dir is not 1. This lookup did not

affect the critical path (RTL implementation of SA-G) which

was dominated by setting up the crossbar signals. On the

datapath, if the Reducer is used, its gate delay could affect

HPCmax which dropped from 11 to 9 for a 2-input OR (Spice

simulations at 45nm).
B. SMART-FanIn Greedy (SFI Greedy)

In a greedy fanin, ACKs are opportunistically aggregated

with no explicit waiting. This means that the root could receive

one or more partially aggregated ACKs. The ART is not used.

The unique ACK id of each flow is identified as (mshr idx,

dest id) where mshr idx is the index of the MSHR at the

root node from where the broadcast was injected. Buffered

ACKs poll incoming SSRs, while arbitrating for the switch,

and aggregate any ACKs with the same ACK id stopping at

the router. For Prio=Bypass, we add an adder as the Reducer

in Figure 5 to aggregate ACKs bypassing this router, if an

ACK id match was found during the SSR stage.

V. EVALUATION

We implement SFO and SFI in the cycle-accurate NoC

simulator Garnet [19], available within the GEMS [20] in-

frastructure.We model a 8×8 mesh for all our runs. Base-

line+Collective, described in Section I, uses the SVT. For SFO

and SFI, we assume HPCmax=8 [15].11

A. Synthetic 1-to-Many Traffic
We start by evaluating the flavors of SFO with synthetic

broadcast traffic. The metric of performance is 1-to-M latency,

which we define as the time taken to deliver the multicast to all
its destinations. We also plot the Ideal in each graph, assuming

1-cycle contention-less traversal, and theoretical throughput

for that particular traffic over a mesh.

Broadcast from CRs. Figure 6a plots the 1-to-M latency as

a function of injection rate, when only the 4 CRs inject. SFO

11A smaller HPCmax, say 4, which we do not present in the interest of
space, increases per-dimension latency to 2 cycles.

lowers broadcast delivery time by 73-86% over the baseline.

We first analyze SFO Complete. In this design, the complete

broadcast takes exactly two cycles. The best low-load latency

is 3.8 cycles, offered by Broadcast Interval (BI) = 4. With

BI=3, there is only one non-blocked time slot for the flits

going up to the NIC (Step 3 in Figure 3(b)), adding penalties to

flits that just missed the time slot, increasing low-load latency

to 5.4 cycles. For BI=6, 8 and 10, the wait cycles for the

broadcast slots increases low-load latency to 5-7.5 cycles. The

best throughput is offered by BI=6, which is 1.36-2.14X higher

than other BIs. This is because 6 cycles is exactly enough to

cover the 2 broadcast slots, and 4 cycles to send broadcast

flits from each CR serially up to the NIC. A BI lower than

this throttles throughput, while a BI higher than this adds wait

times. The greedy scheme offers 83% reduction in low-load

latency, and similar throughput as baseline with Prio=Local12.

Broadcast from all nodes. When all nodes inject, as

shown in Figure 6b, the role of PVT and SVT come into

play. SFO Complete with BI=6 over the PVT has 62% lower

latency and similar throughput as the baseline which is over

a SVT. SFO Greedy over SVT (with no redirection to the

CR) provides the best latency of 5.6 cycles, and a throughput

that is 1.22X better than baseline and 30% away from the

ideal. SFO Greedy with Prio=Local over the PVT shows

1.55X higher throughput than the baseline, and is only 10%

away from the theoretical ideal on a mesh, demonstrating

the throughput benefits of the PVT. The 3-4 cycle redirection

latency to get to the nearest CR increases its low-load latency.

This points to the interesting design space tradeoffs enabled

by SMART where a low-latency redirection enabled a large

throughput enhancement.

Multicast from all nodes. Figure 6c shows the performance

for multicast traffic, with every node injecting to a randomly

chosen set of destinations. Here SFO Complete with BI=4

gives better throughput than BI=6 since fewer flits need to

go the NIC. SFO Greedy provides 75% reduction in low-

load latency, and 11% higher throughput than the baseline.

The SFO PVT is optimized for broadcasts, and does not offer

significant throughput advantages to multicasts.

In summary, of all flavors of SFO, the greedy scheme over
SVT provides the lowest latency, and the greedy scheme over
PVT provides the highest throughput.
B. Synthetic Many-to-1 Traffic

Synthetic many-to-1 traffic represents ACK traffic in co-

herence protocols or the MPI reduce primitive in MPI. In

this pattern, all nodes (except the destination, so 63 in this

case) inject “ACKs” - with the same ACK id - directed to

a randomly chosen destination, at a specified injection rate.

We do not inject a broadcast to reserve ART entries. Instead,

we reserve them magically prior to the ACK injection, and

free them according to the SFI scheme described earlier. In

12Prio=Local offers better throughput than Prio=Bypass [15]. This is
because Prio=Bypass can reserve output links for bypass flits, at the cost
of locally buffered flits, yet no flit may actually show up due to some SSR
interaction at the previous routers it is unaware about. Prio=Local would have
sent the local flits on the output links instead.

2014 Eighth IEEE/ACM International Symposium on Networks-on-Chip (NoCS)

6
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:27:18 UTC from IEEE Xplore. Restrictions apply.

��

���

���

���

���

5��

�� ���5� ���� ���5� ���� ���5���
��

��
��

��
��
��
��

	�
��	

�	

�

��
�

����	����������
���������	�	
���

�	
��
��6����������
����������
�7�����
����������
�7�����
������������7���
������������7���
������������7 ��
������������7!��
������������7����

������

(a) Broadcasts from 4 corner routers.

8�
�8�
�8�
�8�
�8�
�8�

8� 8�88�� 8�88�� 8�88	� 8�8��� 8�8���

��
��

��
��

��
��
��
��

	�
��	

�	

�

��
�

����	����������
���������	�	
���

��
���
�����
���
� ������

���������� �
������

���������� � ������!"��
#�� �
������!"��
#�� �

��	��
��

�����
���
��������������
��

��
���

(b) Broadcast from all nodes.

8�
�8�
�8�
�8�
�8�
�8�

8� 8�88�� 8�8�� 8�8��� 8�8�� 8�8��� 8�8��

��
��

��
��

��
��
��
��

	�
��	

�	

�

��
�

����	����������
���������	�	
���

��
���
��������	��
���
���������������
����
��������������� ����������������
����������������

������

(c) Multicast (random # dest) from all nodes.

Fig. 6: SMART-FanOut (SFO) with synthetic 1-to-many traffic.

8�
��

�8�
���
�8�
���
�8�
���
�8�

8� 8��� 8��� 8��� 8��� �

��
��
�
��
��
��
�	
��

��
�

��
��

����������	���
���������������
���

�����	
���
�������� ����������	
��
���
����������	
������ �
�������

������

(a) Latency for receiving all 63 ACKs.

��
��
��
 �
��
!��
!��
!��
! �
!��
���

�� � �� � �� � � � �� !�

��
��

��
��

	�
�

��
��

��

�

�
�

���������������
������
��	��������

�	
!�
�!�����!�""!�
��!!�#����
�����$�
��!!�#����
���##$�
���#�!�!�%���!	��

�������������	�
�
�
�

���������������
�
�
��
�������������	�
�
�
��

(b) ACKs received / M-to-1 Flows Injected.

$�
��
��

���
���
���
���
���

�� ���� ���� ���� ���� �

��
��
�
��
��

��
��
	

��

�

��

���
�����
��
�������������	����
!�

	
��
������

������
�������������	����
����
� ��

(c) Avg ART entries occupied.

Fig. 7: SMART-FanIn (SFI) with synthetic many-to-1 traffic

!"#$� !"#"� !"#!� !"#9�
!"#%� !"#!�

!:#$�

!$#$�
!"#!� !"#!�

!;#&�

!"#:�

<#<�

%%#$� %%#$� %%#9�

<#<� <#>�

;#>�

9#$�

>#!�

9#$� 9#%�

<#&�

%!#9�

%"#!�
%$#:� %$#:�

%!#<�
%!#$�

<#"� <#%�

%&#;�

<#$�

;#%�

%%#$�

%� %� %� %� %� %� %� %� %� %� %� %�

&�
:�
%&�
%:�
!&�
!:�
$&�

&�
&#!�
&#"�
	�
&#>�

%�
%#!�

'
�

(�
�

��
��

��
��
	�

��
��

�
�

��
��

�
�

��
��
��
��
�

��
��

��
��

��
��
��
��

�

��
��

	�
9�
�

��
 �

��
��
��

��
��

��
��
��

��
��

	�
��

�

��
�

�

�
�
�

��
��

��
��

��
��

!�������?'��������� �+�
���� ������ �+�
 ��� ������
+�����'��������� !
��
"�#�������

(a) Token Coherence (TC) Protocol Performance.

&$�&�
&&�%�

&$�$� &$�&�

&&�&�
&&�'�

(�%�
(�'�

&(�$�
&(�)�

(�&�

&(�)�

)�&�)�&�)�$�)�&� &�*�)�(�

&�'� &�&�
&�%� &�*�

&�'�

&�(�

&� &� &� &� &� &� &� &� &� &� &� &�&� &� &� &� &� &� &� &� &� &� &� &�

(�
$�&�
&�
%�&�
&(�
&$�&�

(�
(�$�
(�'�
(�)�
(�(�
&�

+
�

��
�

��
��

��
��
	�

��
��

)�
�

��
��

)�
�

��
��
��
��
�

��
��

��
��

��
��
��
��

�

��
��

	$
)'
�

��
 �

��
��

���
��
��
	�

��

��

�
��

�
�

�
��
�
��
��
��

��
��

��
��

!�������@'��������� �+������ ���+	� ��
�+������ ���+	�'
� +���
�'
��������
�'�������������
����
�� 	����������	�
�����
�

(b) HyperTransport (HT) Protocol Performance.

Fig. 8: Full-system impact of SFO and SFI for a 8×8 CMP.
Figure 7a, the x-axis plots the injection rate for each 63-

to-1 flow, and the y-axis plots the M-to-1 latency - cycles

it took to receive one (or more) ACKs with a combined

count of 63. For the baseline, the average M-to-1 latency

is ∼25 cycles, till the network saturates at an injection rate

of 0.44 M-to-1 flows/cycle. SFI Greedy (Prio=Local) works

almost identical to the baseline since all ACKs are forced to

stop at every router, to prioritize its locally buffered ACKs

over the bypassing ones to use the links. With SFI Greedy

(Prio=Bypass), the very same locally buffered ACKs now

get aggregated into the higher-priority bypassing ACK, as

explained earlier in Section IV-B, reducing the latency to

5.7-8.9 cycles, before the network saturates at an injection

rate of 0.8. With SFI Complete, the latency goes down to

4.7-7.1 cycles, and the network does not saturate even at an

injection of 1 M-to-1 flow every cycle. SFI Complete reduces

the effective injection rate by M enhancing throughput.

Figure 7b plots the aggregation ratio, i.e., number of ACKs

received per M-to-1 flow. The SFI Complete meets the ideal

by delivering only one ACK with a count of 63 for each

flow. SFI Greedy (Prio=Bypass) delivers 4 ACKs on average

- this number goes up with arbitrary delays between ACK

injection which will be explored with full-system traffic later

in Section V-C. The baseline and SFI Greedy (Prio=Local)

wait for 1 cycle on average at every router (during which time

they opportunistically aggregate), and deliver 12-18 ACKs per

flow before saturation. Once they saturate, ACKs are forced

to wait for 4.5 cycles on average, increasing aggregation ratio

to the ideal 1 ACK per flow.

Figure 7c plots the number of distinct ACKs13 at each

router, on average. This represents the total number of active

M-to-1 flows in the system at any time. For the baseline, the

number of ACKs goes up to 9 before saturation (at which

point it shoots up to 20). For SFI, the number of ACKs (i.e.,

ART occupancy) is about 4.

In summary, the complete SFI scheme provides the lowest
latency, and highest throughput for reduction traffic.
C. Full-system Performance
We run the parallel sections of SPLASH-2 [21] and PAR-

SEC [22] through Wind River Simics [23] with 64 in-order

SPARC cores, connected to the GEMS [20] timing model.

We model 32kB Private I&D L1, and 1M Private L2 caches

per tile. We run two coherence protocols: (1) Token Coherence

(TC) [2], which has 52% broadcast flows, and (2) HyperTrans-

port (HT) [1], which has 14% broadcast and 14% ACK flows,

on average, across these workloads.

SFO on TC. Figure 8a plots the runtime and 1-to-M latency

of SFO Greedy with SVT and PVT, compared to the baseline

and fully-connected NoCs, all running TC. SFO provides 16%

runtime reduction over the baseline. There is no significant

difference between the runtime in SVT and PVT implementa-

tions since most workloads are not network bandwidth limited.

13Two ACKs from the same flow cannot be simultaneously buffered at a
router in both Base+Coll and SFI, as one would be aggregated into the other.

2014 Eighth IEEE/ACM International Symposium on Networks-on-Chip (NoCS)

7
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:27:18 UTC from IEEE Xplore. Restrictions apply.

The exception is water-nsq where SVT Greedy provides 16%

runtime improvement while PVT Greedy provides 35%. The

average 1-to-M latency over PVT is 3 cycles more than over

SVT due to the redirection.

SFO+SFI on HT. Figure 8b plots the runtime and ACKs

received per M-to-1 flow for the SFI Greedy (Prio=Bypass)

and Complete schemes, with the SFO Greedy scheme, com-

pared to the baseline and fully-connected, all running HT.

SFI Greedy provides 11% runtime reduction on average, with

SFI Complete reducing it by a further 3% on average. The

baseline, which has an optimized aggregator at each router,

delivers 8-12 ACKs per M-to-1 flow. SFI Greedy reduces

this to 5-6, and SFI Complete reduces it to exactly 1. While

SFI Greedy and SFI Complete have similar performance, the

latter consumes 50% less energy, and the former 29%, than

the baseline, due to the fewer buffer writes/reads and link

traversals. This is despite the crossbar energy per access in

SFI being 1.58 times higher than in the baseline to account for

the bypass muxes and repeaters driving wires multi-hop [15].

One ART entry per core suffices for all this performance gain

and energy savings, and the average ART occupancy was 20

for SFI Complete.

VI. RELATED WORK

Networks with Multicast Support. On-chip routers with

message forking support have been proposed recently in

works like VCTM [3], bLBDR [5], MRR [4], RPM [6],

FANOUT [8]. Our baseline is derived from these, and assumes

a highly-optimized 1-cycle forking delay [6], [8]. Tree-based

multicast routing algorithms like Whirl [8] and BAM [9]

(optimized over RPM [6]) try to utilize the network bandwidth

and buffers more efficiently. Our PVT has a similar goal,

and succeeds in completely eliminating contention between

multicasts, at the cost of redirection to a CR. SFO is the first

work to demonstrate single-cycle traversals across multiple

nodes of a multicast tree.

Networks with Reduction Support. In the off-chip do-

main, dedicated reduction networks for barrier synchroniza-

tion have been used in supercomputers like NYU Ultracom-

puter [24] and IBM Blue Gene/L [25]. Aggregation of memory

requests was done in IBM RP3 [26] and NYU Ultracom-

puter [24]. In the on-chip domain, barrier synchronization is

performed over dedicated global broadcast wires [11], [12],

[27] or transmission lines [10]. Com [9] and FANIN [8]

perform in-network reduction without adding a dedicated

reduction network, and form our baseline. In FANIN the first

ACK for a flow to enter a router opportunistically aggregates

other ACKs of the same flow for a heuristically defined wait

time, before proceeding further. Com uses a central CAM

at every router to perform an addition of ACK counts, and

requires ACKs to return to the broadcast root. Our ART avoids

a CAM lookup by ACK id indexing, can handle ACKs

flowing to a different node than the root, and can also handle

any reduction operation. SFI is the first work to demonstrate

reduction across multiple routers within the same cycle.

VII. CONCLUSION

In this work, we present SMART-FanOut and SMART-

FanIn that enable forking and reduction respectively across

multiple nodes in a dimension within a single-cycle, leveraging

clockless repeated wires on the datapath. We explore greedy

and complete forking/aggregation approaches, and conclude

that a greedy forking and complete aggregation strategy

provides the best performance at the lowest energy. Going

forward, single-cycle collective communication enabled by

SFO and SFI, without the overhead of dedicated networks,

can provide scalability to limited-directory protocols and MPI

as we scale core counts.

REFERENCES

[1] P. Conway and B. Hughes, “The AMD Opteron Northbridge Architec-
ture,” IEEE Micro, vol. 27, pp. 10–21, Mar. 2007.

[2] M. M. K. Martin et al., “Token Coherence: Decoupling Performance
and Correctness,” in ISCA, Jun. 2003.

[3] N. Jerger et al., “Virtual Circuit Tree Multicasting: A Case for On-chip
Hardware Multicast Support,” in ISCA, 2008.

[4] P. A. Fidalgo et al., “MRR: Enabling Fully Adaptive Multicast Routing
for CMP Interconnection Networks,” in HPCA, 2009.

[5] S. Rodrigo et al., “Efficient Unicast and Multicast Support for CMPs,”
in MICRO, 2008, pp. 364–375.

[6] L. Wang et al., “Recursive Partitioning Multicast: A Bandwidth-Efficient
Routing for Networks-on-Chip,” in NOCS, 2009.

[7] F. A. Samman et al., “Multicast Parallel Pipeline Router Architecture
for Network-on-Chip,” in DATE, 2008, pp. 1396–1401.

[8] T. Krishna et al., “Towards the Ideal On-Chip Fabric for 1-to-Many and
Many-to-1 Communication,” in MICRO, 2011.

[9] S. Ma et al., “Supporting efficient collective communication in NoCs,”
in HPCA, 2012, pp. 165–176.

[10] J. Oh et al., “TLSync: support for multiple fast barriers using on-chip
transmission lines,” in ISCA, 2011, pp. 105–116.

[11] J. L. Abellán et al., “Efficient and Scalable Barrier Synchronization for
Many-Core CMPs,” in ICCF, 2010, pp. 73–74.

[12] V. Krishnan et al., “The Need for Fast Communication in Hardware-
Based Speculative Chip Multiprocessors,” Int. J. Parallel Program.,
vol. 29, pp. 3–33, Feb. 2001.

[13] R. Ho, “On-Chip Wires: Scaling and Efficiency,” Ph.D. dissertation,
Stanford University, Aug 2003.

[14] B. Kim and V. Stojanović, “Equalized Interconnects for On-Chip Net-
works: Modeling and Optimization Framework,” in ICCAD, 2007.

[15] T. Krishna et al., “Breaking the On-Chip Latency Barrier Using
SMART,” in HPCA, 2013, pp. 378–389.

[16] C.-H. O. Chen et al., “SMART: A Single-Cycle Reconfigurable NoC
for SoC Applications,” in DATE, 2013, pp. 338–343.

[17] http://www.itrs.net.
[18] C. Sun et al., “DSENT-a tool connecting emerging photonics with

electronics for opto-electronic networks-on-chip modeling,” in NOCS,
2012, pp. 201–210.

[19] N. Agarwal et al., “GARNET: A Detailed On-chip Network Model
inside a Full-system Simulator,” in ISPASS, 2009, pp. 33–42.

[20] M. M. K. Martin et al., “Multifacet’s General Execution-driven Multi-
processor Simulator (GEMS) Toolset,” CAN, 2005.

[21] S. C. Woo et al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” in ISCA, 1995, pp. 24–36.

[22] C. Bienia et al., “The PARSEC Benchmark Suite: Characterization and
Architectural Implications,” in PACT, 2008.

[23] http://www.windriver.com/products/simics.
[24] A. Gottlieb et al., “The NYU Ultracomputer - Designing a MIMD

Shared Memory Parallel Computer,” IEEE Trans. on Computers, vol. 32,
pp. 175–189, 1983.

[25] A. Gara et al., “Overview of the Blue Gene/L system architecture,” IBM
J. Res. Dev., vol. 49, pp. 195–212, Mar. 2005.

[26] G. F. Pfister et al., “The IBM Research Parallel Processor Prototype
(RP3): Introduction and Architecture,” in ICPP, 1985.

[27] M. A. Watkins et al., “ReMAP: A reconfigurable heterogeneous multi-
core architecture,” in MICRO, 2010.

2014 Eighth IEEE/ACM International Symposium on Networks-on-Chip (NoCS)

8
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:27:18 UTC from IEEE Xplore. Restrictions apply.

