
Breaking the On-Chip Latency Barrier Using SMART

Tushar Krishna Chia-Hsin Owen Chen Woo Cheol Kwon Li-Shiuan Peh
Computer Science and Artificial Intelligence Laboratory (CSAIL)

Massachusetts Institute of Technology, Cambridge, MA 02139
{tushar, owenhsin, wckwon, peh}@csail.mit.edu∗

Abstract
As the number of on-chip cores increases, scalable on-chip

topologies such as meshes inevitably add multiple hops in
each network traversal. The best we can do right now is to de-
sign 1-cycle routers, such that the low-load network latency
between a source and destination is equal to the number of
routers + links (i.e. hops×2) between them. OS/compiler
and cache coherence protocols designers often try to limit
communication to within a few hops, since on-chip latency
is critical for their scalability. In this work, we propose
an on-chip network called SMART (Single-cycle Multi-hop
Asynchronous Repeated Traversal) that aims to present a
single-cycle data-path all the way from the source to the des-
tination. We do not add any additional fast physical express
links in the data-path; instead we drive the shared crossbars
and links asynchronously up to multiple-hops within a single
cycle. We design a router + link microarchitecture to achieve
such a traversal, and a flow-control technique to arbitrate
and setup multi-hop paths within a cycle. A place-and-routed
design at 45nm achieves 11 hops within a 1GHz cycle for
paths without turns (9 for paths with turns). We observe
5-8X reduction in low-load latencies across synthetic traffic
patterns on an 8×8 CMP, compared to a baseline 1-cycle
router. Full-system simulations with SPLASH-2 and PAR-
SEC benchmarks demonstrate 27/52% and 20/59% reduction
in runtime and EDP for Private/Shared L2 designs.

1. Introduction
Over the last decade, computer architects have been de-

livering higher FLOPS/cycle by increasing the number of
on-chip cores, instead of increasing the clock frequency, be-
cause of the power wall. While increasing the number of
cores is not very hard (due to Moore’s Law), connecting
these cores is. The reason is that more cores translates to
more hops1 to get from one core to another. Every hop adds

∗The authers acknowledge the support of DARPA UHPC, SMART
LEES, and MARCO C-FAR. A special thanks to Sunghyun Park from
MIT and Michael Pellauer from Intel for highly useful discussions on the
SMART interconnect and pipeline respectively.

1We define hop to be the physical distance between neighboring tiles,
which is typically 1-2mm [14, 15]. In this paper, 1-hop = 1mm based on
place-and-route of a Freescale PowerPC e200z7 core in 45nm.

an additional on-chip router (required at each hop to enable
multiplexing of multiple flits over shared links) along the
route, which increases the latency and energy overhead of
every network traversal.

The equation for network latency (T) of a packet is [11]:
T = H · tr +H · tw +Tc +L/b (1)

H is the number of hops, tr is the router pipeline delay, tw
is the wire (between two routers) delay, Tc is the contention
delay at routers, and L/b is the serialization delay for the
body and tail flits, i.e. time for a packet of length L to cross
a channel with bandwidth b.

One proposed approach to reduce this latency is topol-
ogy, by using high-radix routers [13, 19, 8, 22, 34]. The
idea is to reduce H, by adding explicit links between phys-
ically distant routers, thus reducing the number of routers
on the route. However, this is done at the cost of thinner
channels (i.e. smaller b) which increases serialization delay.
Moreover, higher number of input/output ports at routers
leads to increased complexity of the routing, allocation
and crossbar blocks, increasing router delay tr and router
power. Instead, most commercial and research multicore
prototypes [15, 16, 36, 1] have opted for simpler topolo-
gies like rings and meshes to ease design (layout and veri-
fication) and reduce router delay and energy. Network la-
tency in such systems has been mitigated by shrinking tr
to 1, using router microarchitectural and flow-control tech-
niques [24, 27, 32, 23, 25, 31, 30]. As core count increases
though, H inevitably increases. Average hop counts in a
k× k mesh increase linearly with k. As we design 1024 core
chips [2, 28, 12, 18] for the exascale era, high hop counts
will lead to horrendous on-chip network traversal latency
and energy creating a stumbling block to core count scaling.

How critical is on-chip latency for overall system perfor-
mance? We compare three networks: (1) 3-cycle router, i.e.
tr = 3 (modeled similar to Intel’s recent 48-core SCC [16]),
(2) 1-cycle router, i.e. tr = 1 (the state-of-the-art in academic
literature to date, described in Section 2), and (3) an ideal
1-cycle network, i.e. T = 1+L/b (every flit is magically sent
from the source NIC to its destination NIC after 1-cycle with
zero contention, which essentially implies that every core is
1-hop away). tw (i.e. wire delay per hop) is assumed to be 1

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

ba
rn
es
	

lu
	

ra
di
x	

w
at
er
-­‐n
sq
	

bl
ac
ks
ch
ol
es
	

flu
id
an
im

at
e	

sw
ap
Co

ns
	

x2
64

	

ba
rn
es
	

lu
	

ra
di
x	

w
at
er
-­‐n
sq
	

bl
ac
ks
ch
ol
es
	

flu
id
an
im

at
e	

sw
ap
Co

ns
	

x2
64

	

Private	
 L2	
 Shared	
 L2	

N
or
m
al
iz
ed

	
 A
pp

lic
a/

on
	
 R
un

/m
e	
 BASELINE_3-­‐cycle-­‐router	
 BASELINE_1-­‐cycle-­‐router	
 IDEAL_1-­‐cycle-­‐network	

Figure 1: Impact of on-chip latency on full-system runtime

for (1) and (2). We perform full-system simulations on a 64-
core system2 laid out as a mesh, and look at runtime across
a suite of SPLASH-2 [3] and PARSEC [9] benchmarks for
both a Private and a (distributed) Shared L2 configuration.
Figure 1 shows 26% and 52% reduction in runtime on aver-
age for (2) and (3) compared to (1) for a Private L2 design,
where only L2 misses traverse the network. For a Shared L2
design, both L1 and L2 misses traverse the network, making
network latency more critical, which is reflected by a 63%
and 85% runtime reduction for (2) and (3) compared to (1).

A high on-chip latency not just delays requests and re-
sponses, but also slows down the injection of other requests
and responses (due to dependencies), leading to poorer
throughput and overall system slowdown. This is the reason
why coherence protocol designers prefer Private L2 designs,
while programmers and compiler/OS designers try to map
data close to sharers to minimize the average network hops.
However, there is only so much that the protocol or software
can do since a core has limited 1-hop neighbors.

In this work, we present a solution to approach the ideal 1-
cycle network for any source-destination pair in a mesh. Our
proposed NoC is named SMART, for Single-cycle Multi-hop
Asynchronous Repeated Traversal. As the name suggests, we
embed asynchronous repeaters within each router’s crossbar,
and size them to drive signals up to multiple hops within a
single-cycle. We optimize network latency as follows:

T = (H/HPC) · tr +(H/HPC) · tw +Tc +L/b (2)
where HPC stands for number of Hops Per Cycle. We reduce
the effective number of hops to d(H/HPC)e, without adding
any additional physical wires in the data-path or reducing b
like the high-radix router solutions do.

This paper makes the following contributions:
• We advocate for a single-cycle traversal across multiple

routers in a network.
• A single-cycle multi-mm interconnect circuit is presented,

integrated into a regular mesh topology.
• A network flow-control mechanism is presented that en-

ables flits to setup arbitrary multi-hop paths (with turns)
within a cycle, and then traverse them within a cycle.

On a 64-core mesh, synthetic traffic shows 5-8X reduction in
average network latency, while full-system SPLASH-2 and

2Refer to Section 7 for methodology and configurations.

PARSEC traffic shows 27/52% reduction in average runtime
for Private/Shared, compared to a 1-cycle router.

The paper is organized as follows. Section 2 describes the
baseline 1-cycle router. Section 3 introduces the SMART
link, and how it is embedded into a router. Section 4 demon-
strates the design for a k-ary 1-Mesh, and Section 5 extends
it to a k-ary 2-Mesh. Section 6 describes implementation
details, up to layout. Section 7 presents our evaluations.
Section 8 contrasts against prior art and Section 9 concludes.

2. Background
Networks-on-Chip (NoCs) consist of shared links, with

routers at crosspoints. Routers perform multiplexing of flits
on the links, and buffer flits in case of contention. Each hop
consists of a router + link traversal. A router performs the
following actions [11]:
Buffer Write (BW): The incoming flit is buffered.
Route Compute (RC): The incoming head flit chooses an
output port to depart from.
Switch Allocation (SA): Buffered flits arbitrate among
themselves for the crossbar switch. At the end of this stage,
there is at most one winner for every input and output port
of the crossbar.
VC Selection (VS): Head flits that win SA reserve a VC for
the next router, from a pool of free VCs [26].
The winners of SA proceed to Switch Traversal (ST) and
Link Traversal (LT) to the next router.

Plethora of research in NoCs over the past decade cou-
pled with technology scaling has allowed the actions within a
router to move from serial execution to parallel execution, via
lookahead routing [11], simplified VC selection [26], specu-
lative switch arbitration [31, 30], non-speculative switch ar-
bitration via lookaheads [24, 27, 32, 23, 25] to bypass buffer-
ing and so on. This has allowed the router delay tr (Equa-
tion 1) to drop from 3-5 cycles in industry prototypes [15, 16]
to 1-cycle in academic NoC-only prototypes [25, 32]. We
use this state-of-the-art 1-cycle router as our baseline. ST
and LT can be done together within a cycle [16, 32] giving
us tw = 1. Thus our baseline incurs 2-cycles-per-hop, and is
shown in Figure 2. In case of contention, flits have to get
buffered and could wait multiple cycles before they win SA
and VS, increasing Tc, as shown at Routern+i.

3. The SMART Interconnect
Adding asynchronous repeaters3 is a standard way of re-

ducing wire delay [20, 33]. We perform place-and-route
for a 128-bit repeated wire in a commercial 45nm SOI tech-
nology using Cadence Encounter. We keep increasing the
length of the wire, letting the tool size the repeaters appropri-
ately, till it fails timing closure at 1ns (i.e. 1GHz). Figure 3
shows that a place-and-routed repeated wire in 45nm can

3A pair of inverters.

Routern

Routern+1

Routern+i

*only required for
Head flits

Flit Pipeline
Time

VC Select

Route

Switch Alloc

Crossbar

Cin

Nin

Sin

Ein

Win

Cout

Nout

Sout

Eout

Wout

creditin

creditout

bypass path

Route

bypass path

ST+LT
BW
SA
VS*

ST+LT
RC*
SA
VS*

ST+LT
RC*
SA
VS*

RC*
SA

Figure 2: Baseline 1-cycle Router (2-cycles-per-hop)

go up to 16mm in a ns4. We define the maximum length
in mm that can be traversed in a cycle as HPCmax. Figure 3
shows a similar trend for HPCmax at 32nm and 22nm, with
energy going down by 19% and 42% respectively, using the
timing-driven NoC power modeling tool DSENT [35]5.

Router logic delay limits the network frequency to 1-
2GHz at 45nm [16, 32]. Link drivers are accordingly sized
to drive only 1mm (1-hop) in 0.5-1ns, before the signal is
latched at the next router. SMART removes this constraint of
latching signals at every hop. We exploit the positive slack
in the link traversal stage by replacing clocked link drivers
by asynchronous repeaters at every hop, thus driving signals
HPCmax-hops within a cycle. HPCmax is a design-time pa-
rameter, which can be inferred from Figure 3. If we choose
a 2mm tile size, or a 2GHz frequency, HPCmax will go down
by half. Asynchronous repeaters also consume 14.3% lower
energy/bit/mm than conventional clocked drivers, as shown
in Figure 3, giving us a win-win. SMART is a better solution
for exploiting the slack than deeper pipelining of the router
with a higher clock frequency (e.g. Intel’s 80-core 5GHz
5-stage router [15]) which, even if it were possible to do,
does not reduce traversal latency (only improves throughput),
and adds huge power overheads due to pipeline registers.

Figure 4a shows a SMART router. For simplicity, we only
show Corein(Cin)

6, Westin(Win) and Eastout(Eout) ports. All
other input ports are identical to Win, and all other output
ports are identical to Eout . Each repeater has to be sized to
drive not just the link, but also the muxes (2:1 bypass and 4:1
Xbar) at the next router, before a new repeater is encountered.
Using the same methodology with Cadence Encounter, this
reduces HPCmax to 11 at 1GHz (Section 6).

Figure 4a shows the three primary components of the
design: (a) Buffer Write enable (BWena) at the input flip flop
which determines if the input signal is latched or not, (2)

4The sharp rise in energy past 13mm can be attributed to a limitation of
the place-and-route tool, which zig-zags wires to fit to a fixed global grid,
that is unfortunately not a multiple of M6 width, adding unnecessary wire
length. A custom design can potentially go farther and with flatter energy
profile.

5DSENT’s HPCmax projections are slightly overestimated because it
does not model inter-layer via parasitics (needed to access the repeater
transistors on M1 from the link on M6), which become significant when
there are many repeaters.

6Cin does not have a bypass path like the other ports because all flits
from the NIC have to get buffered at the first router, before they can create
SMART paths, which will be explained later in Section 4.

15	

18	

21	

24	

27	

30	

33	

36	

39	

42	

45	

48	

51	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	

En
er
gy
	
 (f
J/
bi
t/
m
m
)	

Length	
 (mm)	

Clocked	

Driver	
 	

45nm	
 PnR	

45nm	
 (Place-­‐and-­‐Route)	

45nm	
 (DSENT)	

32nm	
 (DSENT)	

22nm	
 (DSENT)	

Figure 3: Achievable HPCmax for Repeated Links at 1GHz.
Wire Width: DRCmin, Wire Spacing: 3 ·DRCmin, Metal Layer: M6.
Repeater Spacing: 1mm

Bypass Mux select (BMsel) at the input of the crossbar to
choose between the local buffered flit, and the bypassing
flit on the link, and (3) Crossbar select (XBsel). Figure 4b
shows an example of a multi-hop traversal: a flit from Router
R0 traverses 3-hops within a cycle, till it is latched at R3.
The crossbars at R1 and R2 are preset to connect the Win to
Eout , with their BMsel preset to choose bypass over local. A
SMART path can thus be created by appropriately setting
BWena, BMsel, and XBsel at intermediate routers. In the next
section, we describe the flow control to preset these signals.

4. SMART in a k-ary 1-Mesh
Table 1 defines terminology that will be used throughout

the paper. We start by demonstrating how SMART works in
a k-ary 1-Mesh, shown in Figure 5. Each router has 3 ports:
West, East and Core7. As shown earlier in Figure 4a, Eout_xb
can be connected either to Cin_xb or Win_xb. Win_xb can be
driven either by bypass, local or 0, depending on BMsel.

The design is called SMART_1D (since routers can be
bypassed only along one dimension). The design will be
extended to a k-ary 2-Mesh to incorporate turns, in Section 5.
For purposes of illustration, we will assume HPCmax to be 3.

4.1. SMART-hop Setup Request (SSR)
The SMART router pipeline is shown in Figure 6. A

SMART-hop starts from a start router, where flits are
buffered. Unlike the baseline router, Switch Allocation in
SMART occurs over two stages: Switch Allocation Local
(SA-L) and Switch Allocation Global (SA-G). SA-L is iden-
tical to the SA stage in the conventional pipeline (described
earlier in Section 2): every start router chooses a winner for
each output port from among its buffered (local) flits. In
the next cycle, instead of the winners directly traversing the
crossbar (ST), they broadcast a SMART-hop setup request
(SSR) via dedicated repeated wires (which are inherently
multi-drop8) up to HPCmax. These dedicated SSR wires are
shown in Figure 5. These are log2(1+HPCmax)-bits wide,
and are part of the control-path. The SSR carries the length
(in hops) up to which the flit winner wishes to go. For in-
stance, SSR = 2 indicates a 2-hop path request. Each flit tries

7For illustration purposes, we only show Cin, Win and Eout in the figures.
8Wire cap is an order of magnitude higher than gate cap, adding no

overhead if all nodes connected to the wire receive.

Win

Cin

Eout

BMsel

BWena

XBsel

0
bypass

local Win_xb

Cin_xb

Eout_xb

Asynchronous
Repeater

Xbar

Win

Cin

Eout

BMsel

BWena

XBsel

0
bypass

local Win_xb

Cin_xb

Eout_xb

Asynchronous
Repeater

Xbar

free_vc

(a) SMART Router Microarchitecture

R0 R1 R2 R3

BWena

BMsel

XBsel

0
0

Cin->Eout

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

1
0
X

Cin

Win

(b) Single-cycle Multi-hop Asynchronous Repeated Traversal Example

Figure 4: SMART: Single-cycle Multi-hop Asynchronous Repeated Traversal

R0 R1 R2 R3 R4

SSR
1h2h3h 0h

BWen

BMsel
XBsel

SSRs for Wout

SSRs for Eout h = hop

Cin

Win

SA-G

Eout

log2(1+ HPCmax)

SA-L

Figure 5: k-ary 1-Mesh with dedicated SSR links.

Routern+1

*only required for
Head flits

Flit Pipeline

SSR PipelineRoutern

Routern+2

Routern+HPCmax

Time

Routern+i

SSR+SA-G ST+LT
VS* + BW

RC*
SA-L

VS* + BW
RC*

ST+LT
SSR+SA-G

SSR+SA-G ST+LT

SSR+SA-G ST+LT

SSR+SA-G ST+LT
VS* + BW

RC*
SA-L

Figure 6: SMART Pipeline

to go as close as possible to its ejection router, hence SSR =
min(HPCmax, Hremaining).

During SA-G, all inter routers arbitrate among the SSRs
they receive, to set the BWena, BMsel and XBsel signals. The
arbiters guarantee that only one flit will be allowed access to
any particular input/output port of the crossbar. In the next
cycle (ST+LT), SA-L winners that also won SA-G at their
start routers traverse the crossbar and links upto multiple
hops till they are stopped by BWena at some router. Thus
flits spend at least 2 cycles (SA-L and SA-G) at a start router
before they can use the switch. Flits can end up getting
prematurely stopped (i.e before their SSR length) depending
on the SA-G results at different routers. SSR traversal and
SA-G occur serially (see Section 6 for timing implications).

We illustrate all these with examples. In Figure 7, Router
R2 has FlitA and FlitB buffered at Cin, and FlitC and FlitD
buffered at Win, all requesting Eout . Suppose FlitD wins SA-
L during Cycle-0. In Cycle-1, it sends out SSRD = 2 (i.e.
request to stop at R4) out of Eout to Routers R3, R4 and R5.
SA-G is performed at each router. At R2, which is 0-hops
away (< SSRD), BMsel = local, XBsel = Win_xb→Eout_xb. At
R3, which is 1-hop away (< SSRD), BMsel = bypass, XBsel =
Win_xb→Eout_xb. At R4, which is 2-hops away (= SSRD),
BWena = high. At R5, which is 3-hops away (> SSRD), SSRD

Table 1: Terminology
Term Meaning
HPC Hops Per Cycle. The number of hops traversed

in a cycle by any flit.
HPCmax Maximum number of hops that can be traversed

in a cycle by a flit. This is fixed at design time.
SMART-hop Multi-hop path traversed in a Single-cycle via

a SMART link. It could be straight, or have turns.
The length of a SMART-hop can vary
anywhere from 1-hop to HPCmax.

injection router First router on the route. The source NIC injects
a flit into the Cin port of this router.

ejection router Last router on the route. This router ejects
a flit out of the Cout port to the destination NIC.

start router Router from which any SMART-hop starts.
This could be the injection router,
or any router along the route.

inter router Any intermediate router on a SMART-hop.
stop router Router at which any SMART-hop ends.

This could be the ejection router
or any router along the route.

turn router Router at a turn (Win/Ein to Nout /Sout , or Nin/Sin
to Wout /Eout) along the route.

local flits Flits buffered at any start router.
bypass flits Flits which are bypassing inter routers.
SMART-hop Length (in hops) for a requested SMART-hop.
Setup For example, SSR=H indicates a request
Request (SSR) to stop H-hops away.

Optimization: Additional ejection-bit if
requested stop router is ejection router.

premature stop A flit is forced to stop before its requested
SSR length.

Prio=Local Local flits have higher priority over bypass flits,
i.e. Priority α 1/(hops_from_start_router).

Prio=Bypass Bypass flits have higher priority over local flits,
i.e. Priority α (hops_from_start_router).

SMART_1D Design where routers along the dimension
(both X and Y) can be bypassed. Flits need to
stop at the turn router.

SMART_2D Design where routers along the dimension and
one turn can be bypassed.

is ignored. In Cycle-2, FlitD traverses the crossbars and
links at R2 and R3, and is stopped and buffered at R4.

What happens if there are competing SSRs? In the
same example, suppose R0 also wants to send FlitE 3-hops
away to R3, as shown in Figure 8. In Cycle-1, R2 sends
out SSRD as before, and in addition R0 sends SSRE = 3 out
of Eout to R1, R2 and R3. Now at R2 there is a conflict
between SSRD and SSRE for the Win_xb and Eout_xb ports
of the crossbar. SA-G priority decides which SSR wins the
crossbar. More details about priority will be discussed later

R0 R1 R2 R3 R4 R5

=

SSRD = 2FlitD

FlitC

FlitB

FlitA

BWena

BMsel

XBsel

0
local

Win->Eout

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

1
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BMsel

XBsel

0
0
X

Cycle 1
Cycle 2

Cin

Win

Figure 7: SMART Example: No SSR Conflict

R0 R1 R2 R3 R4 R5

BWena

BMsel

XBsel

1
local

Win->Eout

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

1
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

0
0

Cin->Eout

Cycle 1
Cycle 2

Cin

Win

FlitE

SSRE = 3
=

SSRD = 2FlitD

FlitC

FlitB

FlitA

Figure 8: SMART Example: SSR Conflict with Prio=Local

R0 R1 R2 R3 R4 R5

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

1
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

0
0

Cin->Eout

Cycle 1
Cycle 2

Cin

Win

FlitE

SSRE = 3
=

SSRD = 2FlitD

FlitC

FlitB

FlitA

Figure 9: SMART Example: SSR Conflict with Prio=Bypass

in Section 4.2. For now, let us assume Prio=Local (which
is defined in Table 1) so FlitE loses to FlitD. The values of
BWena, BMsel and XBsel at each router for this priority are
shown in Figure 8. In Cycle-2, FlitE traverses the crossbar
and link at R0 and R1, but is stopped and buffered at R2.
FlitD traverses the crossbars and links at R2 and R3 and is
stopped and buffered at R4. FlitE now goes through BW
and SA-L at R2 before it can send a new SSR and continue
its network traversal. A free VC/buffer is guaranteed to exist
whenever a flit is made to stop (see Section 4.4).

4.2. Switch Allocation Global: Priority
Figure 9 shows the previous example with Prio=Bypass

instead of Prio=Local. This time, in Cycle-2, FlitE traverses
all the way from R0 to R3, while FlitD is stalled.

Do all routers need to enforce the same priority? Yes.
This guarantees that all routers will arrive at the same con-
sensus about which SSRs win and lose. This is required for
correctness. In the example discussed earlier in Figures 8
and 9, BWena at R3 was low with Prio=Local, and high with
Prio=Bypass. Suppose R2 performs Prio=Bypass, but R3

performs Prio=Local, FlitE will end up going from R0 to R4,
instead of stopping at R3. This is not just a misrouting issue,
but also a signal integrity issue because HPCmax is 3, but the
flit was forced to go up to 4 hops in a cycle, and will not
be able to reach the clock edge in time. Note that enforcing
the same priority is only necessary for SA-G, which corre-
sponds to the global arbitration among SA-L winners at every
router. During SA-L, however, different routers/ports can
still choose to use different arbiters (round robin, queueing,
priority) depending on the desired QoS/ordering mechanism.

Can a flit arrive at a router, even though the router is
not expecting it (i.e. false positive9)? No. All flits that
arrive at a router are expected, and will stop/bypass based
on the success of their SSR in the previous cycle. This is
guaranteed since all routers enforce the same SA-G priority.

Can a flit not arrive at a router, even though the router
is expecting it (i.e. false negative)? Yes. It is possible for
the router to be setup for stop/bypass for some flit, but no flit

9The result of SA-G (BWena, BMsel and XBsel) at a router is a prediction
for the null hypothesis: a flit will arrive the next cycle, and stop/bypass.

arrives. This can happen if that flit is forced to prematurely
stop earlier due to some SSR interaction at prior inter routers
that the current router is not aware of. For example, suppose
a local flit at Win at R1 wants to eject out of Cout . A flit from
R0 will prematurely stop at R1’s Win port if Prio=Local is
implemented. However, R2 will still be expecting the flit
from R0 to arrive10. Unlike false positives, this is not a
correctness issue but just a performance (throughput) issue,
since some links go idle which could have potentially been
used by other flits if more global information were available.

4.3. Ordering
In SMART, any flit can be prematurely stopped based on

the interaction of SSRs that cycle. We need to ensure that
this does not result in re-ordering between (a) flits of the
same packet, or (b) flits from the same source (if Pt-to-Pt
ordering is required in the coherence protocol).

The first constraint is in routing (relevant to 2D topolo-
gies). Multi-flit packets, and Pt-to-Pt ordered virtual net-
works should only use deterministic routes, to ensure that
prematurely buffered flits do not end up choosing alternate
routes, while bypassing flits continue on the old route.

The second constraint is in SA-G priority. Every input port
has a bit to track if there is a prematurely stopped flit among
its buffered flits. When a SSR is received at an input port,
and there is either (a) a prematurely buffered Head/Body flit,
or (b) a prematurely buffered flit within a Pt-to-Pt ordered
virtual network, the incoming flit is stopped.

4.4. Guaranteeing free VC/buffers at stop routers
In a conventional network, a router’s output port tracks

the IDs of all free VCs at the neighbor’s input port. A
buffered Head flit chooses a free VCid for its next router
(neighbor), before it leaves the router. The neighbor signals
back when that VCid becomes free. In a SMART network,
the challenge is that the next router could be any router
that can be reached within a cycle. A flit at a start router
choosing the VCid before it leaves will not work because
(a) it is not guaranteed to reach its presumed next router,
and (b) multiple flits at different start routers might end up
choosing the same VCid. Instead, we let the VC selection
occur at the stop router. Every SMART router receives 1-bit
from each neighbor to signal if at least one VC is free11.
During SA-G, if an SSR requests an output port where there
is no free VC, BWena is made high and the corresponding
flit is buffered. This solution does not add any extra multi-
hop wires for VC signaling. The signaling is still between
neighbors. Moreover, it ensures that a Head flit comes into a

10The valid-bit from the flit is thus used in addition to BWena when
deciding whether to buffer.

11If the router has multiple virtual networks (vnets) for the coherence
protocol, we need a 1-bit free VC signal from the neighbors for each vnet.
The SSR also needs to carry the vnet number, so that the inter routers can
know which vnet’s free VC signal to look at.

router’s input port only if that input port has free VCs, else
the flit is stopped at the previous router.

However, this solution is conservative because a flit will
be stopped prematurely if the neighbor’s input port does not
have free VCs, even if there was no competing SSR at the
neighbor and the flit would have bypassed it without having
to stop.

How do Body/Tail flits identify which VC to go to at
the stop router? Using their injection_router id. Every
input port maintains a table to map a VCid to an injection
router id12. Whenever the Head flit is allocated a VC, this
table is updated. The injection router id entry is cleared
when the Tail arrives. The VC is freed when the Tail leaves.
We implement private buffers per VC, with depth equal to
the maximum number of flits in the packet (i.e. virtual cut-
through), to ensure that the Body/Tail will always have a
free buffer in its VC13.

What if two Body/Tail flits with same injection_router
id arrive at a router? We guarantee that this will never oc-
cur by forcing all flits of a packet to leave from an output
port of a router, before flits from another packet can leave
from that output port (i.e virtual cut-through). This guaran-
tees a unique mapping from injection router id to VCid in
the table at every router’s input port.

What if a Head bypasses, but Body/Tail is prema-
turely stopped? The Body/Tail still needs to identify a
VCid to get buffered in. To ensure that it does have a VC, we
make the Head flit reserve a VC not just at its stop router, but
also at all its inter routers, even though it does not stop there.
This is done from the valid, type and injection_router fields
of the bypassing flit. The Tail flit frees the VCs at all the inter
routers. Thus, for multi-flit packets, VCs are reserved at all
routers, just like the baseline. But the advantage of SMART
is that VCs are reserved and freed at multiple routers within
the same cycle, thus reducing the buffer turnaround time.

4.5. Additional Optimizations
We add additional optimizations to SMART to push it

towards an ideal 1-cycle network described in Section 1.
Bypassing the ejection router. So far we have assumed

that a flit starting at an injection router traverses one (or more)
SMART-hops till the ejection router, where it gets buffered
and requests for the Cout port. We add an extra e jection-bit
in the SSR to indicate if the requested stop router corresponds
to the ejection router for the packet, and not any intermediate
router on the route. If a router receives a SSR from H-hops
away with value H (i.e. request to stop there), H < HPCmax,
and the ejection-bit is high, it arbitrates for Cout port during
SA-G. If it loses, BWena is made high.

12The table size equals the number of multi-flit VCs at that input port.
13Extending this design to fewer buffers than the number of flits in a

packet would involve more signaling, and is left for future work.

out

SSR

(a) k-ary 2-Mesh with SSR wires
from shaded start router.

(b) Conflict between two
SSRs for Nout port.

3_3 2_1 1_0 2_2 3_4

3_1 2_0 3_2

3_5 2_3 1_1 0_0 1_2 2_4 3_6

3_0

Nout

(c) Fixed Priority at Nout port of inter router.

3_3 2_1 1_0 2_2 3_4

3_1 2_0 3_2

0_0

3_0

in

(d) Fixed Priority at Sin port of inter router.

Figure 10: SMART_2D: SSRs and their SA-G priorities.

Bypassing SA-L at low load. We add no-load bypass-
ing [11] to the SMART router. If a flit comes into a router
with an empty input port and no SA-L winner for its out-
put port for that cycle, it sends SSRs directly, in parallel to
getting buffered, without having to go through SA-L. This
reduces tr at lightly-loaded start routers to 2, instead of 3, as
shown in Figure 6 for Routern+i. Multi-hop traversals within
a single-cycle meanwhile happen at all loads.

4.6. Summary
In summary, a SMART NoC works as follows:
• Buffered flits at injection/start routers arbitrate locally to

choose input/output port winners during SA-L.
• SA-L winners broadcast SSRs along their chosen routes,

and each router arbitrates among these SSRs during SA-G.
• SA-G winners traverse multiple crossbars and links asyn-

chronously within a cycle, till they are explicitly stopped
and buffered at some router along their route.

In a SMART_1D design with both ejection and no-load
bypass enabled, if HPCmax is larger than the maximum hops
in any route, a flit will only spend 2 cycles in the entire
network in the best case (1-cycle for SSR and 1-cycle for
ST+LT all the way to the destination NIC).

5. SMART in a k-ary 2-Mesh
We demonstrate how SMART works in a k-ary 2-Mesh.

Each router has 5 ports: West, East, North, South and Core.

5.1. Bypassing routers along dimension
We start with a design where we do not allow bypass at

turns, i.e. all flits have to stop at their turn routers. We re-use
SMART_1D described for a k-ary 1-Mesh in a k-ary 2-Mesh.
The extra router ports only increase the complexity of the
SA-L stage, since there are multiple local contenders for
each output port. Once each router chooses SA-L winners,
SA-G remains identical to the description in Section 4.1.
The Eout , Wout , Nout and Sout ports have dedicated SSR wires
going out till HPCmax along that dimension. Each input
port of the router can receive only one SSR from a router
that is H-hops away. The SSR requests a stop, or a bypass
along that dimension. Flits with turning routes perform their

traversal one-dimension at a time, trying to bypass as many
routers as possible, and stopping at the turn routers.

5.2. Bypassing routers at turns
In a k-ary 2-Mesh topology, all routers within a HPCmax

neighborhood can be reached within a cycle, as shown
in Figure 10a by the shaded diamond. We now describe
SMART_2D which allows flits to bypass both the routers
along a dimension and the turn router(s). We add dedi-
cated SSR links for each possible XY/YX path from every
router to its HPCmax neighbors. Figure 10a shows that the
Eout port has 5 SSR links, in comparison to only one in
the SMART_1D design. During the routing stage, the flit
chooses one of these possible paths. During the SA-G stage,
the router broadcasts one SSR out of each output port, on
one of these possible paths. We allow only one turn within
each HPCmax quadrant to simplify the SSR signaling.

SA-G Priority. In the SMART_2D design, there can be
more than one SSR from H-hops away, as shown in the ex-
ample in Figure 10b for router R j. R j needs a specific policy
to choose between these requests, to avoid sending false
positives on the way forward to Rk. Section 4.2 discussed
that false positives can result in misrouted flits or flits trying
to bypass beyond HPCmax, thus breaking the system. To ar-
bitrate between SSRs from routers that are the same number
of hops away, we choose Straight > Left Turn > Right Turn.
For the inter router R j in Figure 10b, the SSR from Rm will
have higher priority (1_0) over the one from Rn (1_1) for
the Nout port, as it is going straight, based on Figure 10c.
Similarly at Rk, the SSR from Rm will have higher priority
(2_0) over the one from Rn (2_1) for the Sin port, based on
Figure 10d. Thus both routers R j and Rk will unambiguously
prioritize the flit from Rm to use the links, while the flit from
Rn will stop at Router R j. Any priority scheme will work as
long as every router enforces the same priority.

6. SMART Implementation
In this section, we describe the implementation details

of SMART_1D and SMART_2D designs, and discuss over-
heads. All numbers are for a k-ary 2-Mesh, i.e. the crossbar
has 5-ports (with u-turns disallowed).

if SSR1 ≥ 1 then
bypass_req (SSR1 > 1) & (free_vc)

else if SSR2 ≥ 2 then
bypass_req (SSR2 > 2) & (free_vc)

if SSR3 ≥ 3 then
bypass_req (SSR3 > 3) & (free_vc)

else
bypass_req 0

if SAL_grantC->E || SAL_grantN->E ||
SAL_grantS->E then

XBsel_W->E 0
else if SAL_grantW->E || bypass_req
then

XBsel_W->E 1
else

XBsel_W->E 0

if XBsel_W->E & ~SAL_grantW->E then
BMsel 0 // 0 => bypass

else
BMsel 1 // 1 => local

BWena BMsel

free_vc
SSR3

SSR2

SSR1

SA-GSSR-priority-arbiter SA-Goutport_port SA-Ginport_port

BWena

BMsel

XBsel_W->E

1mm

bypass_req XBsel_W->E

Prio = Local
HPCmax = 3

(a) Implementation of SA-G at Win and Eout (Figure 4a) for SMART_1D

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

220	

2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Baseline	
 SMART_1D	
 SMART_2D	

Ac
ce
ss
	
 E
ne

rg
y	

(fJ
/b
it/

m
m
)	

HPCmax	

SSR	

Link	

Xbar	

SA-­‐G	

SA-­‐L	

Buffer	
 Rd	

Buffer	
 Wr	

Clock	

(b) Energy/Access (i.e. Activity = 1) for each bit sent

Figure 11: SMART Implementation

The SMART data-path, shown earlier in Figure 4, is mod-
eled as a series of 128-bit 2:1 mux (for bypass) followed by
a 4:1 mux (crossbar), followed by a 128-bit 1mm link.

The SMART control-path consists of HPCmax-hops re-
peated wire delay (SSR traversal), followed by logic gate
delay (SA-G). In SMART_1D, each input port receives
one SSR from every router up to HPCmax-hops away in
that dimension. The logic for SA-G for Prio=Local in a
SMART_1D design at the Win and Eout ports of the router
is shown in Figure 11a14. The input and output signals
correspond to the ones shown in the router in Figure 4a15.

In SMART_2D, all routers that are H-hops away, H ∈[1,
HPCmax], together send a total of (2×HPCmax− 1) SSRs
to every input port. SA-GSSR_priority_arbiter is similar to Fig-
ure 11a in this case and chooses a set of winners based on
hops, while SA-Gout put_port disambiguates between them
based on turns, as discussed earlier in Section 5.2.

We choose a clock frequency of 1GHz based on SA-L
critical path in the baseline 1-cycle router at 45nm [32].
We design each of the SMART components in RTL, run it
through synthesis and layout for increasing HPCmax values,
till timing fails at 1GHz. This gives us energy and area
numbers for every HPCmax design point. We incorporate
these into energy and area numbers for the rest of the router
components from DSENT [35]. Figure 11b plots the en-
ergy/bit/hop for accessing each component. For instance,
if a flit wins SA-L and SA-G and traverses a SMART-hop
of length 4 in an HPCmax=8 design, the energy consumed
will be ESA−L +8 ·ESSR+4 ·ESA−G+Ebuf _rd +4 ·EXbar +4 ·
ELink +Ebu f _wr.

The SMART data-path is able to achieve a HPCmax of 11.
The extra energy consumed by the repeaters for driving the
bypass and crossbar muxes is part of the Xbar component in
Figure 11b, and increases comparatively insignificantly till
about HPCmax=8, beyond which it shows a steep rise, con-
suming 3X of the baseline Xbar energy at HPCmax=11. The

14The implementation of Prio=Bypass is not discussed but is similar.
15To reduce the critical path, BWena is relaxed such that it is 0 only when

there are bypassing flits (since the flit’s valid-bit is also used to decide when
to buffer), and BMsel is relaxed to always pick local if there is no bypass.
XBsel is strict and does not connect an input to an output port unless there
is a local or SSR request for it.

total data-path (Xbar+Link) energy for HPCmax=11 goes
up by 35fJ/bit/hop, compared to the baseline. However,
compared to the buffer energy (110fJ/bit/hop) that will be
saved with the additional bypassing brought about by longer
HPCmax, and coupled with additional network latency sav-
ings along with further reduction of data-path energy per bit
as technology scales, we believe it will be worthwhile to go
with higher HPCmax as we scale to hundreds or a thousand
cores. The repeaters do not add any area overhead since the
crossbar area is wire dominated.

SMART_1D’s control-path is able to achieve a HPCmax
of 13 (890ps SSR, 90ps SA-G). But the overall HPCmax gets
limited to 11 by the data-path. SA-G adds less than 1% of
energy or area overhead.

SMART_2D’s control-path is able to achieve a HPCmax
of 9 (620ps SSR, 360ps SA-G), at which point the energy
and area overheads go up to 8% and 5% respectively, due to
the quadratic scaling of input SSRs with HPCmax. However,
not all the input SSRs are likely to be active every cycle.

The total number of SSR-bits entering an input
port are of O(HPCmax · log2(HPCmax)) and O(HPCmax

2 ·
log2(HPCmax)) in SMART_1D and SMART_2D respec-
tively. But these do not affect tile area. However, the SSRs
add energy overheads due to HPCmax-mm signaling when-
ever a SSR is sent.

Based on the energy results, we choose HPCmax=8 for
both SMART_1D and SMART_2D for our evaluations. For
SMART_1D, HPCmax=8 allows bypass of all routers along
the dimension and the ejection, in our target 8-ary 2-Mesh.

7. Evaluation
We use the GEMS [29] + Garnet [5] infrastructure for

all our evaluations, which provides a cycle-accurate timing
model. Full-system simulations use Wind River Simics [4].
Network energy is calculated using DSENT [35] and our
place-and-route results from Section 6. Our target system
is shown in Table 2. The baseline design in all our runs is a
state-of-the-art 1-cycle router described earlier in Section 2.
All SMART designs are named as SMART-HPCmax_1D/2D.
Prio=Local is assumed unless explicitly mentioned.

Table 2: Target System and Configuration
Process On-chip Network
Technology 45nm Topology 8-ary 2-Mesh
Vdd 1.0 V Router Ports 5
Frequency 1.0 GHz Routing XY
Link Length 1mm Flit Width 128-bit

Synthetic Traffic
Virtual Channels 12 [1-flit/VC]

Full-system Traffic
Processors 64 in-order SPARC
L1 Caches Private 32kB I&D
L2 Caches Private/Shared 1MB per core
Cache Coherence MOESI distributed directory
Virtual Networks 3 (req, fwd, resp)
Virtual Channels 4 (req), 4 (fwd) [1-flit/VC], 4 (resp) [5-flit/VC]

7.1. Synthetic Traffic
7.1.1. SMART across different traffic patterns.We start
by running SMART with synthetic traffic patterns. In the
interest of space, we only show three of these in Figure 12.
We compare 3 SMART designs: SMART-8_1D and SMART-
8_2D (which are both achievable designs as discussed in
Section 6), and SMART-15_2D which reflects the best that
SMART can do in an 8×8 Mesh (with maximum possible
hops = 15). We inject 1-flit packets to first understand the
benefits of SMART without secondary effects due to flit
serialization, and VC allocation across multiple routers etc.
For the same reason, we also give enough VCs (12, derived
empirically) to allow both the baseline and SMART to be
limited by links, rather than VCs for throughput.

The striking feature about SMART from Figure 12 is that
it pushes low-load latency to 4 and 2 cycles, for SMART_1D
and SMART_2D respectively, across all traffic patterns, un-
like the baseline where low-load latency is a function of
the average hops, thus truly breaking the locality barrier.
SMART-8_2D achieves most of the benefit of SMART-
15_2D for all patterns, except Bit Complement, since av-
erage hop counts are ≤ 8 for an 8×8 Mesh.

7.1.2. SA-G priorities.We study the effects of priority in
Figure 13a for the best possible 1D and 2D SMART de-
signs. While both priority schemes perform identically at
very low-loads, Prio=Bypass has a sudden throughput degra-
dation at an injection rate of about 44-48% of network capac-
ity. Intuitively, we would expect Prio=Bypass to be better
than Prio=Local as it allows for longer bypass paths, and
avoids unnecessary stopping and buffering of flits already
in flight. Moreover, it is often the priority scheme used in
non-speculative 1-cycle router designs [24, 27] when choos-
ing between a lookahead and a local buffered flit. However,
for SMART, where multiple allocations are occurring in the
same cycle, it suffers from a unique problem, highlighted in
Figure 13b. In this example, Router’s R0, R1 and R3 send
SSRs up to R2, R4 and R5 respectively, in Cycle-1. In a
Prio=Local scheme, R0’s SSR would lose at R1, and R1’s
SSR would lose at R3, leading to the traversals shown in

Cycle-2. For Prio=Bypass, R0’s SSR will win at R1, and the
corresponding flit will be able to go all the way to its stop
router R2. However, even though R1’s SSR lost SA-G at
its start router, it wins over R3’s SSR at R3, preventing R3
from sending its own flit. This cascading effect can continue,
leading to poor link utilization, and heavy throughput loss.
This effect is reflected in the percentage of false negatives
(cases where a router was expecting a flit but no flit came)
going up to 25-40% in Prio=Bypass, killing its throughput,
as opposed to less than 10% in Prio=Local. On the plus side,
Prio=Bypass always creates SMART-hops with high HPCs,
since a flit that starts only stops at its requested stop router,
or at the turn router in this priority scheme. This can be seen
in Figure 13c where SMART-8_1D_Prio=Bypass achieves
an average HPC of 3, while SMART-15_2D_Prio=Bypass
maintains an HPC of 4-5. Prio=Local, on the other hand,
forces the achievable HPCs to drop to 1 at high loads.

7.1.3. Impact of HPCmax. Next we study the impact of
HPCmax on performance. We plot the average flit latency
for BC traffic (which has high across-chip communication)
for HPCmax from 1 to 12, across 1D and 2D in Figure 14a.
SMART-1_1D is identical to the baseline_1-cycle router (as
it does not need SA-G). HPCmax of 2 itself gives a 1.8X low-
load latency reduction, while 4 gives a 3X reduction. These
numbers indicate that even with a faster clock, say 2.25GHz,
which will drop HPCmax to 4, a SMART-like design is a bet-
ter choice than a 1-cycle router. It should also be noted that
as we scale to smaller feature sizes, cores shrink while die
sizes remain unchanged, so the same SMART interconnect
length will translate to larger HPCmax. Adding SMART_2D,
and increasing HPCmax to 12 pushes low-load latency close
to a 2-cycles: an 8.4X reduction over the baseline. This
result highlights that a heavily-pipelined higher frequency
baseline can only match SMART if it runs at 8.4GHz.

7.1.4. Impact of multi-flit packets.SMART locks an input
and output port till all flits of a packet leave for virtual
cut-through (Section 4.4). This leads to a poorer switch
allocation compared to the baseline which implements flit-
by-flit wormhole switching with VCs. Figure 14b evaluates
SMART with UR traffic with all packets having 5-flits (a
worse case adversarial traffic scenario). We see that SMART
achieves its peak throughput with 4-6 VCs, but shows 11%
lower throughput than the baseline, even with 12 VCs.

7.1.5. SMART on a 16×16 mesh.Figure 14c plots the per-
formance of SMART on a 256-core mesh with UR traffic.
SMART scales well, with HPCmax=4 lowering network la-
tency from 23 to 6-7 cycles at low loads. SMART-11_1D and
SMART-9_2D lower it even further to 3-4 cycles. SMART
also gives a 12% throughput improvement.

0	

4	

8	

12	

16	

20	

24	

28	

32	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 Av
er
ag
e	

fli
t	
 l
at
en

cy
	
 (c
yc
le
s)
	

Injec4on	
 Rate	
 (flits/node/cycle)	

BASELINE_1-­‐cycle-­‐router	

SMART-­‐8_1D	

SMART-­‐8_2D	

SMART-­‐15_2D	

IDEAL_1-­‐cycle-­‐network	

(a) Uniform Random (UR) (Avg Hops = 5.33)

0	

4	

8	

12	

16	

20	

24	

28	

32	

0	
 0.05	
 0.1	
 0.15	
 0.2	
 0.25	
 Av
er
ag
e	

fli
t	
 l
at
en

cy
	
 (c
yc
le
s)
	

Injec4on	
 Rate	
 (flits/node/cycle)	

BASELINE_1-­‐cycle-­‐router	

SMART-­‐8_1D	

SMART-­‐8_2D	

SMART-­‐15_2D	

IDEAL_1-­‐cycle-­‐network	

(b) Bit Complement (BC) (Avg Hops = 8)

0	

4	

8	

12	

16	

20	

24	

28	

32	

0	
 0.05	
 0.1	
 0.15	
 0.2	
 Av
er
ag
e	

fli
t	
 l
at
en

cy
	
 (c
yc
le
s)
	

Injec4on	
 Rate	
 (flits/node/cycle)	

BASELINE_1-­‐cycle-­‐router	

SMART-­‐8_1D	

SMART-­‐8_2D	

SMART-­‐15_2D	

IDEAL_1-­‐cycle-­‐network	

(c) Transpose (TP) (Avg Hops = 6)

Figure 12: SMART with synthetic traffic

0	

4	

8	

12	

16	

20	

24	

28	

0	
 20	
 40	
 60	
 80	
 100	

Av
er
ag
e	

fli
t	
 l
at
en

cy
	
 (c
yc
le
s)
	

Flit	
 Injec5on	
 Rate	
 (%	
 of	
 capacity)	

SMART-­‐8_1D_Prio=Byp	

SMART-­‐15_2D_Prio=Byp	

SMART-­‐8_1D_Prio=Loc	

SMART-­‐15_2D_Prio=Loc	

(a) Average Network Latency

R0 R1 R2 R3 R4 R5

Cycle 1: SSR

Cycle 2: Prio=Local
Cycle 2: Prio=Bypass

(b) Throughput Loss in Prio=Bypass

0	

1	

2	

3	

4	

5	

6	

0	
 20	
 40	
 60	
 80	
 100	

Av
er
ag
e	

HP

C	

(h
op

s)
	

Flit	
 Injec9on	
 Rate	
 (%	
 of	
 capacity)	

Average	
 Hops	

SMART-­‐8_1D_Prio=Byp	

SMART-­‐15_2D_Prio=Byp	

SMART-­‐8_1D_Prio=Loc	

SMART-­‐15_2D_Prio=Loc	

Average	
 Hops	

(c) Average achievable HPC
Figure 13: Prio=Local vs Prio=Bypass for Uniform Random Traffic.

0	

4	

8	

12	

16	

20	

24	

28	

32	

0	
 0.05	
 0.1	
 0.15	
 0.2	
 0.25	
 Av
g	

Fl
it	

La
te
nc
y	

(c
yc
le
s)
	

Injec4on	
 Rate	
 (flits/node/cycle)	

SMART-­‐1_1D	

SMART-­‐2_1D	

SMART-­‐4_1D	

SMART-­‐8_1D	

SMART-­‐4_2D	

SMART-­‐8_2D	

SMART-­‐12_2D	

(a) Impact of HPCmax (Bit Complement)

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

0	
 0.02	
 0.04	
 0.06	
 0.08	
 0.1	
 Av
g	

Pk
t	
 L
at
en

cy
	
 (c
yc
le
s)
	

Injec4on	
 Rate	
 (packets/node/cycle)	

1	
 pkt	
 =	
 	

640-­‐bit	

BASELINE_VC=2	

BASELINE_VC=4	

BASELINE_VC=8	

BASELINE_VC=12	

SMART-­‐8_2D_VC=2	

SMART-­‐8_2D_VC=4	

SMART-­‐8_2D_VC=8	

SMART-­‐8_2D_VC=12	

(b) Impact of 5-flit packets (Uniform Random)

0	

4	

8	

12	

16	

20	

24	

28	

32	

36	

40	

0	
 0.05	
 0.1	
 0.15	
 0.2	
 0.25	
 Av
g	

Fl
it	

La
te
nc
y	

(c
yc
le
s)
	

Injec4on	
 Rate	
 (flits/node/cycle)	

BASELINE	

SMART-­‐4_1D	

SMART-­‐4_2D	

SMART-­‐11_1D	

SMART-­‐9_2D	

(c) 256-core (Uniform Random)

Figure 14: Features of SMART

0	

4	

8	

12	

16	

20	

24	

28	

32	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

Av
g	

Pk
t	
 L
at
en

cy
	
 (c
yc
le
s)
	

Injec4on	
 Rate	
 (packets/node/cycle)	

1	
 pkt	
 =	
 	

128-­‐bit	

SMART-­‐8_1D	

SMART-­‐8_2D	

FBfly_BB=1x	

FBfly_BB=3.5x	

FBfly_BB=7x	

Figure 15: SMART vs Flattened Butterfly (Uniform Random)

7.1.6. Comparison with High-Radix Topology.We com-
pare SMART with a Flattened Butterfly [22] topology. Each
FBfly router has dedicated single-cycle links to every other
node in that dimension (7 ports per direction + NIC port,
i.e. radix-29). We assume that the router delay is 1-cycle.
This is a very aggressive assumption, especially because the
SA stage needs to perform 22:1 arbitrations. All high-radix
routers assume > 4-cycle pipelines [22, 21, 34]. We use
8VCs per port with virtual cut-through in both SMART and
FBfly (thus giving more buffer resources to FBfly). In Fig-
ure 15, we plot three configurations where the total number
of wires, i.e. Bisection Bandwidth (BB), of the FBfly is 1x,
3.5x and 7x that of SMART (leading to 7-flits, 2-flits and
1-flit per packet respectively for 128-bit packets). At BB=1x,
FBfly loses both in latency and throughput due to heavy se-
rialization delay. At BB=3.5x, FBfly can match SMART in
throughput. Despite an aggressive 1-cycle router, at BB=7x

the best case latency for FBfly is 6 cycles (2 at injection, 2
at turning, and 2 at ejection router) as compared to 4 and
2 for SMART-1D and SMART-2D respectively. The radix-
29 FBfly_BB=3.5x router, modeled in DSENT [35], incurs
an area, dynamic power (at saturation) and leakage power
overhead of 8.6x, 1.5x and 10x respectively over SMART. If
we are willing to use N times more wires, a better solution
would be to just have N meshes, each with SMART, so that
fast latency is achieved in addition to scalable bandwidth.

7.2. Full-system Traffic
We evaluate the parallel sections of SPLASH-2 [3] and

PARSEC [9] for both Private and Shared L2. Each run
consists of 64 threads of the application running on our CMP.
We run 5-10 times with different random seeds to capture
variability in parallel workloads [6], and average the results.

7.2.1. Performance Impact.Figure 16 shows that SMART-
8_1D and SMART-8_2D lower application runtime by 26%
and 27% respectively on average, for a Private L2, which
is only 8% away from an ideal 1-cycle network. The run-
time reduction goes up to 49% and 52% respectively with a
Shared L2 design, which is 9% off from an ideal 1-cycle net-
work. SMART-15_2D does not give any significant runtime
benefit over SMART-8_2D.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

)
	

lu
	

nl
u	

ra
di
x	

w
at
er
-­‐n
sq
	

w
at
er
-­‐s
pa
9a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
9o

ns
	

x2
64

	

AV
ER

AG
E	

SPLASH-­‐2	
 PARSEC	

N
or
m
al
iz
ed

	
 A
pp

lic
a/

on
	
 R
un

/m
e	

BASELINE_1-­‐cycle-­‐rtr	
 IDEAL_1-­‐cycle-­‐rtr	
 SMART-­‐8_1D	

SMART-­‐8_2D	
 SMART-­‐15_2D	
 IDEAL_1-­‐cycle-­‐nw	

(a) Private L2

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

)
	

lu
	

nl
u	

ra
di
x	

w
at
er
-­‐n
sq
	

w
at
er
-­‐s
pa
9a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
9o

ns
	

x2
64

	

AV
ER

AG
E	

SPLASH-­‐2	
 PARSEC	

N
or
m
al
iz
ed

	
 A
pp

lic
a/

on
	
 R
un

/m
e	

BASELINE_1-­‐cycle-­‐rtr	
 IDEAL_1-­‐cycle-­‐rtr	
 SMART-­‐8_1D	

SMART-­‐8_2D	
 SMART-­‐15_2D	
 IDEAL_1-­‐cycle-­‐nw	

(b) Shared L2
Figure 16: Full-system application runtime with SMART

0	

1	

2	

3	

4	

5	

6	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

SM
AR

T-­‐
1_
1D

	

1D

_P
rio

=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

1D
_P

rio
=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

1D
_P

rio
=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

SM
AR

T-­‐
1_
1D

	

1D

_P
rio

=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

1D
_P

rio
=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

1D
_P

rio
=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

SMART-­‐2	
 SMART-­‐4	
 SMART-­‐8	
 S-­‐15	
 SMART-­‐2	
 SMART-­‐4	
 SMART-­‐8	
 S-­‐15	

Private	
 L2	
 Shared	
 L2	

Av
er
ag
e	

HP

C	

N
or
m
al
iz
ed

	
 R
un

5m
e	

HPCmax	

RunIme	
 HPC	
 Average	
 Hops	

IDEAL-­‐1-­‐cycle-­‐nw	

IDEAL-­‐1-­‐cycle-­‐nw	

Figure 17: Impact of HPCmax and Priority

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

BA
SE
LI
N
E_
1-­‐
cy
cl
e-­‐
rt
r	

SM
AR

T-­‐
8_
1D

_P
rio

=L
oc
	

SM
AR

T-­‐
8_
2D

_P
rio

=L
oc
	

SM
AR

T-­‐
8_
1D

_P
rio

=B
yp
	

SM
AR

T-­‐
8_
2D

_P
rio

=B
yp
	

BA
SE
LI
N
E_
1-­‐
cy
cl
e-­‐
rt
r	

SM
AR

T-­‐
8_
1D

_P
rio

=L
oc
	

SM
AR

T-­‐
8_
2D

_P
rio

=L
oc
	

SM
AR

T-­‐
8_
1D

_P
rio

=B
yp
	

SM
AR

T-­‐
8_
2D

_P
rio

=B
yp
	

Private	
 L2	
 Shared	
 L2	

N
or
m
al
iz
ed

	
 T
ot
al
	
 E
ne

rg
y	
 SSR	

Link	

Xbar	

SA-­‐G	

SA-­‐L	

Buffer	

Clock	

EDP	

Figure 18: Total Network Dynamic Energy

7.2.2. Impact of HPCmax and priority.Figure 17 sweeps
through HPCmax and SA-G priority, and plots the normal-
ized runtime and achieved HPC, on average across all the
benchmarks. Since these full-system traffic fall in the lower
end of the injection rates in the synthetic traffic graphs,
Prio=Bypass performs almost as well as Prio=Local, ex-
cept at low HPCmax in a Shared L2. HPCmax of 4 suffices to
achieve most of the runtime savings.

7.2.3. Total Network Energy.Figure 18 explores the energy
trade-off of SMART by plotting the total dynamic energy
of the network consumed for running the benchmarks to
completion, on average across all the benchmarks. For Pri-
vate L2, the dynamic energy for SMART goes up by 10-
12% across designs primarily due to the data-path, though
the overall EDP goes down by 20%. For Shared L2, the
dynamic energy goes down by 6-21% across the designs,

because of a lower runtime. The EDP goes down by up to
59%. SMART with Prio=Local consumes 18-46% higher
energy in the buffers than both SMART with Prio=Bypass
and the baseline (which also prioritizes incoming flits over
already buffered local flits in SA to reduce buffering), since
Prio=Bypass, by definition, reduces the number of times
flits need to stop and get buffered. SA-G energy contributes
less than 1% of network energy for SMART_1D, and goes
up to about 10% for SMART_2D. All these ups and downs
are however negligible when we also consider leakage. We
observed leakage to contribute more than 90% of the total
energy, since the network activity is very low in full-system
scenarios16. However, even with high leakage, the total net-
work power was observed to be about 3W for both baseline
and SMART, while chip power budgets are usually about
100W. Thus the energy overheads of SMART are negligible.

8. Related Work
High-radix routers. High-radix router designs such as

CMesh [8], Fat Tree [11], Flattened Butterfly [22], Black-
Widow [34], MECS [13], Clos [19] are topology solutions
to reduce average hop counts, and advocate adding phys-
ical express links between distant routers. These express
Pt-to-Pt links can be further engineered for lower delay with
advanced signaling techniques like equalization [20] and
capacitively-driven links [24]. Each router now has > 5
ports, and channel bandwidth (b) is often reduced propor-
tionally to have similar buffer and crossbar area/power as
a mesh (radix-5) router. More resources however imply a
complicated routing and Switch+VC allocation mechanism,
with a hierarchical SA and crossbar [21], increasing router
delay tr to 4-5 at the routers where flits do need to stop.
The pipeline optimizations described earlier are hard to im-
plement here. These designs also complicate layout since
multiple Pt-to-Pt global wires need to span across the chip.
Moreover, a topology solution only works for certain traffic,
and incurs higher latencies for adversarial traffic (such as
near neighbor) because of higher serialization delay.

16Leakage could be reduced by aggressive power gating solutions, which
itself is a research challenge.

In contrast, SMART provides the illusion of dedicated
physical express channels, embedded within a regular mesh
network, without having to lower the channel bandwidth, or
increase the number of router ports.

Asynchronous NoCs. Asynchronous NoCs [10, 7] have
been proposed for the SoC domain for deterministic traf-
fic. Such a network is programmed statically to preset
contention-free routes for QoS, with messages then trans-
mitted across a fully asynchronous NoC (routers and links).
Instead, SMART couples clocked routers with asynchronous
links, so the routers can perform fast cycle-by-cycle reconfig-
uration of the links, and thus handle general-purpose CMPs
with non-deterministic traffic and variable contention scenar-
ios. Asynchronous Bypass Channels [17] target chips with
multiple clock domains across a die, where each hop can
incur significant synchronization delay. They aim to remove
this synchronization delay. This leads them to propose send-
ing a clock signal with the data so that the data can be latched
correctly at the destination router. Besides this difference
in link architecture, the different goals also lead to distinct
NoC architectures. Due to the multiple clock domains, ABC
needs to buffer/latch flits at every hop speculatively, dis-
carding them thereafter if flits successfully bypassed. Also,
the switching between bypass and buffer modes cannot be
done cycle-by-cycle, which increases latency. In contrast,
SMART targets a single clock domain across the entire die,
so SSRs can be sent in advance to avoid latching flits at all
along a multi-hop path and allow routers to switch between
bypass and buffer modes each cycle.

9. Conclusion
Aggressive NoC pipeline optimizations have been able

to lower router delays to just 1-cycle. However, this is not
good enough for large networks with multi-hop paths. The
solution of adding explicit fast physical channels to bypass
routers comes with its own set of problems in terms of layout
complexity, area and power. We present SMART, a solution
to traverse multi-hop paths within a single-cycle, by virtually
bypassing all routers along the route, without adding any
physical channels on the data-path. This work opens up a
plethora of research opportunities in circuits, NoC architec-
tures and many-core architectures to optimize and leverage
SMART NoCs. We see SMART paving the way for locality-
oblivious CMPs, easing the burden on coherence protocol
and/or software from optimizing for locality.

References
[1] http://www.tilera.com/products/processors/

TILE-Gx_Family.
[2] http://projects.csail.mit.edu/angstrom.
[3] http://www-flash.stanford.edu/apps/SPLASH/.
[4] http://www.windriver.com/products/simics.
[5] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GAR-

NET: A detailed on-chip network model inside a full-system
simulator. In ISPASS, pages 33–42, 2009.

[6] A. R. Alameldeen and D. A. Wood. Variability in architec-
tural simulations of multi-threaded workloads. In HPCA,
2003.

[7] J. Bainbridge and S. Furber. Chain: A delay-insensitive chip
area interconnect. IEEE Micro, 22(5):16–23, Sept 2002.

[8] J. Balfour and W. J. Dally. Design tradeoffs for tiled CMP
on-chip networks. In ICS, pages 187–198, 2006.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural implica-
tions. In PACT, 2008.

[10] T. Bjerregaard and J. Sparso. A router architecture for
connection-oriented service guarantees in the MANGO clock-
less network-on-chip. In DATE, pages 1226–1231, 2005.

[11] W. Dally and B. Towles. Principles and Practices of Inter-
connection Networks. Morgan Kaufmann Pub., 2003.

[12] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Kilo-NOC:
a heterogeneous network-on-chip architecture for scalability
and service guarantees. In ISCA, pages 401–412, 2011.

[13] B. Grot et al. Express cube topologies for on-chip intercon-
nects. In HPCA, pages 163–174, 2009.

[14] R. Haring et al. The IBM Blue Gene/Q Compute Chip. IEEE
Micro, 32(2):48–60, Mar 2012.

[15] Y. Hoskote et al. A 5-GHz mesh interconnect for a teraflops
processor. IEEE Micro, 27(5):51–61, Sept. 2007.

[16] J. Howard et al. A 48-core IA-32 message-passing processor
with DVFS in 45nm CMOS. In ISSCC, pages 108–109, 2010.

[17] T. N. K. Jain, P. V. Gratz, A. Sprintson, and G. Choi. Asyn-
chronous bypass channels: Improving performance for multi-
synchronous nocs. pages 51–58, 2010.

[18] D. Johnson et al. Rigel: A 1,024-core single-chip accelerator
architecture. IEEE Micro, 31(4):30–41, Jul 2011.

[19] Y.-H. Kao et al. CNoC: High-radix clos network-on-chip.
TCAD, 30(12):1897–1910, 2011.

[20] B. Kim and V. Stojanović. Equalized interconnects for on-
chip networks: modeling and optimization framework. In
ICCAD, pages 552–559, 2007.

[21] J. Kim et al. Microarchitecture of a high-radix router. In
ISCA, pages 420–431, 2005.

[22] J. Kim et al. Flattened butterfly topology for on-chip net-
works. In MICRO, pages 172–182, 2007.

[23] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K. Reinhardt.
Towards the ideal on-chip fabric for 1-to-many and many-to-1
communication. In MICRO, pages 71–82, 2011.

[24] T. Krishna et al. Express Virtual Channels with capacitively
driven global links. IEEE Micro, 29(4):48–61, 2009.

[25] T. Krishna et al. SWIFT: A SWing-reduced Interconnect For
a Token-based network-on-chip in 90nm CMOS. In ICCD,
pages 439–446, 2010.

[26] A. Kumar et al. A 4.6Tbits/s 3.6GHz single-cycle NoC router
with a novel switch allocator in 65nm CMOS. In ICCD, pages
63–70, 2007.

[27] A. Kumar et al. Token Flow Control. In MICRO, 2008.
[28] G. Kurian et al. ATAC: a 1000-core cache-coherent processor

with on-chip optical network. In PACT, pages 477–488, 2010.
[29] M. M. K. Martin et al. Multifacet’s General Execution-driven

Multiprocessor Simulator (GEMS) Toolset. CAN, 2005.
[30] H. Matsutani et al. Prediction router: Yet another low latency

on-chip router architecture. In MICRO, pages 367–378, 2009.
[31] R. Mullins et al. Low-latency virtual-channel routers for

on-chip networks. In ISCA, pages 188–197, 2004.
[32] S. Park et al. Approaching the theoretical limits of a mesh

NoC with a 16-node chip prototype in 45nm SOI. In DAC,
pages 398–405, 2012.

[33] J. Rabaey and A. Chandrakasan. Digital Integrated Circuits:
A Design Perspective. Prentice Hall Pub., 2002.

[34] S. Scott et al. The BlackWidow high-radix clos network. In
ISCA, pages 16–28, 2006.

[35] C. Sun et al. DSENT-a tool connecting emerging photonics
with electronics for opto-electronic networks-on-chip model-
ing. In NOCS, pages 201–210, 2012.

[36] D. Wentzlaff et al. On-chip interconnection architecture of
the Tile Processor. IEEE Micro, 27(5):15–31, Sept. 2007.

