Efficient Control and Communication Paradigms for Coarse-Grained
Spatial Architectures

MICHAEL PELLAUER, Intel
ANGSHUMAN PARASHAR, Intel!
MICHAEL ADLER, Intel

BUSHRA AHSAN, Intel

RANDY ALLMON, Intel

NEAL CRAGO, Intel!

KERMIN FLEMING, Intel

MOHIT GAMBHIR, Intel

AAMER JALEEL, Intel®

TUSHAR KRISHNA, Intel?

DANIEL LUSTIG, Princeton University
STEPHEN MARESH, Intel
VLADIMIR PAVLQOV, Intel

RACHID RAYESS, Intel

ANTONIA ZHAI, Univserity of Minnesota
JOEL EMER, Intel! and MIT

Recently there has been interest in exploring the acceleration of non-vectorizable workloads with
spatially-programmed architectures that are designed to efficiently exploit pipeline parallelism. Such an
architecture faces two main problems: A) how to efficiently control each processing element (PE) in the sys-
tem, and B) how to facilitate inter-PE communication without the overheads of traditional shared-memory
coherent memory. In this paper, we explore solving these problems using triggered instructions, and latency-
insensitive channels. Triggered instructions completely eliminate the program counter and allow programs
to transition concisely between states without explicit branch instructions. Latency-insensitive channels
allow efficient communication of inter-PE control information, while simultaneously enabling flexible code
placement and improving tolerance for variable events such as cache accesses. Together, these approaches
provide a unified mechanism to avoid over-serialized execution, essentially achieving the effect of techniques
such as dynamic instruction reordering and multithreading.

Our analysis shows that a spatial accelerator using triggered instructions and latency-insensitive chan-
nels can achieve 8x greater area-normalized performance than a traditional general-purpose processor.
Further analysis shows that triggered control reduces the number of static and dynamic instructions in the
critical paths by 62% and 64% respectively over a program-counter style baseline, increasing the perfor-
mance of the spatial programming approach by 2.0x.

Categories and Subject Descriptors: C.1.3 [Computer Systems Organization]: Processor Architectures

1New affiliation: NVIDIA.
2New affiliation: Georgia Insititue of Technology

Author’s addresses: Michael Pellauer, Angshuman Parashar, Michael Adler, Bushra Ahsan, Randy Allmon,
Neal Crago, Kermin Fleming, Mohit Gambhir, Aamer Jaleel, Tushar Krishna, Stephen Maresh, Vladimir
Pavlov, Rachid Rayess, and Joel Emer, Intel Corporation, 77 Reed Road, Hudson, MA 01749.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2015 ACM 0734-2071/2015/02-ARTX $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:2 M. Pellauer et al.

Additional Key Words and Phrases: Spatial Programming, Reconfigurable Accelerators

ACM Reference Format:

Michael Pellauer, Angshuman Parashar, Michael Adler, Bushra Ahsan, Randy Allmon, Neal Crago, Kermin
Fleming, Mohit Gambhir, Aamer Jaleel, Tushar Krishna, Stephen Maresh, Vladimir Pavlov, Rachid Rayess,
and Joel Emer. Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures.
ACM Trans. Comput. Syst. X, X, Article X (February 2015), 32 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Recently, SIMD/SIMT accelerators such as GPGPUs have been shown to be effective
as offload engines when paired with general-purpose CPUs. This results in a comple-
mentary approach where the CPU is responsible for running the operating system and
irregular programs, and the accelerator executes inner loops of uniform data-parallel
code. The abundant number of threads allows the accelerator to bury long-latency
events such as cache misses and maintain good utilization of its datapaths.

Unfortunately, not every workload exhibits sufficiently uniform data parallelism to
take advantage of the efficiencies of this pairing. There remain many important work-
loads whose best-known implementation involves asynchronous actors performing dif-
ferent tasks, while frequently communicating with neighboring actors. The compu-
tation and communication characteristics of these workloads cause them to map ef-
ficiently onto spatially-programmed architectures such as Field-Programmable Gate
Arrays (FPGAs). Furthermore, a number of important workload domains exhibit such
kernels, such as signal processing, media codecs, cryptography, compression, pattern
matching and sorting. As such, one way to boost the performance efficiency of these
workloads is to add a new spatially-programmed accelerator to the system, comple-
menting the existing SIMD/SIMT accelerators.

While FPGAs are very general in their ability to map the compute, control and
communication structure of a workload, their lookup table (LUT) based datapaths
are oriented towards arbitrary logic prototyping rather than algorithmic acceleration.
An alternative is to use a tiled array of coarse-grained datapaths more like a proces-
sor’s Arithmetic-Logic Unit (ALU) — a Coarse Grained Reconfigurable Array (CGRA)
[Mirsky and DeHon 1996; Hauser and Wawrzynek 1997; Mei et al. 2003]. However,
CGRAs come with several challenges as well. How should each individual ALU be
controlled? How should the ALUs communicate data with each other, especially given
that communication is frequent? If a producer is not mapped onto a datapath directly
adjacent to a consumer will the program fail?

A number of prior works [Burger et al. 2004; Govindaraju et al. 2011; Swanson et al.
2007] have proposed spatial architectures with a network of ALU-based processing el-
ements (PEs) onto which operations are scheduled in systolic or dataflow order, with
limited or no autonomous control at the PE level. Other approaches incorporate au-
tonomous control at each PE using a program counter (PC) [Taylor et al. 2002; Yu
et al. 2006; Panesar et al. 2006]. Unfortunately, as we will show, PC sequencing of
ALU operations introduces several inefficiencies when attempting to capture intra-
and inter-ALU control patterns of a frequently-communicating spatially-programmed
fabric.

In this paper, we explore addressing these issues using triggered instructions and
latency-insensitive channels. Triggered instructions remove the program counter com-
pletely, instead allowing the processing element to concisely transition between states
of one or more finite-state machines (FSMs) without executing instructions in the dat-
apath to determine the next state. Latency-insensitive channels allow efficient com-
munication of inter-PE control information, while simultaneously enabling flexible
module placement and improving tolerance for unpredictable events such as cache ac-

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:3

Legend: [@ Instruction X, iteration Y]

Data read by instruction X

E o8
z. S8
= o &
g SE/
=3 ISRk
1S} N
z g
v
F<R =
E & &
o e/
C) Loop-Carried Dependence
on instruction 4 D) Spatial architecture

Fig. 1. Overview of the spatial programming approach.

cesses. Together, these approaches provide a unified mechanism to avoid over-serialized
execution, essentially achieving the effect of techniques such as dynamic instruction
reordering and multithreading, which each require distinct hardware mechanisms in
a traditional sequential architecture.

We evaluate out approach by simulating a spatially-programmed accelerator on a
range of workloads. Our analysis for this set of workloads, which span a range of al-
gorithm classes not known to exhibit extensive uniform data parallelism, shows that
such an accelerator can achieve 8x greater area-normalized performance than a tradi-
tional general-purpose processor. We provide further analysis of both a set of common
control idioms and the critical paths of the workload programs to illustrate how a trig-
gered instruction architecture contributes to this performance gain.

2. BACKGROUND AND MOTIVATION
2.1. Spatially-Programmed Architectures

Spatial programming is a paradigm whereby an algorithm’s dataflow graph is broken
into regions, which are connected by producer-consumer relationships. Input data is
then streamed through this pipelined graph. Figure 1 contrasts this to a more tradi-
tional Multiple-Instruction-Multiple-Data (MIMD) approach. In MIMD, core n is re-
sponsible for executing a full loop iteration containing each instruction A, B,C, ... of
the sequential body, keeping the intermediate data b,,,¢c,, etc. locally in its register
file. Cross-core communication is rare and is ideally protected with syncrhonization
primitives such as barriers.

In contrast, in a spatial approach a single small core is responsible for executing in-
struction A for all iterations, with another core executing instruction B. Intermediate
data is passed to the next datapath rather than being kept locally. Therefore no single

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X4 M. Pellauer et al.

PE will execute an entire loop body—essentially the program has been transposed be-
tween time and space. Pedagocially, it is clearest to imagine the extreme approach of
mapping one instruction to each PE, but in practice there can be benefits to keeping
a small control sequence or Finite-State Machine (FSM) local. Ideally, the number of
operations in each pipeline stage is kept small, as performance is usually determined
by the rate-limiting step.

For an “embarassingly” parallel program like 1A, it may seem like a SIMD/SIMT
architecture will be a strictly more efficient execution substrate, and so the spatial
transposition is not needed. In practice there exists a large category of interesting
programs that contain loop-carried depedencies. As Figure 1C shows, these require
cross-iteration data passing, and skew the program’s dataflow graph in such a way
as to prevent vectorization. However, these programs are naturally implementable
in the spatial approach simply by using local registers to bypass the cross-iteration
data to the next instruction. In fact, the spatial program shown in Figure 1D can
implement programs 1A and 1C with no change in code mapping and no degreda-
tion of performance—the only difference is whether the output of instruction A is re-
circulated via a local register or not.

Just as data-parallel algorithms see large efficiency boosts when run on a vector
engine, workloads that are naturally amenable to spatial programming can see sig-
nificant boosts when run on an enabling architecture. A traditional processor would
execute such programs serially over time, but this does not result in any noticeable
efficiency gain, and may even be slower than other expressions of the algorithm. A
MIMD multicore can improve this by mapping different stages onto different cores,
but the small number of cores available relative to the large number of stages in the
dataflow graph means that each core must multiplex between several stages, so the
rate-limiting step generally remains large. Additionally, cross-thread communication
can generally only occur via shared virtual memory (SVM) which uses a coherence
protocol to actually interact with the on-chip network (OCN) and perform the data
transfers.

In contrast, a typical spatial-programming architecture is a fabric of hundreds of
small processing elements (PE) connected directly via an OCN which is exposed di-
rectly to the ISA. Given enough PEs, an algorithm may be taken to the extreme of map-
ping the entire dataflow graph into the spatial fabric, resulting in a very fine-grained
pipeline. This is the approach taken by a number of reconfigurable architectures.

FPGAs are the most successful spatially-programmed reconfigurable architecture
in use today. FPGAs are designed to emulate a broad range of logic circuits because
they are primarily targeted at ASIC prototyping and replacement. Consequently, they
use very fine-grain reconfigurable elements such as lookup tables (LUTs) [Compton
and Hauck 2002; Marquardt et al. 2000]. The LUTSs are chained into larger operations
using flexible-but-expensive OCNs. This generality limits the clock speed at which
mapped designs can be run while also creating a large search space of solutions for
place and route algorithms, leading to long compilation times.

When using reconfigurable architectures for direct algorithmic acceleration instead
of logic prototyping, these issues can be partially addressed by the observation that the
class of operations that the reconfigurable architecture needs to cover is more limited—
particularly when used in conjunction with a traditional CPU. As observed by several
efforts [Mirsky and DeHon 1996; Hauser and Wawrzynek 1997; Mei et al. 2003], this
limited class of operations creates opportunities to achieve higher area density and
better power/performance efficiency than conventional FPGAs while retaining suffi-
cient flexibility. This has led to several proposals [Burger et al. 2004], [Panesar et al.
2006; Taylor et al. 2002; Swanson et al. 2007; Mirsky and DeHon 1996; Hauser and

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:5

if (incoming > cur)

send(cur); cur := incoming;
else

send (incoming) ;

5 (83|32 PE PE D PE

icur = 27 icur = 17 icur undefi

Fig. 2. Example of a spatially-programmed sort.

Wawrzynek 1997; Mei et al. 2003] that use an array of coarser-grained multi-bit ALUs
as the datapath of PEs in a spatially-programmed architecture.

Within the domain of array-of-ALU approaches is a class of architectures that do
not feature any autonomous control mechanism inside each ALU. These architectures
are either purely systolic [Kung 1986], statically map only one operation per ALU
[Govindaraju et al. 2011], or schedule operations onto the ALUs in strict dataflow
order [Burger et al. 2004]. These architectures rely on being able to transform control-
flow graphs into predicated dataflow graphs. Such approaches are effective at mapping
the control structures of a subset of problems, but do not approach the flexibility or
generality of architectures with internal autonomous control at each PE. Another class
of proposals calls for general autonomously-controlled PEs [Taylor et al. 2002; Yu et al.
2006; Panesar et al. 2006] using variants of the existing PC-based control model.

The PC-based control model paired with SVM has historically been the best choice
for MIMD CPUs that run arbitrary and irregular programs. In the remainder of this
section, we demonstrate that these existing paradigms introduce unacceptable ineffi-
ciencies in the context of spatial programming.

2.2. Spatial Programming Example

As a concrete example, let us explore how a well-known workload can benefit from
spatial programming. Consider the simple spatially-mapped sorting program shown
in Figure 2. In this approach, the worker PEs communicate in a straight pipeline. The
unsorted array is streamed in by the first PE. Each PE simply compares the incoming
element to the largest element seen so far. The larger of the two values is kept, and the
smaller sent on. Thus after processing &k elements worker 0 will be holding the largest
element, and worker k& — 1 the smallest. The sorted result can then be streamed out to
memory through the same straightline communication network.

This example represents a limited toy workload in many ways—it requires k PEs
to sort an array of size k, and worker 0 will do £ — 1 comparisons while worker & — 1
will only do 1 (an insertion sort, with a total of k% comparisons). However, despite its
naivete this workload demonstrates some remarkable properties. First, the utilization
of the datapaths is quite good—in the final step all & datapaths can simultaneously
execute a comparison, with an overall average of g per cycle. Second, the communica-
tion between PEs is local and parallel—on a typical mesh network fabric it is easy to
map this workload so that no network contention will ever occur. The communication

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:6 M. Pellauer et al.

{if (listA > listB ||

e (listA.finished && !'listB.finished))
ffor x = 1..NPASSES i} send (1istB);
i for vy = 1..k ifelse if (!listA.finished)

// control loopg send (1listA) ;

- [l re

U

pE ...| 53283

.111130(72
-|10(14 (88

Fig. 3. A more realistic spatial merge sort.

flows are completely statically determined by the configuration—no dynamic packet
routing is required. Finally—and most interestingly—this approach sorts an array of
size k with exactly k loads and k stores. The loads and stores that a traditional CPU
must use to overcome its relatively small register file are replaced by direct PE-to-PE
communication. This reduction in memory operations is critical in understanding the
benefits of spatial programming. We have been able to characterize the benefits as
follows:

— Direct communication uses roughly 20x lower power than communication through
an L1 cache, as the overheads of tag matching, load-store queue search, address
translation, and large data array read are removed.

— Cache coherence overheads, including network traffic and latency are likewise re-
moved.

— Reduced memory traffic lowers cache pressure, which in turn increases effective
memory bandwidth for remaining traffic.

Finally, it is straightforward to expand our toy example into a realistic merge sort
engine able to sort a list of any size (Figure 3). First, we begin by programming a PE
into a small control FSM that handles breaking the array into sub-arrays of size k
and looping (this control loop could also be executed on the main CPU, as the sorting
passes can be quite long). Second, we slightly change the worker PEs’ programming
so that they are doing a merge of two distinct sorted sub-lists. With these changes our
toy workload is now a radix k merge sort capable of sorting a list of size n in n x logg(n)
loads. Because k can be in the hundreds for a reconfigurable fabric, the benefits can
be quite large. In our experiments we observed 17x fewer memory operations com-
pared to a general-purpose CPU and an area-normalized performance improvement of
8.8x (Section 6), which is better than the currently best-known GPGPU performance
[Merrill and Grimshaw 2010].

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X7

load_a: 1d %r4, Qr2 // Load listA tail ptr (written by producer)
check_a: cmp.ne %r0, %r4, %r3 // If listA head == tail then q is empty
bnez check_b // Not empty, so proceed to listB
monitor @r2 // Wait for producer to update tail
Jjump load_a // Re-load and check in case timeout occured
load_b: 1d %r9, Qr7 // Load 1listB tail ptr (written by producer)
check_b: cmp.ne %r0, %r9, %r8 // If listB head == tail then q is empty
bnez check_o // Not empty, so proceed to output list
monitor @r7 // Wait for producer to update tail
jump load_b // Re-load and check in case timeout occured
load_o: 1d %r13, eri1 // Load listOut head ptr (written by consumer)
Static Insts 48
Avg Insts/Iteration 32
Avg Memory Ops/Iteration | 10

Fig. 4. Merge sort worker representation using SVM queues introduces unacceptable overheads per com-
parison. Methods such as memory monitors can avoid active polling, but do not reduce pointer chasing and
load/store latency between disparate caches.

2.3. Limitations of PC-based Control

To illustrate the inefficiencies of existing MIMD paradigms in the spatial programming
context, let us code the merge sort PE shown in Figure 3. We first explore whether a
completely unmodified ISA is suitable for this task. In a multicore system, the typical
approach is to use SVM for the queue buffering, along with sophisticated polling mech-
anisms such as memory monitors for communicating occupancy. As shown in Figure 4,
such a style introduces many inefficient instructions for pointer chasing, address offset
arithmetic, and head/tail comparisons just to setup the user-specified sort comparison
inherent to the algorithm. Even if the queues are not stalled, and the monitors un-
neccesary, the loop would execute an average of 32 instructions per sort-comparison in
the best case, including 7 loads and 3 stores. Furthermore, in a spatially-programmed
fabric having hundreds of PEs communicating using shared memory would create
unacceptable bandwidth bottlenecks. It would also be wasteful—communicating with
your neighbor should not have to go through a centralized location.

Instead, let us modify the ISA to expose direct communication channels between
PEs as data registers and status bits. The ISA must contain a mechanism to query
if the input channels are not empty, and output channels are not full, to read the
first element, and to enqueue and dequeue. Furthermore we add an architecturally-
visible tag to the channel that merge sort uses to indicate that the end of a sorted
sub-list has been reached (EOL). We name the resulting theoretical assembly language
PC+RegQueue, and give a representation of the merge sort PE in Figure 5. This code
removes all the problematic memory references and pointer manipulation from the
original example, but several inefficiencies are still noticeable. First, it uses active
polling to test the register-mapped queue status, an obvious power waste. Second, it
falls victim to over-serialization. For example, if new data on 1istA arrives before that
on 1istB there is no opportunity to begin processing the 1istA-specific part of the code.
Finally, the code is quite branch-heavy when compared to that typically found on a
traditional core, and some of these branches are hard to predict.

This illustrates that simply augmenting a traditional RISC-style ISA with a
channel-based communication paradigm is not sufficient to enable efficient spatial
programming. In order to be fair to this PC-based ISA we must try to improve the
architecture somehow. Figure 6 summarizes the techniques that we explore below.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:8 M. Pellauer et al.

check_a: beqz %in0O.notEmpty, check_a // listA
check_b: beqz %inl.notEmpty, check_b // listB
check_o: beqz %out0O.notFull, check_o // outList
beq %in0.tag, EOL, a_done
beq %inl.tag, EOL send_a
cmp.1t %r0, %in0.first, %inl.first
bnez %r0, send_a
send_b: enq %outO, %inl.first

deq %inl
jump check_a

send_a: enq %outO, %in0.first
deq %in0

jump check_a
a_done: beq %inl.tag, EOL, done
jump send_b

done: deq %in0
deq %inl
return;
Static Insts 18
Avg Insts/Iteration 10
Avg Branches/Iteration 7
Speedup vs shared 5.2x vs cache hits (no monitor needed)
memory queues (Fig 4) 14.0x vs misses and monitor case

Fig. 5. PC+RegQueue ISA merge sort worker representation using register-mapped queues.

Feature Description Notes

PEs use program counters, communicate
using SVM queues.

Expose register-mapped queues to ISA,

PC (Baseline) High latency, bottlenecks.

+RegQueue test via active polling. Poor power efficiency.

+FusedDeq Dgstructlve read qf queue registers Good improvement.
without separate instructions.

+RegQSelect Allow indirect jump based on register Minimal improvement.
queue status bits.

+RegQStall Issge stalls' on queue 1.np1.1t/outpu.t Bubbles, over-serialization.
registers without special instructions.

+QMultiThread Stalling on empty/full queue yields Significant additional
thread. hardware.

L Predicate registers that can be set Boolean expressions

+Predication . . >
using queue status bits. don’t compose.

+Auemented ISA augmented with all of the above Used in our evaluations

g features except +QMultiThread. (Section 6).

Fig. 6. Adding features to a PC-based ISA to improve efficiency for spatial programming.

One idea to improve queue accesses is to allow destructive reads of input channels.
In such an ISA the SRC fields of the instruction are supplemented with a bit indicating
whether a dequeue is desired. This is an important improvement because it reduces
both static and dynamic instruction count. Merge sort’s implementation on this archi-
tecture can remove 3 instructions compared to Figure 5.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:9

start: beq %in0.tag, EOL, a_done
beq %inl.tag, EOL, send_a
cmp.ge p2, %inO.first, J%inl.first
send_b: (p2) enq %outO, %inl.first (deq %inl)
send_a: (!p2) enq %outO, %in0.first (deq %in0)
jump start
a_done: cmp.ne p2, %inl.tag, EOL
(p2) jump send_b
nop (deq %in0O, deq %inl)
return;

Static Insts

Avg Insts/Iteration (Issued)

Avg Insts/Iteration (Committed)
Avg Branches/Iteration
Speedup vs PC+RegQueue (Fig 5) | 1.

B WO O O ©

X

Fig. 7. PC+Augmented ISA merge sort worker.

The next idea is to replace the active polling with a seleci—an indirect jump based
on queue status bits. This is a marginal improvement in instruction count but does
not help power efficiency. A better idea is to add implicit stalling to the ISA. In this
case the queue registers such as %in0 would be treated specially—any instruction that
attempts to read/write them would require the issue logic to test the empty/full bits
and delay issue until the status becomes correct. Merge sort’s implementation on this
architecture is the same as in Figure 5, but removes the first three instructions en-
tirely.

Of course, the downside of this is that the ALU will not be used when the PE is
stalled. Therefore the next logical extension is to consider a limited form of multi-
threading. In this ISA any read/write of a queue would make the thread eligible to be
switched out and replaced with a ready one. This is a promising approach, but we be-
lieve that the overheads associated with it—duplication of state resources, additional
muxing, and scheduling fairness—run counter to the fundamental spatial-architecture
principle of replicating simple PEs. In other words, the cost-to-benefit ratio of multi-
threading is unattractive. We reject out-of-order issue for similar reasons.

The final ISA extension we consider is predication. We define a variant of our ISA
that is able to test and set a dedicated set of boolean predicate registers. Figure 7
shows a re-implementation of the merge sort worker in a language with predication,
implicit stalling, and destructive reads. It is interesting to note how little predication
improves the control flow of the example. This is because of several limitations:

— Instructions are unable to read multiple predicate registers at once (inefficient con-
junction).

— Composing multiple predicates into more complex boolean expressions (disjunc-
tions, etc) must be done using the ALU itself.

— Jumping between regions requires that the predicate expectations be set correctly.
(Note that the branch from a_done is forced to use p2 with a positive polarity.)

— Predicated false instructions introduce bubbles into the pipeline (Section 5).

Taken together, these inefficiencies mean that conditional branching remains the
most efficient way to express the majority of the code in Figure 7. While we could
continue to try to add features to PC-based schemes in order to improve efficiency, in
the remainder of the paper we demonstrate that taking a different approach altogether

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:10 M. Pellauer et al.

ALGORITHM 1: Traditional Guarded Action Merge Sort Worker

rule sendA

when listA. first() # EOL and listB. first() # FOL and listA.data < list B.data do
outList.send(listA. first());
listA.deq();

end rule

rule sendB

when listA. first() # EOL and listB. first() # FOL and list A.data > list B.data do
outList.send(listB. first());
listB.deq();

end rule

rule drainA

when listA. first() # EOL and listB. first() = EFOL do
outList.send(listA. first());
listA.deq();

end rule

rule drainB

when listA. first() = EOL and listB. first() # FOL do
outList.send(listB. first());
list B.deq();

end rule

rule bothDone

when listA. first() = EOL and listB. first() = EOL do
listA.deq();
list B.deq();

end rule

can efficiently address these issues while simultaneously removing over-serialization
and providing the benefits of multi-threading.

3. LOCAL PE CONTROL: TRIGGERED INSTRUCTIONS

A large degree of the inefficiency discussed in the previous section stems from the issue
of efficiently composing boolean control flow decisions. In order to overcome this, we
draw inspiration from the historical computing paradigm of guarded actions, a field
that has a rich technical heritage including Dijkstra’s language of guarded commands
[Dijkstra 1975], Chandy and Misra’s Unity [Chandy and Misra 1988], and the Bluespec
hardware description language [Bluespec, Inc. 2007].

Computation in a traditional guarded action system is described using rules com-
posed of actions — state transitions — and guards — boolean expressions that de-
scribe when a certain action is legal to apply. A scheduler is responsible for evaluating
the guards of the actions in the system and posting ready actions for execution, tak-
ing into account both inter-action parallelism and available execution resources. Al-
gorithm 1 illustrates our merge sort worker in traditional guarded action form. Note
how this paradigm naturally separates the representation of data transformation (via
actions) from the representation of control flow (via guards). Additionally, the inherent
side-effect-free nature of the guards means that they are a good candidate for parallel
evaluation by a hardware scheduler.

A triggered instruction architecture (TIA) applies this concept directly to controlling
the scheduling of operations on a PE’s datapath at an instruction-level granularity. In

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:11

the historical guarded action programming paradigm, arbitrary boolean expressions
are allowed in the guard, and arbitrary data transformations can be described in the
action. To adapt this concept into an implementable ISA, both must be bounded in
complexity. Furthermore, the scheduler must have the potential for efficient imple-
mentation in hardware. To this end, we define a limited set of operations and state
updates that can be performed by the datapath (instructions) and a limited language
of boolean expressions (triggers) built from a variety of possible queries on a PE’s ar-
chitectural state.

The architectural state of our proposed TIA PE is composed of the following elements:

— A set of data registers (R/'W).

— A set of predicate registers (R/'W).

— A set of input-channel head elements (R-only).
— A set of output-channel tail elements (W-only).

Each channel has three components — data, a tag and a status predicate that reflects
whether an input channel is empty or an output channel is full. Tags do not have any
special semantic meaning — the programmer can use them in a variety of ways.

A trigger is a programmer-specified boolean expression formed from the logical con-
junction® of a set of queries on the PE’s architectural state. Triggers are evaluated by
a hardware scheduler (described shortly). The set of allowable trigger query functions
are carefully chosen to maintain scheduler efficiency while allowing for a large degree
of generality in the useful expressions. These query functions are:

— Predicate Register Values (optionally negated): A trigger can specify a re-
quirement for one or more predicate registers to be either true or false, e.g., p0 &&
'pl && p7.

— Input/Output Channel Status (implicit): The scheduler implicitly adds the
empty status bits for each operand input channel to the trigger for an instruction.
Similarly, a not-full check is implicitly added to each output channel an instruction
attempts to write. The programmer does not have to worry about these conditions,
but must understand while writing code that the hardware will check them. This
facilitates convenient, fine-grained, producer/consumer interaction.

— Tag Comparisons against Input Channels: A trigger may specify a value that
an input channel’s tag must match, e.g., in0.tag == EOL.

An instruction represents a set of data and predicate computations on operands
drawn from the architectural state. Instructions selected by the scheduler are exe-
cuted on the PE’s datapath. An instruction has the following read, compute and write
capabilities:

— An instruction may read a number of operands, each of which can be data at the
head of an input channel, a data register, or the vector of predicate registers.

— An instruction may perform a data computation using one of the standard func-
tions provided by the datapath’s ALU. It may also generate one or more predi-
cate values that are either constants (true/false) or derived from the ALU result
via a limited set of datapath-supported functions, e.g., reduction AND, OR and XOR
operations, bit extractions, ALU flags such as overflow, etc.

— An instruction may write the data result and/or the derived predicate result into
a set of destinations within the architectural state of the PE. Data results can be

3Although the architecture natively allows only conjunctions in trigger expressions, disjunctions
can be emulated by creating a separate triggered instruction for each disjunctive term.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:12 M. Pellauer et al.

// p0 = Have we done a comparison yet?
// pl = Result of comparison. Is listB.head > listA.head?

doCheck:
when (!pO && %inO.tag !'= EOL && %inl.tag !'= EOL) do
cmp.ge pl, %inO.data, %inl.data (p0 := 1)

sendA:
when (pO && pl) do
enq %outO, %inO.data (deq %in0, pO := 0)
sendB:
when (pO && !pl) do
enq %outO, %inl.data (deq %inl, pO := 0)

drainA:
when (%inO.tag !'= EOL && J%inl.tag == EOL) do
enq %outO, %inO.data (deq %in0O)

drainB:
when (%inO.tag == EOL && ’%inl.tag != EOL) do
enq %outO, %inl.data (deq %inl)

bothDone:
when (%inO.tag == EOL && %inl.tag == EOL) do
nop (deq %inO, deq %inl)

Static Insts 6
Avg Insts/Iteration 2
Speedup vs PC+RegQueue (Fig5) | 5x
Speedup vs PC+Augmented (Fig 7) | 3x

Fig. 8. Triggered instruction merge sort worker.

written into the tail of an output channel, a data register, or the vector of predicate
registers. Predicate results can be written into one or more predicate registers.

Figure 8 shows our merge sort expressed using triggered instructions. Note the den-
sity of the trigger control decisions—each trigger reads at least two explicit boolean
predicates. Additionally, conditions for the queues being notEmpty or notFull are rec-
ognized implicitly. Only the comparison between the actual multi-bit queue data val-
ues is done using the ALU datapath, as represented by the doCheck instruction. Pred-
icate pO is used to indicate that the check has been performed, while p1 holds the
result of the comparison. Note also the lack of over-serialization. Only the explicitly
programmer-managed sequencing using pO is present.

An example TIA PE is illustrated in Figure 9. The PE is pre-configured with a static
set of instructions. The triggers for these instructions are then continuously evaluated
by a dedicated hardware scheduler that dispatches legal instructions to the datapath
for execution. At any given scheduling step, the trigger for zero, one, or more instruc-
tions can evaluate to true. The guarded action model — and by extension our triggered

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:13

s | L)L)]

[Input Switch J
Input Ch | l ‘ ‘ ‘
fput whannes {|Ta9|| Data | [Tag] Data | [Tag] Data | [Tag] Data |]\
/ [Reg0 | Regt1 | Reg2 | Reg3 | |
Instruction A
Triggers \ l 1 |
1
I)\Oprnd Selec \Oprnd Select
I ! :
J 1
1

- I
O R RCE) & B

H
PolPilP2[Pa] §
Pt > ALU
E Data
) H Update
Predicate Update 1 | l I

e ————

_ :

fT Dat T Dat: T Dat T Dat]/
Output Chamals {[Teg| Data | [Tag| Data | [Tag| Data | [Tag| Data |

! ' I I

Output Switch J

E
Output Links l l l l 1 l l l

Fig. 9. A triggered-instruction based PE.

instruction model — allows all such instructions to fire in parallel subject to datapath
resource constraints and conflicts.

The high-level microarchitecture of a TIA hardware scheduler is shown in Figure 10.
The scheduler uses standard combinatorial logic to evaluate the programmer-specified
query functions for each trigger based on values in the architectural state elements.
This yields a set of instructions that are eligible for execution, among which the sched-
uler selects one or more depending on the datapath resources available. The example
shown in this figure illustrates a scalar data-path that can only fire one instruction
per cycle, therefore the scheduler selects one out of the available set of ready-to-fire
instructions using a priority encoder.

As with any architecture, a triggered-instruction architecture is subject to a num-
ber of parameterization options and their associated cost-vs-benefit tradeoffs. Architec-
tural parameters include the number of instances of each class of architectural state
element (data registers, predicate registers, etc.), the set of data and predicate func-
tions supported by the datapath, the scope and flexibility of the trigger functions, and
the number of input operands and output destinations. The design space of microar-
chitectural alternatives includes scheduler implementation choices, scalar vs. super-
scalar datapaths, pipelining strategies, etc. An exhaustive investigation of the entire
design space is outside the scope of this work. To provide the reader with some intu-
ition on what a reasonably balanced TIA PE could look like, we provide an example
architectural configuration in Figure 11. This is also the configuration we use for our
evaluation in Section 6.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:14 M. Pellauer et al.

Trigger Instruction | —>]
Trigger Instruction >
Trigger Instruction |—>|
Trigger Instruction > : :
Trigger Instruction —>| ——>| Triggered Instruction |
—__Trigger Instruction >
—|__Trigger Instruction || Execute
rL_Trigger Instruction ||

Datapath

Priority Encoder

nstruction Ready

[el[e]

Trigger
Resolution

Predicate Updates

o

l[=]=][~]
][=]=][=]

[Pl[e]

T T[T e

Channel Status Tags

Fig. 10. Microarchitecture of a TIA scheduler.

Sources per Instruction

Registers

Predicates

Max Triggered Instructions per PE

|
5 00 00| b

Fig. 11. Example PE Architecture Parameters.

3.1. Observations on the Triggered Model

Having defined the basic structure of a triggered instruction architecture, we are now
in a position to make some key observations:

— A TIA PE does not have a program counter or any notion of a static sequence of
instructions. Instead, there is a limited pool of triggered instructions that are con-
stantly bidding for execution on the datapath. This fits very naturally into a spatial
programming model where each PE is statically configured with a small pool of in-
structions instead of streaming in a sequence of instructions from an instruction
cache.

— Observe that there are no branch or jump instructions in the triggered ISA—every
instruction in the pool is eligible for execution if its trigger conditions are met. Thus,
every triggered instruction can be viewed as a multi-way branch into a number of
possible states in an FSM.

— With clever use of predicate registers, a TIA can be made to emulate the behav-
ior of other control paradigms. For example, a sequential architecture can be em-
ulated by setting up a vector of predicate registers to represent the current state
in a sequence—essentially, a program counter. Predicate registers can also be used
to emulate classic predication modes, branch delay slots and speculative execution.
Triggered instructions is a superset of many traditional control paradigms. The
cost of this generality is scheduler area and timing complexity, which imposes a

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:15

restriction on the number of triggers (and thus, the number of instructions) that
the hardware can monitor at all times. While this restriction would be crippling for
a temporally programmed architecture, it is reasonable in a spatially-programmed
framework because of the low number of instructions typically mapped to a pipeline
stage in a spatial workload.

— The hardware scheduler is built from combinatorial logic — it simply is a tree of
AND gates. This means that only the state equations that require re-evaluation
will cause the corresponding wires in the scheduler logic to swing and consume dy-
namic power. In the absence of channel activity or internal state changes, the sched-
uler does not consume any dynamic power whatsoever. The same control equations
would have been evaluated using a chain of branches in a PC-based architecture.

Altogether, triggered instructions allow individual PEs to efficiently react to incom-
ing messages, making an intelligent decision based on the local state of the PE. A TI
scheduler uses a single unified scheme to monitor both the one-bit channel status reg-
isters and the local predicate registers in order to quickly and cheaply make a trigger
decision. Spatial PEs are the “endpoints” of producer/consumer relationships. In the
next section we present an efficient scheme for the actual transport of control and data
between producers and consumers.

4. COMMUNICATIONS AND INTER-PE CONTROL

Triggered instructions capture the local control logic programmed onto a single PE,
but the spatial fabric must also support some form of inter-PE coordination and data
passing. One possibility is to design a global control architecture with a centralized
“master” directing non-autonomous PEs. However, access to shared centralized control
state is likely to be expensive and limit scalability of the fabric. Distributed control,
though scalable, often makes it challenging to map an algorithm into a distributed
program without either A) introducing bugs and deadlocks, or B) using knowledge
about properties of the underlying network fabric. Existing spatial fabrics have solved
this using systolic or synchronous networking schemes that cause neighboring PEs to
move exactly in lockstep, which can limit performance.*

4.1. Latency-Insensitive Channels: A Flexible Architectural Foundation

In order to make this mapping process tractable while avoiding over-synchronization,
we take inspiration from prior work on a fully distributed and scalable control
paradigm based on latency-insensitive design [Carloni et al. 2001]. This paradigm has
previously been successfully applied to hardware design [Pellauer et al. 2009; Vija-
yaraghavan and Arvind 2009], FPGA-based algorithm mapping [Fleming et al. 2012],
and hardware-software communication [King et al. 2012].

In this design paradigm, local modules (whether hardware or software) are unable to
make assumptions about the timing characteristics involved with communicating with
other modules in the system. Instead, coordination is piggybacked onto data commu-
nications. The arrival (or absence) of a message on an input communication channel
is itself an implicit form of control synchronization. This works well in a spatial ar-
chitecture because of the significant amount of inter-PE dataflow required to achieve
fine-grained producer-consumer pipelines. These dual-purpose communication chan-
nels are called latency-insensitive channels [Fleming et al. 2012].

A properly latency-insensitive system has the following properties:

4There is an analogy between a traditional Single-Instruction-Multiple-Data (SIMD) architecture and a
systolic spatial fabric. Both approaches seek to obtain cheaper hardware implementation by potentially
limiting performance to that of the slowest thread or PE, respectively.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:16 M. Pellauer et al.

— Modules connected via latency-insensitive channels do not share any data or control
state except through these channels.

— Latency-insensitive channels are non-lossy, in-order channels. Transmitted mes-
sages remain in the channel until dequeued by the receiver.

— Traffic on any given latency-insensitive channel is not allowed to indefinitely block
the delivery of traffic on any other channel.

— Latency-insensitive channels allow at least one message in flight, i.e., have at least
one buffer. Each channel may allow more, but the exact amount may not be known
statically.

— Modules connected via a latency-insensitive channel are not allowed to make any
assumptions about the total amount of buffering available in the channel, nor about
the the latency of message delivery along the channel.

As a corollary to the above points, if producer P, serially sends messages A and B
down channel 0, and producer P; sends C and D down channel 1, then a consumer that
reads both channels may receive the messages in the following legal orders: A, B, C, D
or A,C,B,Dor A,C,D,Bor C,A,B,D or C,A,D,B or C,D, A, B. Which of these or-
derings is actually observed at runtime may be unpredictable (for instance, because
of network congestion), and therefore a properly latency-insensitive program must be
able to tolerate all of them (though they may not all be observed in practice).

We choose the latency-insensitive paradigm because the restrictions it imposes allow
the architectural interface of the communication network (i.e., the channel interface
described in Section 3) to be separated from the implementation and topology of the
network. For example, a latency-insensitive channel can be implemented simply as a
register with a valid bit, or as a deep memory-based circular ring buffer. A latency-
insensitive module or program should be functionally oblivious to these implementa-
tion choices (though performance may vary).

Furthermore, properly latency-insensitive code may be deployed in a variety of dif-
ferent mapping scenarios. In one deployment, a producer module may be placed di-
rectly next to a consumer, with an uncontended direct link between them that con-
tains a small amount of buffering. Later, the same code may be deployed in a scenario
where the same producer is far from the consumer, and the data must travel heavily-
contended network links, but is also given more buffering as a result. These scenarios
may certainly differ in performance, but latency-insensitivity should ensure that the
program always produces the correct result. This gives spatial architects a large degree
of freedom when developing efficient mapping algorithms.

4.2. Efficient Channel Implementation via Static Virtual Circuits

As we will show in Section 6, a distributed program for typical spatial workload con-
tains a large number of cross-PE channels. It is unrealistic to assume that hardware
can provision dedicated wires to acheive full bandwidth for all flows— and indeed,
nearest neighbor communication is too restrictive to cover all cases. Luckily, there is an
abundance of prior art on building on-chip networks that create shared virtual chan-
nels (VCs) for traditional MIMD processors [Dally and Towles 2003; Peh and Jerger
2009]. These channels have the ordering and non-blocking requirements we desire,
while efficiently multiplexing limited wire and buffer resources dynamically, and us-
ing established flow-control crediting techniques to acheive good bandwidth.
Unfortunately, these solutions use dynamic packet routers with deep pipelines that
are not a good fit for spatial architectures. These routers are typically designed for a
scenario where each network node is a traditional processor core, which amortizes the
cost of the router. In contrast, each PE in a spatial architecture is much smaller, which
makes a traditional dynamic router impractical. Furthermore, this level of dynamism

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X7

is actually not needed in a spatial context. In a typical multicore, the overwhelming
majority of traffic on the OCN is coherence-protocol traffic. Caching schemes intention-
ally hash the packet destination to distributed home nodes in order to avoid creating
hotspots and bottlenecks. In such a scenario dynamic packet addressing and deadlock-
free routing schemes are fundamental requirements.

In contrast, in the spatial scenario, the producer/consumer flows are statically de-
termined when the program is loaded during the configuration step. Most flows are
nearest-neighbor, and often can be mapped so that there is no contention (see Section
6). We can leverage these facts to create statically allocated virtual circuits through the
on-chip network. We can then map the programming construct of latency-insensitive
channels onto these circuits, which multiplex limited physical link wires between the
flows mapped onto them on a hop-by-hop basis, while maintaining non-blocking and
deadlock-freedom via reverse credit flows, which are similarly statically mapped and
managed.

When connecting spatial PEs, these circuits have the following advantages over tra-
ditional VC multiplexing:

— A circuit’s route can be determined soley by the mapper (or programmer) and need
not take the most direct route to the destination, for instance for congestion avoid-
ance.

— A uniform deadlock-free routing scheme such as X-Y routing is not needed, but
rather deadlock freedom can be insured on a circuit-by-circuit basis.

— Packets can be routed based solely on the channel-ID that is transmitting, rather
than through a control flit pre-pended to the message. This results in fewer bits
transmitted per message and simpler hardware per router.

— Similarly, the routing decision for each circuit can be distributed at configuration
time to each hop involved in that circuit. For example, if route 5 goes North-East-
East, this would result in “North” configured to entry 5 of the routing table of the
first hop, “East” to the second hop, and so on. This means that each router will only
see information local to its particular switch, and will not pay energy transmitting
routing directions for following hops.

— At configuration time, different buffering resources may be allocated to different
flows depending on their expected criticality to program performance. This could be
used either to increase fairness or quality-of-service of the overall system.

Figure 12 depicts an implementation of a single input and output channel as they
interface with the PE’s scheduler and datapath. State elements with dotted borders
are written statically, during the configuration of the program, and define the virtual
circuit that implements the channel. This includes the link in/out and channel ID of
the next (or previous) hop that for data transmission. For the input channel, the mul-
tiplexer into the data buffer is controlled statically by an unchanging value indicating
which incoming link’s data should be latched. This has a beneficial effect on both power
consumption and critical path. For output, the link direction a given channel is trying
to transmit onto is similarly statically determined.

Elements with dashed borders represent micro-architectural scoreboarding that is
invisible to the end user. This includes the current occupancy level of the local buffer,
and current crediting status. Note that these credits are tracked between this hop and
the immediate next, and do not represent end-to-end flow control, which can conserva-
tively limit effective network bandwidth.

One important design decision is the placement of buffering both before and after the
PE. From a correctness standpoint, this buffering is overkill—it has been shown that
buffering either input or output exclusively is sufficient. Within the latency insensitive
design paradigm, we choose to use both because it allows the system to better tolerate

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:18 M. Pellauer et al.

(mDeqfromPE

#Y/()IY

......... “"On Eng erm pE .Tail | Head
T[Ié[Tall] ALU.tag T
¢ Data[Tail] = ALU.data E

<
=
©
< : S
) or sizes =
g ad++ /7 modul() buffuc (2 o=
= o
ie] S
)
—
5]
[e]
2 :
: ©
: ® To ALU...
—1s] o
s _| i S
o % ko 3
0 |
£ |1 —|° -
= — o =2 °
S > © To Scheduler... ™= i B
O —> ©
= [y Ee) N,
1 s
I

Xmit Try

" |5| Not|Empty

4 '_' : """" 1 Dynamic, Dynamic, | LT e T e
“onfig I MicroAcch —/ Arch Visible| e

A) Input Channel — B) Output Channel

Fig. 12. Implementation details of the PE interface to a single input/output channel shown previously in
Figure 9. For simplicity, head/tail pointers are depicted. Smaller buffers could be implemented with occu-
pancy bits, or cross-channel buffer-slot sharing schemes considered.

variabilities in latency. If a downstream consumer becomes temporarily slowed due to
congestion or cache misses, the producer PE may still pre-buffer results into the output
channel, even if the channel itself is out of credits to downstream hops. Similarly, even
if a PE is stalled on some rare-but-slow operation, the network is still able to pre-buffer
some amount of new input, reducing congestion and allowing for quick resumption
when the hiccup is resolved.

Note the natural fit between the input/output channels’ NotFull and NotEmpty sig-
nals and the triggered instruction scheduler. To the trigger resolution logic, these
are simply extra 1-bit inputs, not really any different than local predicate registers.
Whether these 1-bit signals represent a complicated occupancy and/or credit status is
immaterial to the instruction scheduling decision.

Finally, note that the PEs can also be programmed to operate as network routers in
a multihop traversal by adding a triggered instruction that dequeues the data from an
input channel and enqueues it into an output channel.

In the following sections we evaluate and quantify the benefit that the latency-
insensitive communication mechanism brings to common control paradigms found in
real workloads.

5. EVALUATION: CONTROL IDIOMS

In this section we evaluate the quantitative benefit of triggered instructions and
latency-insensitive channels by examining a number of control idioms that arise fre-
quently in spatially-programmed workloads.

Table I describes common control idioms that occur when controlling a single PE,
and compares implementations of each idiom on a triggered architecture to implemen-
tations on the PC+RegQueue and PC+Augmented architectures described in Section 2.
These idioms are generally related to efficiently encoding the graph of a single finite-
state machine onto a given instruction set. Table II repeats this comparison using

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures

X:19

Table I. Dynamic instruction cost of common intra-PE control idioms.

(A) Seq Composition
(autonomous)

(B) Par Composition
(autonomous)

(C) Control Dependence

(D) Loop (k iterations)

(E) Nested Loop
(k iterations per level)

nops

nops

Idiom Legend

Idiom PC+RegQueue PC+Augmented Triggered Instructions TI Advantage over
PC+Augmented
(A) D.ops=n D.ops=n D.ops=n -
(serialized) (serialized) (serialized)
B) D.ops=n D.ops=n Dops=n eliminates
(serialized) (serialized) (unordered) serialization
©) D.ops =morn + 1t D.ops =morn + 11 D.ops =morn + 1f eliminates
C.ops=1 Fops=morn C.ops =0; Fops =0 m or n F.ops
t 1 comparison 1 1 comparison T 1 comparison
(D) D.ops =n*k + kf D.ops =n*k + ki D.ops =n sk + k't eliminates
C.ops=k C.ops=k C.ops =0 k C.ops
1 k comparisons 1 k comparisons T k comparisons
(E) D.ops=k™ xn D.ops =k™ xn D.ops = k™ xn
k(™ —1)T k(™ —1)T k(™ —1)T
+ D D D
eliminates
P (k™ — (™ —
C.ops = (<k71)1) C.ops = <(k—1)1) C.ops =0 ((kil)l) C.ops
B(k™—1) . (k™ —1) . k(™ —1) .
TW comparisons TW comparisons 1 =Ty comparisons

D.ops = data ops, C.ops = control ops, F.ops = predicated false ops, autonomous = internal activities of a PE

common inter-PE communication paradigms using latency-insensitive channels, thus
demonstrating the efficacy of pairing each ISA with this scheme.

Across both tables we see some general patterns emerging. First, TI is never less
efficient than a PC-based approach, i.e. it never requires more instructions. Second,
TI removes all control operations such as branches. In a classic PC-based setting, the
accepted rule of thumb is that about 1 in every 4-5 instructions is a branch [Emer
and Clark 1984]. In this setting TI's expected benefit would be around 20%. How-
ever in Section 6.3 we demonstrate that the fine-grained producer-consumer nature of
spatially-programmed codes means that control makes up 44% of all operations, which
increases the benefit of TI significantly.

Finally, TT removes the over-serialization problem presented in Section 2.3. This has
several benefits, but they are harder to quantify directly. First, as the equations in
Table II demonstrate, there are certainly scenarios where over-serialization results
in no penalty because the data arrives in the order that matches the static sequence
chosen by the compiler. If the compiler can precisely schedule cross-PE data delivery
rates then it is possible that this deficiency will never be exposed. In practice, the nu-
merous sources of variable dynamic latency (memory hierarchy, network contention,
data-dependent divergence, etc.) mean that there is plenty of opportunity to take ad-
vantage of the ability to break over-serialization. Additionally, dealing with messages
as they arrive can allow backwards credit-flow to the producer PE to begin earlier,
which can increase effective OCN throughput.

Breaking over-serialization can be accomplished by finding independent operations.
These can be found from two sources. The first source is local parallelism in the PE’s
dataflow graph, in which case computation can start as the data arrives, i.e., classical
dynamic instruction reordering. The second source arises when the spatial compiler
chooses to place unrelated sections of the overall algorithm dataflow graph onto a sin-

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:20 M. Pellauer et al.

Table II. Dynamic instruction cost of common inter-PE control idioms.

(F) Seq Composition (G) Par Composition (H) Par Composition
(queue input) (queue input) (queue output)

Tg Ta
o o

Idiom Legend

Idiom PC+RegQueue PC+Augmented Triggered Instructions TI Advantage
over
PC+Augmented
) D.ops= Ny + Np D.ops= Ny + Np D.ops= Ny + Np
Q.ops =2 Q.ops =0 Q.ops =0
wait = T4 + maz(Tg — Ta — Na,0) wait = T4 + maz(Ts —Ta — Na,0)
wait = Ty + maz(Tg — Ta — Na,0) wait = T4 + maz(Tp — Ta — Na,0)
@) D.ops= Ny + Np D.ops= Ny + Np D.ops= Ny + Np
Q.ops =2 Q.ops =0 Q.ops =0
wait = if (Ty > Tg) wait = if (T4 > Tg) if (Ta > Tg)
Ta T +maz(Ty — Tp — Np,0) min(Np,Ta — Tg)
(serialized A — B) else else wait filled
Ta +maz(Tp —Ta — Ny,0) Ta +max(Tp —Ta — Nya,0)
(serialized A — B)
(H) D.ops=Ny + Np D.ops= Ny + Np D.ops= Ny + Np
Q.ops =2 Q.ops =0 Q.ops =0
wait = if (Ty > Ts) wait = if (T4 > Tg) if (Ta > Tg)
Ta T +maz(Ta —Tp — Na,0) min(Na,Ta —Tg)
else else wait filled
(serialized A — B) T +maz(Tg —Ta — Np,0) Ta +max(Tp —Ta — Np,0)

(serialized A — B)

D.ops = data ops, Q.ops = queue ops, wait = serialization penalty, queue = PE responding to external events, T; = time of channel availability

gle PE, statically partitioning the registers between them and statically interleaving
operations, i.e. compiler-directed multithreading. On a PC-based architecture, the seri-
alization restriction is a significant barrier to a compiler’s ability to statically partition
one thread of control between unrelated sections of a single algorithm. The dynamic
data production/consumption rates must be known to schedule the code—Dboth for effi-
ciency, and to avoid deadlock. On a TI architecture we expect compiler-directed multi-
threading of non rate-limiting PEs to be a common and important optimization.

To reiterate these benefits, since a TI architecture does not impose any ordering
between instructions unless explicitly specified, it can gain the ILP benefits of an out-
of-order issue processor without the expensive instruction window and reorder buffer.
Simultaneously, a TI machine can take advantage of multi-threading without dupli-
cating data and control state, but by the compiler partitioning resources as it sees fit.
Of course there is a hardware cost associated with this benefit—the TI PE must have
a scheduler (see Figure 10) that can efficiently evaluate the program’s triggers.

6. EVALUATION: WORKLOADS
6.1. Approach
The objective of our quantitative evaluation in this section is threefold:

(1) To demonstrate the effectiveness of a TIA-based spatial architecture compared to a
traditional high-performance sequential architecture.

(2) To demonstrate the benefits of using TIA-based PEs in a spatial architecture com-
pared to PC-based PEs using the PC+RegQueue and PC+Augmented architectures
described in Section 2.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:21

(3) To demonstrate that latency-insensitive channels are an efficient and appropriate
paradigm for inter-PE communication, and represent a viable alternative to trans-
ferring data via shared memory coherence protocols.

The main challenge with the first objective is that raw performance of a spatial
accelerator is a function of area and memory bandwidth allocated to the accelerator,
and parallelism available in the workload. Because spatial workloads generally ex-
hibit good scalability, providing raw performance requires assessing a particular de-
sign point with a specific set of area/bandwidth values. However, since the purpose of
this paper is to present a control paradigm for spatial architectures in general, we in-
stead present performance numbers area-normalized against a typical host processor
—namely a single 3.4 GHz out-of-order superscalar Intel® Core™ i7-2600 core.

Our evaluation fabric is a scalable spatial architecture built from an array of TIA
PEs organized into blocks, which form the granularity of replication of the fabric. Each
block contains a grid of interconnected PEs, a set of scratchpad slices distributed across
the block, a private L1 cache, and a slice of a shared L2 cache that scales with the
number of blocks on the fabric. Figure 13 provides an illustration of a block and the
parameters that we use in our evaluation. Note that our evaluation PEs use 32-bit
integer/fixed-point datapaths and do not include hardware floating point units (which
is orthogonal to triggered instructions and beyond the scope of this evaluation). Area
estimates of each PE were obtained via implementation feasibility analysis discussed
further in Section 6.4. Area estimates for the caches, register files, multipliers, and
on-chip network were added using existing industry results. As a reference, 12 blocks
(each including PEs, caches, etc.) are about the same size as our baseline 17-2600 core
(including L1 and L2 caches), normalized to the same technology node.

We developed a detailed cycle-accurate performance model of our spatial accelerator
using Asim, an established performance modeling infrastructure [Emer et al. 2002].
We model the detailed microarchitecture of each TIA PE in the array, the mesh inter-
connection network, L1 and L2 caches, and DRAM.

We evaluate our spatial fabric on application kernels from a variety of domains. We
do this under the assumption that the computationally-intensive portions of the work-
load will be offloaded from the main processor, which will handle peripheral tasks like
setting up the memory and handling rare-but-slow cases. As a baseline we used se-
quential software implementations running on the i7-2600 host processor. When pos-
sible, we chose existing optimized workload implementations. In other cases, we auto-
vectorized the workload using the Intel® C/C++ compiler (icc) version 13.0, enabling
processor-specific ISA extensions.

For our second evaluation objective, we analyze how much of the overall speedup
benefit is attributable to triggered instructions (as opposed to spatial programming
in general) using the same framework described above. We demonstrate this by ex-
amining the critical loops that form the rate-limiting steps in the spatial pipeline of
our workloads. We implemented the loops on spatial accelerators using the traditional
program-counter based approaches. This analysis demonstrates how frequently the
triggered instruction control idiom advantage presented in Tables I and II translates
to practical improvements.

For our third evaluation objective, we gather statistics of the channel usage of our
workloads. We begin by showing what percentage of the channels are related to mem-
ory interaction, and what percentage represent more efficient direct inter-PE com-
munuication. We also gather statistics on potential for network conflicts, demonstrat-
ing how different these static flows are from traditional dynamically routed packets.
Finally, we gather dynamic usage statistics, showing how much memory traffic and
link contention occur in practice, and to what extent latency-insensitive channels al-
low us to unlock the potential bandwidth of our on-chip network and cache hierarchy.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:22 M. Pellauer et al.

PEPEPECJPECPE] PEPEFPEET
PEPEpPEPEPE 1 PEEPEPE] 'I§Scratchpad
PEE]PECPE]PE[|PELJPECPEJPE] Slices
PE [PEPELJPELJPEIPEPEJPEL

| L1 Cache |
| L2 Cache Slice |
PEs 32
Network | Mesh (1 cycle link latency)
Scratchpad 8KB (distributed)
L1 Cache | 4KB (4 banks, 1IKB/bank)
L2 Cache 24 KB shared slice
DRAM 200 cycle latency
Estimated Clock Rate 2 GHz

Fig. 13. Block Illustration and Parameters.

Table Ill. Target Workloads for Evaluation.

Berkeley Dwarf

Comparison Software

Workload [Asanovic et al. 2006] Domain Implementations
AES-CBC Combinational Logic Cryptography K};gl f?geAre;CtZ;SSilgfs
KMP String Search Finite State Machines = Various i?;l—é);zgfa%ﬁ;mlzed

® - -
Dense Matrix Multiply Dense Linear Algebra Scientific Computing %g‘rf;}in ﬁ%ﬁfslelrgg?}; ation
FFT Spectral Methods Signal Processing FFT-W with auto-vectorization

Graph500-BFS

Graph Traversal

Supercomputing

Non-public optimized
implementation

k-means Clustering

Dense Linear Algebra

Data mining

MineBench implementation
with auto-vectorization

Non-public optimized

Merge Sort Map/Reduce Databases . ;
implementation

Flow classifier Finite State Machines = Networking Non-pubhc opumlzed
implementation

SHA-256 Combinational Logic Cryptography Intel reference (x86 assembly)

6.2. Evaluation Application Kernels

For our analysis we have purposely chosen workloads spanning the space of data par-
allelism, pipeline parallelism, and graph parallelism. Table III presents an overview
of the chosen kernels.

The triggered instruction versions of these kernels we implemented directly in our
PE’s assembly language and hand-mapped spatially across our fabric. (In the future
we expect this to be done by automated tools from higher-level source code.) We offer
these insights on the workloads’ amenability to spatial programming:

— AES-CBC: Encryption with cipher-block chaining implemented using a memoized
table in which byte substitution is performed. The algorithm is performed on a 4x4
grid of 8 bits apiece. One PE is responsible for providing the computation for a single
byte, exposing 16-way parallelism.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:23

Table IV. Percentage of dynamic instructions that are branches in rate-limiting step inner loop.

AES DMM FFT Flow Classifier Graph-500

PC+RegQ 58% 50% 36% 50% 50%
PC+Aug 6% 33% 11% 50% 40%

k-means KMP Search Merge Sort SHA-256 Average

PC+RegQ 69% 8% 70% 63% 50%
PC+Aug 29% 14% 50% 22% 28%

— Dense Matrix Multiply: We adapt the SUMMA algorithm [Geijin and Watts 1997]
by blocking problem size to the fabric. Input data is pipelined through loader PEs.
Each worker PE operates on an 8*8 resultant matrix.

— KMP String Search: We adapt the Knuth-Morris-Pratt (KMP) [Knuth et al. 1977]
string search algorithm by slicing the text string into small segments and distribut-
ing it across a large number of PE workers. Another set of PEs are configured as
pattern state machine generators and servers. A spatial implementation is able to
slide the string window by simply rotating the logical order of the workers, discard-
ing the block of text from the oldest worker and shifting in a new block in its place.

— FFT: We adapt a Fast Fourier Transform by blocking the complex-multiply butterfly
structure into a size specific to our number of PEs. A control FSM re-uses this block
to compose an FFT of arbitrary size.

— Flow Classifier: Network packet masking is parallelized by allocating different
segments of the packet to different PEs. The hash key calculation is pipelined
through a large number of PEs. The final comparison for matching flows is par-
allelized by processing multiple segments of the flow in parallel on multiple PEs.

— Graph500-BFS: The graph500 benchmark is meant to span multiple nodes of a
supercomputer. We simulate what a single node would look like if enhanced with a
spatial accelerator. We are able to pipeline the loading, testing, and updating of the
nodes to expose a large number of in-flight memory requests.

— k-means Clustering: Our implementation maps the Euclidean distance function
for a single cluster to a PE. Input data, along with the current nearest cluster, is
streamed through the PEs in order to compare against all clusters.

— Merge Sort: Described previously in Section 2.2.

— SHA-256: The tight inner-loop is spatially mapped across PEs, with each function
being mapped to a separate PE. Key generation is parallelized.

6.3. Performance Results

Figure 14 demonstrates the magnitude of performance improvement that can be
achieved from using a spatially-programmed accelerator. Across our workloads, we
observe area-normalized speedup ratios ranging from 3x (FFT) to around 22x (SHA-
256) compared to the performance of the traditional core, with a geometric mean of
8x.

Now let us analyze how much of this benefit is attributable to the use of triggered
instructions by comparing the rate-limiting inner loops of our workloads to implemen-
tations on spatial architectures using the PC+RegQueue and PC+Augmented control
schemes.

Table IV shows the average frequency of branches in the dynamic instruction stream
for the PC-based spatial architectures. The branch frequency ranges from 8% to 70%,
with an average of 50%. These inner loops are all very branchy and dynamic—far more
than traditional sequential code.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:24 M. Pellauer et al.

N
(6]

N
o

15

10 4

Performance Ratio

Fig. 14. Area-normalized performance ratio of a TIA-based spatial accelerator compared to a high-
performance out-of-order core.

Dynamic Cycles

PC+RegQ
PC+Aug
PC+RegQ
PC+Aug
PC+RegQ
PC+Aug
PC+RegQ
PC+Aug
PC+RegQ
PC+Aug

AES DMM FFT Flow Classifier Graph500 k-means KMP search Merge Sort SHA-256 Mean

Fig. 15. Breakdown of dynamic execution cycles in rate-limiting inner loops normalized to D.ops executed
by PC+RegQueue.

This dynamism manifests itself as additional control cycles for both PC-based archi-
tectures, as shown in Figure 15. This figure shows the dynamic execution cycles for all
architectures broken down into cycles spent on operations in each category defined in
in Section 5. The cycle counts are all normalized to the number of D.ops (Data Com-
putation operations) executed by PC+RegQueue. We augment this data with Figures
16 and 17, which respectively show the static and dynamic (average) instruction/op
counts in the inner loops of rate-limiting steps for each workload.

The data in these figures demonstrates that the control idiom efficiencies presented
in Tables I and IT are applicable to real-world kernels. Specifically:

— TIA demonstrates a significant reduction in dynamic instructions executed com-
pared to both PC+RegQueue (64%) and PC+Augmented (28%) on average, and
an average performance improvement of 2.0x vs. PC+RegQueue and 1.3x vs.
PC+Augmented in the critical loops. A large part of the performance gained
by PC+Augmented over PC+RegQueue is from the reduction of Queue Manage-
ment ops. TIA benefits from this too but gets a further performance boost over
PC+Augmented from a reduction in Control ops and Predicated-False ops.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:25

Average Instructions per Iteration

u PC+RegQ
m PC+Augmented
TIA

Static Instructions

°

Fig. 16. Static instruction counts for rate-limiting inner loops.

45

40 | = Non-Control
@ Control

35

30

25

20

Yy |
Yy |
Wy |
TIA
TIA

TIA
TIA

<
=

TIA
TIA

PC+Aug
PC+Aug
PC+Aug
PC+Aug
PC+Aug
PC+Aug
PC+Aug
PC+Aug
PC+Aug

PC+RegQ

PC+RegQ
PC+RegQ

PC+RegQ

PC+RegQ

PC+RegQ

PC+Aug
PC+RegQ
PC+RegQ

[e]
=
L}

['4
*
o
a

(e}
=)
i}

o
+
o
a

K

SHA-256 ‘ Mean ‘

MP Search ‘ Merge Sort

Flow Classifier ‘ Graph-500 k-means

AES DMM FFT

Fig. 17. Average dynamic instruction counts for rate-limiting inner loops.

An additional benefit of TIA over PC+Augmented comes from a reduction in Wait
cycles. This is most evident in the k-means (50%), Graph500 (100%) and SHA-256
(40%) workloads. This is due to the ability of triggered instructions to avoid un-
necessary serialization. Note that because these are critical rate-limiting loops in
the spatial pipeline, there are fewer opportunities for multiplexing unrelated work
onto shared PEs. Despite this, the workloads show benefits from avoiding over-
serialization.

The workload that sees the largest benefit from triggered instructions is Merge
Sort. Merge Sort has the highest dynamic branch rate (70%) of all workloads on
the PC+RegQueue architecture. It also spends a number of cycles polling queues.
PC+Augmented eliminates all the queue-polling cycles, resulting in 1.6x perfor-
mance improvement in the rate-limiting step. TIA further cuts down a large
number of control cycles, leading to a further 2.3 x performance improvement vs.
PC+Augmented and a cumulative 3.7 x performance benefit over PC+RegQueue.
On the average, PC+Augmented does not see a significant benefit from predicated
execution for these spatially-programmed workloads.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:26 M. Pellauer et al.

Einter-PE OLd/St Addr M Ld Data O St Data

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

9

0%
Flow FFT Graph500 k-means KMP Merge SHA-256 Mean
Classifier Search Sort

Channel Characteristics

Fig. 18. Breakdown of workload latency-insensitive channels by type.

Table V. Average static hop count and contention potential for workload channels.

AES DMM FFT Flow Classifier Graph-500

Total Channels 60 468 414 339 50
Avg Hops per Channel 1.3 1.12 1.28 1.64 2.06
Avg Channels per Link 2.00 2.10 2.68 1.75 1.58

k-means KMP Search Merge Sort SHA-256 Average

Total Channels 37 23 1155 40 287
Avg Hops per Channel 1.24 1.70 1.36 1.35 1.45
Avg Channels per Link 1.53 2.71 2.61 2.16 2.06

— Triggered instructions use a substantially smaller static instruction footprint. The
reduction in footprint compared to PC+RegQueue is particularly significant — 62%
on average. PC+Augmented’s enhancements help reduce footprint but TIA still has
30% fewer static instructions on average.

The static code footprint of these rate-limiting inner loops is in general fairly small
across all architectures. This observation, along with the real-world performance bene-
fits we observed versus traditional high-performance architectures, provides strong ev-
idence of the viability and effectiveness of the spatial programming model with small,
tight loops arranged in a pipelined graph.

Regarding latency-insensitive channels, Figure 18 and Table V show the static
breakdown of the number and type of each channel. These demonstrate that all work-
loads contain a large number of inter-PE channels, and that direct communication
without going through shared memory is a feasible communication paradigm for these
pipelined graphs. Furthermore, the low hop count indicate that much of this commu-
nication is neighbor-to-neighbor, and thus makes the most effective use possible of
distributed network bandwidth. The channels-per-link tracks the number of virtual
circuits multiplexed on the same physical links to show the potential for contention
and bandwidth reduction in the network. For example, if a single link is shared be-
tween two channels, then the network will operate at full bandwidth as long as each
channel is not injecting a message more frequently than every two cycles. Only the
links with at least one virtual circuit using them are counted.

Figure 19 and Table VI supplement this information with dynamic traffic break-
downs for four workloads with differing static ratios of memory channels. The “effec-
tive” channel bandwidth refers to the percentage of time that channel traffic achieves
full network bandwidth, without being slowed by contention—if this reaches 100%
then the result is the same as if the hardware had provisioned dedicated wires
for all channels in the system. These demonstrate that contention is rare in prac-

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:27

AES

SHA-256
4% -2% -3%

Merge Sort

W Inter-PE O Ld/St Addr
M | d Data Ot Data

Fig. 19. Breakdown of dynamic traffic by channel type. The number is the change versus static percentage
of channels (Figure 18). This demonstrates which channel classes see the heaviest dynamic use.

Table VI. Average dynamic contentions per link per cycle, organized by channel type.

AES DMM Merge Sort SHA-256

Average Delays from Contention: Memory-PE 1.08 0 0.6 0
Average Delays from Contention: Inter-PE 0 0 0 0.03
Effective LI-Channel Bandwidth: Memory-PE =~ 47.96% 100% 61.93% 100%
Effective LI-Channel Bandwidth: Inter-PE 99.99% 100% 100% 97.23%

tice, and is almost always related to memory interfacing — “hotspots” around lim-
ited cache port resources. Overall, these results confirm that static virtual circuits
are an efficient implementation of the latency-insensitive channel paradigm. Just as
spatially-programmed loops have different branch and control ratios to traditional
codes, spatially-programmed networks have static properties that allow architects to
extract efficiency without over-provisioning hardware for unpredictable dynamic cases.

6.4. Implementation Feasibility Analysis

We collaborated with circuit-design experts to lay out a TIA PE in a state-of-the-art in-
dustry technology process. The resulting 2-stage pipelined PE has a comparable num-
ber of gate levels in the critical path to a high-performance commercial microprocessor.
The large degree of replication in a spatial fabric would, however, justify even further
design effort to optimize the PEs.

The hardware scheduler is the centerpiece of a TIA PE. Scheduler implementation
cost is one of the primary factors that bounds the scalability of PE size in a triggered
control model. Fortunately, the nature of spatial programming is such that small, effi-
cient PEs are effective.

Our implementation analysis shows that the area cost of the TIA hardware sched-
uler is less than 2% of a PE’s overall area, much of which is occupied by its architectural
state (registers, input/output channel buffers, predicates and instruction storage), dat-
apath logic (operand multiplexers, functional units, etc.) and microarchitectural con-
trol overheads—none of which are unique to triggered control. This is not surprising—
the core of the TIA scheduler is essentially a few 1-bit wide trees of AND gates feeding
into a priority encoder. For our chosen parameterization, this logic is dwarfed by ev-
erything else in the PE.

Similarly, scheduler power consumption is small compared to the rest of the PE. The
scheduler logic does not consume dynamic power unless there is a change in predicate
states. When this happens, the only wires that swing are the ones that are recomputing
the changed control signals. This manner of computing control is more power-efficient
than executing datapath instructions to compute the same results. In a degenerate
scenario where the PE is walking down a sequence of stages in a gray-coded FSM,

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:28 M. Pellauer et al.

Programmable Accelerators

Temporally Spatially
Programmed Programmed
Class 0: SIMT,
SIMD, MIMD
| Logic Grained | | Instruction Grained |

Class 10: FPGAs

| Centralized Control | |Distributed Control|

Class 110: Dataflow,
WaveScalar, DySER

| PC-Controlled | |Non PC-ControIIed|
Class 1110: RAW, Class 1111: Triggered
PicoChip, PC+RegQ Instructions

Fig. 20. A taxonomy of programmable accelerators.

at most 1-2 predicate bits swing each cycle. The power consumed in this scenario is
negligible.

7. RELATED WORK

We classify prior work on architectures for programmable accelerators according to
the taxonomy shown in Figure 20 (although some have been proposed as standalone
processors instead of accelerators complementing a general purpose CPU). Temporal
architectures (class 0 in the taxonomy) are best suited for data-parallel workloads and
are outside of the scope of this work. Within the spatial domain (classes 1), the trade-
offs between logic-grained architectures (class 10) such as FPGAs and instruction-
grained architectures (classes 11x) are well understood ([Mirsky and DeHon 1996;
Hauser and Wawrzynek 1997; Mei et al. 2003]). In this section, we focus our atten-
tion on prior work on instruction-grained spatial architectures with centralized and
distributed control paradigms.

7.1. Centralized PE Control Schemes

In the centralized approach (class 110), a fabric of spatial PEs is paired with a central-
ized control unit. This unit maintains overall program execution order, managing PE
configuration. The results of PE execution may influence the overall flow of control,
but in general the PEs are not making autonomous decisions.

Transport-Triggered Architectures [Hoogerbrugge and Corporaal 1994] is a scheme
where the functional units in the system are exposed to the compiler, which then uses
MOV operations to explicitly route data through the transport network. Overall control
flow is maintained by a global program counter. Operation execution is triggered by the
arrival of data from the network, but no other localized control exists.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:29

TRIPs is an explicit dataflow graph execution (EDGE) processor which utilizes many
small PEs to execute general-purpose applications [Burger et al. 2004]. TRIPs dynam-
ically fetches and schedules large VLIW instruction blocks across the small PEs us-
ing centralized program-counter based control tiles. While large reservation stations
within each PE enable “when-ready” execution of instructions, only single-bit predica-
tion is used within PEs to manage small amounts of control flow.

WaveScalar is a dataflow processor for general-purpose applications that does not
utilize a program counter [Swanson et al. 2007]. A PE consists of an ALU, input and
output network connections, and a small window of 8 instructions. Blocks of instruc-
tions known as waves are mapped down onto the PEs, and additional “WaveAdvance”
instructions are allocated at the edges to help manage coarse grained or loop-level
control. Conditionals are handled by converting control flow instructions to data flow,
resulting in filtering instructions that conditionally pass values to the next part of the
dataflow graph. In WaveScalar there is no local PE register state; when an instruction
issues the result must be communicated to another PE across the network.

DySER integrates a circuit-switched network of ALUs inside the datapath of con-
temporary processor pipeline [Govindaraju et al. 2011]. DySER maps a single instruc-
tion to each ALU and does not allow memory or complex control flow operations within
the ALUs. TIA enables efficient control flow and spatial program mapping across PEs,
enabling high-utilization of ALUs with PEs without the need for an explicit control
core. Other recent work such as Garp [Hauser and Wawrzynek 1997], Chimaera [Ye
et al. 2000], and ADRES [Mei et al. 2003] similarly integrate LUT-based or coarse
grained reconfigurable logic controlled by a host processor, either as a coprocessor or
within the processor’s datapath.

MATRIX [Mirsky and DeHon 1996] is an array of 8-bit function units with a con-
figurable network. With different configurations, MATRIX can support VLIW, SIMD
or Multiple-SIMD computations. The key feature of the MATRIX architecture was
claimed to be its ability to deploy resources for control based on application regularity,
throughput requirements and space available.

PipeRench [Schmit et al. 2002] is a coarse-grained RL system designed for virtual-
ization of hardware to support high-performance custom computations through self-
managed dynamic reconfiguration. It is constructed from 8-bit Processing Elements.
The functional unit in each PE contains eight 3-input LUTs that are identically con-
figured.

Note that in the dataflow computing paradigm, instructions are dispatched for exe-
cution when tokens associated with input sources is ready. Each instruction’s execution
results in the broadcast of new tokens to dependent instructions. Classical dataflow ar-
chitectures such as [Dennis and Misunas 1975; Arvind and Nikhil 1990] used this as
a centralized control mechanism for spatial fabrics. However other projects such as
[Burger et al. 2004], [Swanson et al. 2007] use token triggering to issue operations in
the PEs, whereas the centralized control unit uses a more serialized approach.

In a dataflow-triggered PE, the token-ready bits associated with input sources are
managed by the micro-architecture. The TI approach, in contrast, replaces these bits
with a vector of architecturally-visible predicate registers. By specifying triggers that
span multiple predicates, the programmer can choose to use these bits to indicate
data readiness, but can also use them for other purposes, such as control flow deci-
sions. In classic dataflow multiple pipeline stages are devoted to marshaling tokens,
distributing tokens, and scoreboarding which instructions are ready. A “Wait-Match”
pipeline stage must dynamically pair incoming tokens of dual-input instructions. In
contrast, the set of predicates to be updated by an instruction in the TI is encoded in
the instruction itself. This both reduces scheduler implementation cost and removes
the token-related pipeline stages.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:30 M. Pellauer et al.

Smith et al. [Smith et al. 2006] extend the classic static dataflow model by allowing
each instruction to be gated on the arrival of a predicate of a desired polarity. This ap-
proach adds some control-flow efficiency to dataflow, providing for implicit disjunction
of predicates by allowing multiple predicate-generating instructions to target a single
destination instruction, and implicit conjunction by daisy-chaining predicate opera-
tions. While this makes conjunctions efficient, it can lead to an over-serialization of
the possible execution orders inherent in the original non-predicated dataflow graph.
In contrast, compound conjunctions are explicitly supported in triggered instructions,
allowing for efficient mapping of state transitions that would require multiple instruc-
tions in dataflow predication.

7.2. Distributed PE Control Schemes

In the distributed approach (classes 111x), a fabric of spatial PEs is used without
a central control unit. Instead, each PE makes localized control decisions, and over-
all program-level coordination is established using distributed software synchroniza-
tion. Within this domain, PC-based control model (long established for controlling dis-
tributed temporal architectures—class 0) is a tempting choice, as demonstrated by this
rich body of prior work. By removing the program counter, the TI approach (class 1111)
offers many opportunities to improve efficiency (Section 6.3).

The RAW project is a coarse-grained computation fabric, consisting of 16 large
cores with instruction and data caches that are directly connected through a register-
mapped and circuit-switched network [Taylor et al. 2002]. While applications written
for RAW are spatially mapped, program counter management and serial execution
of instructions reduces efficiency, and makes the cores on RAW sensitive to variable
latencies, which TIA overcomes using instruction triggers.

The Asynchronous Array of simple Processors (AsAP) is a 36-PE processor for DSP
applications, with each PE executing independently using instructions in a small in-
struction buffer and communicating using register-mapped network ports [Yu et al.
2006]. While early research on AsAP avoided the need to poll for ready data, later
work extended the original architecture to support 167-PEs and zero-overhead looping
to reduce control instructions [Truong et al. 2009]. Triggered instructions not only re-
duce the amount of control instructions but also enable data-driven instruction issue,
overcoming the serialization of AsAP’s program-counter based PE.

Picochip is a commercially available 308-PE accelerator for DSP applications [Pane-
sar et al. 2006]. Each PE has a small instruction and data buffer, and communication
is performed with explicit put and get commands. A strength of Picochip is compute
density, but the architecture is limited to serial 3-way LIW instruction issue using a
program counter. Triggered instructions enable control flow at low cost and dynamic
instruction issue dependent on data arrival, resulting in less instruction overhead.

8. CONCLUSION

We believe that spatial parallelism is a promising computing paradigm with the poten-
tial to achieve significant performance improvement over traditional high-performance
architectures for a number of important workloads, many of which do not exhibit
uniform data parallelism. Our simulated performance estimates on a triggered-
instruction based spatial architecture confirm the potential of this style of computing,
showing an average area-normalized performance that is 8 x better than a high-end
sequential processor across a range of workloads.

Triggered instructions provide a uniform solution to the control problem for a PE
in a spatially-programmed architecture, allowing the PE to execute autonomous con-
trol loops efficiently as well as react quickly to messages on communication channels.
The latency-insensitive channel paradigm allows the mapping, routing and buffering

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:31

of this communication to be separated and cleanly abstracted from the PE program-
ming. Together, these mechanisms also avoid over-serialization, providing the benefits
of dynamic instruction reordering and multithreading without any additional hard-
ware. Our evaluation demonstrates the cumulative benefits of all these effects, with
our triggered-instruction PE achieving 2.0x better performance than a baseline PE
with PC-based control, and 1.3x better performance than an optimized version.

The triggered control model is feasible within a spatially-programmed environment
because the amount of static instruction state that must be maintained in each PE
is small, allowing for inexpensive implementation of a triggered-instruction hardware
scheduler. Our implementation analysis confirms this, showing that the scheduler oc-
cupies less than 2% of the area of the PE.

These results provide a solid foundation of evidence for the merit of a triggered-
instruction based spatial architecture. The ultimate success of this paradigm will be
premised on overcoming a number of challenges, including providing a tractable mem-
ory model, dealing with the finite size of the spatial array, and providing a high-level
programming and debugging environment. Our ongoing work makes us optimistic that
these challenges are surmountable.

REFERENCES

Arvind and R. S. Nikhil. 1990. Executing a Program on the MIT Tagged-Token Dataflow Architecture. IEEE
Trans. Comput. 39, 3 (1990), 300-318.

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt
Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams, and Kather-
ine A. Yelick. 2006. The Landscape of Parallel Computing Research: A View from Berkeley. Technical
Report UCB/EECS-2006-183. EECS Department, University of California, Berkeley.

Bluespec, Inc. 2007. Bluespec System Verilog Reference Guide. (2007).

Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K. John, Calvin Lin, Charles R.
Moore, James Burrill, Robert G. McDonald, and William Yoder. 2004. Scaling to the End of Silicon with
EDGE Architectures. Computer 37, 7 (July 2004), 44-55. DOI : http://dx.doi.org/10.1109/MC.2004.65

L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. 2001. Theory of latency-insensitive design.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 20, 9 (Sep 2001),
1059-1076. DOI : http://dx.doi.org/10.1109/43.945302

K. Mani Chandy and Jayadev Misra. 1988. Parallel Program Design: a Foundation. Addison-Wesley.

Katherine Compton and Scott Hauck. 2002. Reconfigurable Computing: A Survey Of Systems and Software.
ACM Computer Survey 34, 2 (June 2002), 171-210. DOI : http://dx.doi.org/10.1145/508352.508353

William Dally and Brian Towles. 2003. Principles and Practices of Interconnection Networks. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

Jack B. Dennis and David P. Misunas. 1975. A Preliminary Architecture for a Basic Data-Flow Processor.
In Proceedings of the 2nd annual Symposium on Computer Architecture. 126-132.

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Com-
mun. ACM 18, 8 (Aug. 1975), 453—-457. DOI : http://dx.doi.org/10.1145/360933.360975

Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-Keung Luk, Srilatha Manne, Shubhendu S.
Mukherjee, Harish Patil, Steven Wallace, Nathan Binkert, Roger Espasa, and Toni Juan. 2002. Asim:
A Performance Model Framework. Computer 35, 2 (2002), 68-76.

Joel S. Emer and Douglas W. Clark. 1984. A Characterization of Processor Performance in the vax-11/780.
In Proceedings of the 11th Annual International Symposium on Computer Architecture (ISCA). 301-310.
DOI:http://dx.doi.org/10.1145/800015.808199

Kermin Elliott Fleming, Michael Adler, Michael Pellauer, Angshuman Parashar, Arvind Mithal, and Joel
Emer. 2012. Leveraging Latency-insensitivity to Ease Multiple FPGA Design. In Proceedings of the
ACM /SIGDA International Symposium on Field Programmable Gate Arrays (FPGA ’12). ACM, New
York, NY, USA, 175-184. D01 : http://dx.doi.org/10.1145/2145694.2145725

Robert A. Van De Geijin and Jarell Watts. 1997. SUMMA: Scalable Universal Matrix Multiplication Algo-
rithm. Technical Report.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:32 M. Pellauer et al.

Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. 2011. Dynamically Specialized
Datapaths for Energy Efficient Computing. In Proceedings of 17th International Conference on High
Performance Computer Architecture (HPCA).

J.R. Hauser and J. Wawrzynek. 1997. Garp: A MIPS Processor with a Reconfigurable Coprocessor. In Pro-
ceedings of the IEEE Symposium on FPGAs for Custom Computing Machines. 12-21.

Jan Hoogerbrugge and Henk Corporaal. 1994. Transport-Triggering vs. Operation-Triggering. In Lecture
Notes in Computer Science 786, Compiler Construction. Springer-Verlag, 435-449.

Myron King, Nirav Dave, and Arvind. 2012. Automatic Generation of Hardware/Software Interfaces. In Pro-
ceedings of the Seventeenth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XVII). ACM, New York, NY, USA, 325-336.

Donald E. Knuth, J.H. Morris, and Vaughan R. Pratt. 1977. Fast Pattern Matching in Strings. SIAM Journal
of Computing 6, 2 (1977), 323-350.

H. T. Kung. 1986. The CMU Warp Processor. In Supercomputers: Algorithms, Architectures, and Scientific
Computation, F. A. Matsen and T. Tajima (Eds.). 235-247.

A. Marquardt, V. Betz, and J. Rose. 2000. Speed and Area Tradeoffs in Cluster-Based FPGA Architec-
tures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8, 1 (Feb. 2000), 84 —93.
DOI:http:/dx.doi.org/10.1109/92.820764

B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins. 2003. ADRES: An Architecture with Tightly
Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix. In Proceedings of 13th Interna-
tional Conference on Field-Programmable Logic and Applications. 61-70.

Duane G. Merrill and Andrew S. Grimshaw. 2010. Revisiting Sorting for GPGPU Stream Architectures. In
Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques
(PACT). 545-546. DOI : http://dx.doi.org/10.1145/1854273.1854344

E. Mirsky and A. DeHon. 1996. MATRIX: A Reconfigurable Computing Architecture with Configurable In-
struction Distribution and Deployable Resources. In Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines. 157-166.

Gajinder Panesar, Daniel Towner, Andrew Duller, Alan Gray, and Will Robbins. 2006. Deterministic
Parallel Processing. International Journal of Parallel Programming 34, 4 (Aug. 2006), 323-341.
DOI:http://dx.doi.org/10.1007/s10766-006-0019-9

Li-Shiuan Peh and Natalie Enright Jerger. 2009. On-Chip Networks (1st ed.). Morgan and Claypool Pub-
lishers.

M. Pellauer, M. Adler, D. Chiou, and J. Emer. 2009. Soft connections: Addressing the hardware-design
modularity problem. In Design Automation Conference, 2009. DAC ’09. 46th ACM /IEEE. 276-281.

H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R.R. Taylor. 2002. PipeRench: A Virtualized Pro-
grammable Datapath in 0.18 Micron Technology. In Proceedings of the 2002 IEEE Custom Integrated
Circuits Conference. 63—66.

Aaron Smith, Ramadass Nagarajan, Karthikeyan Sankaralingam, Robert McDonald, Doug Burger,
Stephen W. Keckler, and Kathryn S. McKinley. 2006. Dataflow Predication. In Proceedings of the 39th
Annual IEEE | ACM International Symposium on Microarchitecture (MICRO 39). 89-102.

Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew Putnam, Ken Michelson,
Mark Oskin, and Susan J. Eggers. 2007. The WaveScalar Architecture. ACM Transactions on Computer
Systems 25, 2, Article 4 (May 2007), 54 pages. DOI: http://dx.doi.org/10.1145/1233307.1233308

M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson, JW. Lee,
W. Lee, and others. 2002. The Raw Microprocessor: A Computational Fabric for Software Circuits and
General-Purpose Programs. IEEE Micro 22, 2 (2002), 25-35.

D.N. Truong, W.H. Cheng, T. Mohsenin, Zhiyi Yu, A.T. Jacobson, G. Landge, M.J. Meeuwsen, C. Watnik, A.T.
Tran, Zhibin Xiao, E.W. Work, J.W. Webb, P.V. Mejia, and B.M. Baas. 2009. A 167-Processor Computa-
tional Platform in 65 nm CMOS. IEEE Journal of Solid-State Circuits 44, 4 (April 2009), 1130-1144.
DOI: http://dx.doi.org/10.1109/JSSC.2009.2013772

Muralidaran Vijayaraghavan and Arvind Arvind. 2009. Bounded Dataflow Networks and Latency-
insensitive Circuits. In Proceedings of the 7th IEEE |ACM International Conference on Formal Meth-
ods and Models for Codesign (MEMOCODE’09). IEEE Press, Piscataway, NJ, USA, 171-180. http:
//dl.acm.org/citation.cfm?id=1715759.1715781

Z-A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. 2000. CHIMAERA: A High-Performance Architecture with
a Tightly-Coupled Reconfigurable Functional Unit. In Proceedings of the 27th International Symposium
on Computer Architecture (ISCA). 225-235.

Zhiyi Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work, T. Mohsenin, M. Singh, and B.
Baas. 2006. An Asynchronous Array of Simple Processors for DSP Applications. In Solid-State Circuits
Conference (ISSCC), Digest of Technical Papers. 1696-1705.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

