
A Low-Swing Crossbar and Link Generator for

Low-Power Networks-on-Chip

Chia-Hsin Owen Chen1, Sunghyun Park2, Tushar Krishna1, Li-Shiuan Peh1

Dept. of Electrical Engineering and Computer Science, Massachusettes Institute of Technology, Cambridge, MA 02139
1{owenhsin, tushar, peh}@csail.mit.edu, 2pshking@mit.edu

Abstract—Networks-on-Chip (NoCs) are emerging as the an-
swer to non-scalable buses for connecting multiple cores in
Chip Multi Processors (CMPs), and multiple IP blocks in Multi
Processor Systems-on-Chip (MPSoCs). These networks require
an extremely low-power datapath to ensure sustained scalability,
and higher performance/watt. Crossbars and links form the core
of a network datapath, and integrating low-swing links within
these will reduce power significantly. Low-swing links however
require significant custom circuit design effort to deliver good
power efficiency and high bit rate, in the face of noise. As a result,
low-swing links have not been able to make it to mainstream chips
which rely on crossbar and link generators from RTL. In this
paper, we present a datapath generator that creates automated
layouts for crossbars with noise-robust low-swing links within
them. To the best of our knowledge, this is the first crossbar
generator that (1) creates layouts, instead of generating just
synthesizable RTL; and (2) integrates noise-robust low-swing
links in an automated manner. We demonstrate our generated
datapath in a fully-synthesized NoC router, and observe 50%
power reduction on datapath.

I. INTRODUCTION

Continued transistor scaling has enabled more compute

and storage units to be added on the same chip. However,

power limitations have forced designers to go parallel and to

realize sustained throughputs with simpler computing blocks

connected together. In the processor domain, the power limi-

tations have resulted in the emergence of CMPs, while in the

embedded domain, MPSoCs have started becoming popular.

These trends put the interconnection fabric into limelight

to enable fast and low-power communication between these

processing units. On-chip buses are not scalable beyond a

few cores, since they are limited by wire-delay and band-

width [1]. There has been a trend towards using NoCs to

manage wires more efficiently. For some systems, this network

might comprise only a crossbar [2], while for others, an

interconnection of packet-switched routers is used [3], [4] with

each router comprised of buffers, arbiters, and a crossbar to

enable sharing of links. In both kinds of systems, a crossbar

is the fundamental building block that connects input ports to

output ports.

A 1-bit N ×M crossbar consists of N ×M interconnected

wires that are controlled by switches and enable any port to

connect to any other port. The outputs of a crossbar connect

to links that then connect to an IP block or a router. The

crossbar and links thus together form the datapath of a NoC.

This datapath has been found to dominate the NoC power

consumption. Fabricated chips from academia, such as MIT

RAW [5] and UT TRIPS [6], use RTL synthesis to generate

the datapath, and the ratio of datapath power consumption and

the total on-chip network power consumption are reported to

be 69% and 64%, respectively. Intel TERAFLOPs [4] uses

a custom-designed double-pumped crossbar with a location

based channel driver to reduce the channel area and peak

channel driver current [7] and is thus able to reduce datapath

power to 32% of the total on-chip network power. Other

circuit techniques that have been proposed to reduce this power

consumption involve dividing the crossbar wires into multiple

segments and partially activating selected segments [8], [9]

based on the input and output ports. These circuit techniques

present only the capacitance between the input and output

port, and disable/reduce other capacitances. They are thus

successful in reducing wasteful power consumption. However,

they still require complete charging/discharging of the long

wires from the input port to the output port and the core-core

links, which are significant power consumers.

Low-swing signaling techniques can help mitigate the wire

power consumption. The energy benefits of low-swing signal-

ing have been demonstrated on-chip from 10mm equalized

global wires [10], through 1-2mm core-to-core links [11],

to less than 1mm within crossbars [12]–[14]. However, such

low-swing signaling circuits, which can be viewed as analog

circuits, require full custom design, resulting in substantial

design time overhead. Circuit designers have to manually

design schematic/netlists, optimize logic gates for each timing

path, and size individual transistors. Moreover, layout engi-

neers have to manually place all the transistors and route

their nets with careful consideration of circuit symmetry and

noise coupling. This custom design process leads to high

development cost, long and uncertain verification timescales,

and poor interface to other parts of a many-core chip, which

are mostly RTL-based.

In the past, designers faced similar challenges while inte-

grating low-power memory circuits with the VLSI CAD flow,

with their sense amplifiers, self-timed circuits and dynamic

circuits. Memory compilers, which are now commonplace,

have solved the problem and enabled these sophisticated ana-

log circuits to be automatically generated, subject to variable

constraints specified by the users. This paper proposes to

similarly automate and generate low-swing signaling circuits

as part of the datapath (crossbar and links) of a NoC, thereby

integrating such circuits within the CAD flow of many-core

chips, enabling their broad adoption.

978-1-4577-1400-9/11/$26.00 ©2011 IEEE 779

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:53 UTC from IEEE Xplore. Restrictions apply.

Since crossbars and links are such an essential component

of on-chip networks, there have been efforts in the past to

automate their generation. Sredojevic and Stojanovic [15]

presented a framework for design-space exploration of equal-

ized links, and a tool that generates an optimized transistor

schematic. However, they rely on custom-design for the actual

layout. ARM AMBA [16], STMicroelectronics STBus [17],

Sonics MicroNetworks [18], and IBM CoreConnect [19] are

examples of on-chip bus generators; DX-Gt [20] is a crossbar

generator; and ×pipes [21] is a network interface, switch and

link generator. These tools are aimed at application specific

network-on-chip (NoC) component generation, but they all

stop at the synthesizable HDL level, i.e. they generate RTL,

and then rely on synthesis and place-and-route tools to gen-

erate the final design. This is not the most efficient way to

design crossbars, as we show later in Section IV, highlighting

that a synthesized crossbar design consumes significantly more

power than a custom low-swing crossbar.

Contribution. In this work we present a NoC datapath

generator, which is the first to integrate low-swing links in

an automated manner. It is also the first to generate a noise-

robust layout at the same time, embedded within the synthesis

flow of a NoC router. Our tool takes a low-swing driver as

input and ensures (1) a crosstalk noise-robust routing, (2)

supply noise-robust differential signaling, and (3) crosstalk-

controlled full-shielded links, in the generated datapath. To

the best of our knowledge, our tool provides the following

important contributions to the low-power NoC community:

1) It is the first automated generation of noise-robust low-

swing links within the crossbar, and between routers.

2) It is the first automated layout generation of a crossbar

for a user specified number of ports, channel-width, and

target frequency.

3) It is the first demonstration of a generated low-swing

crossbar and link within a fully-synthesized NoC router.

4) Our automatically generated low-swing crossbar

achieves an energy savings of 50%, at the same targeted

frequency of the synthesized crossbar, at 3-4 times the

area overhead. Relative to the entire router, the larger

footprint of the crossbar is manageable, at just 30% of

the overall router area.

The rest of the paper is organized as follows. Section II

presents some background on crossbars and low-swing link

design. Section III explains our low-swing crossbar and link

generator. Section IV provides some evaluation results for

some datapaths generated using our tool, and Section V

concludes the paper.

II. BACKGROUND

In this section we present background on crossbars, low-

swing links, and the limitations of the current synthesis flow.

A. Crossbar

A N ×M crossbar connects N inputs to M outputs with

no intermediate stages, where any inputs can send data to any

non-busy outputs. Figure 1 shows the schematic of a 2-bit

Din0<0>

Din0<1>

Din1<0>

Din1<1>

Din2<0>

Din2<1>

Din3<0>

Din3<1>

D
o
u
t0
<
0
>

D
o
u
t0
<
1
>

D
o
u
t1
<
0
>

D
o
u
t1
<
1
>

D
o
u
t2
<
0
>

D
o
u
t2
<
1
>

D
o
u
t3
<
0
>

D
o
u
t3
<
1
>

(a) Port-sliced organization

Din0<0>

Din0<1>

Din1<0>

Din1<1>

Din2<0>

Din2<1>

Din3<0>

Din3<1>

D
o
u
t0
<
0
>

D
o
u
t0
<
1
>

D
o
u
t1
<
0
>

D
o
u
t1
<
1
>

D
o
u
t2
<
0
>

D
o
u
t2
<
1
>

D
o
u
t3
<
0
>

D
o
u
t3
<
1
>

(b) Bit-sliced organization

Fig. 1. 2-bit 4× 4 crossbar schematic

(a) (b) (c)

Fig. 2. Logical 4:1 multiplexer (a) and two realizations (b)(c)

4×4 crossbar. In effect, a 1-bit N×M crossbar consists of M
N : 1 multiplexers, one for each output. The N : 1 multiplexer

can be realized as one logic gate or cascaded smaller N ′ : 1
multiplexers, where N ′ < N , as shown in Figure 2. A custom-

circuit designer often favors the former implementation due

to the layout regularity, as it enables various optimization

techniques. However, this implementation suffers from the

fact that the intrinsic delay of the multiplexer grows with N .

Synthesis tools usually use the latter approach that cascades

smaller multiplexers to implement a N : 1 multiplexer with

arbitrary N . By using this approach, the intrinsic delay grows

with logN instead of N . However, it may lead to higher power

consumption since more multiplexers are used.

Two gate organizations are possible for many-bit crossbars,

as shown in Figure 1. One organization, port-slicing, groups

all the bits of a port close to each other. The other organization,

bit-slicing, groups all the gates of a bit together. The former

approach eases routing (since all bits for an input/output

port are grouped together), and minimizes the span of the

control wires that operate the multiplexers for each input port.

However, using the former approach leaves lot of blank spots

that increases area, and folding the crossbar over itself to

reduce area is non-trivial. The latter approach, on the other

hand, minimizes the distance between the gates that contribute

to the same output bit. This design is easier to optimize for

area by placing all the bit-cells together and eliminating blank

spaces, but requires more complicated routing to first spread

out and then group all bits from a port.

In addition to a crossbar, links and receivers form a datapath.

780

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:53 UTC from IEEE Xplore. Restrictions apply.

Transm

itter
Receiver

Cd 1/2Cw 1/2Cw CL

R

Vdd Vdd

Vswing

Fig. 3. Simplified datapath

Different design decisions for these components would result

in trade-offs in area, power and delay. From the perspective

of sending a signal, a datapath can be simplified to three

components connected together: a transmitter, a wire, and a

receiver, as shown in Figure 3. The corresponding delay and

energy consumption can be formulated as follows:

Energy = (Cd + Cw + CL)VDDVswing (1)

Delay = ((Cd + Cw + CL)Vswing/Iav) (2)

where Cd is the output capacitance of the transmitter, Cw is the

wire capacitance, CL is the input capacitance of the receiver.

VDD is the power supply of the circuit, and Vswing is the volt-

age swing on these capacitors. Iav is the average (dis)charge

current. In general, lowering the capacitance, reducing the

voltage swing, and increasing the (dis)charging current can

help in reducing energy consumption and delay.

A transmitter with larger sized transistors would have larger

(dis)charging current which would decrease the delay. But it

has larger footprint and Cd. Greater wire spacing lowers the

coupling capacitance between wires but it takes larger metal

area. Increasing wire width could reduce the wire resistance

but it also increases capacitance and metal area.

B. Low-swing signaling

Current on-chip network architectures require both long

interconnects for the connection of processor cores, and small

wire spacing for higher bandwidth. This trend has signif-

icantly increased wire capacitance and resistance. Unfortu-

nately, physical properties of the on-chip interconnects are

not scaling well with transistor sizes. To reduce the delay

and power consumption caused by these RC-dominant wires,

low-swing circuit techniques [22] are now in the spotlight of

on-chip networks.

In low-swing interconnects, the propagation delay decreases

linearly with the signal swing, under the condition that the

charge/discharge current is not affected by the reduction in

voltage swing. Furthermore, the lower signal swing carries the

major benefit of reducing dynamic power consumption, which

can be substantial when the interconnect load capacitance is

large. The low-swing signaling schemes, however, give rise to

noise concerns.

Some of the noise concerns in low-swing designs can be

mitigated by sending data differentially, which helps eliminate

common-mode interference. However, this takes up two wires

RTL synthesis

HDL

Logic optimization

Physical design

Layout

Library /

Module

generators

Fig. 4. Standard synthesis flow

which doubles the capacitance and area. Adding shielding

wires also helps reduce crosstalk and could potentially lower

voltage-swing, but it also adds coupling capacitance and area.

Increasing the sensitivity of the receiver helps lower voltage-

swing on the wires, but it often needs a larger sized transistor

or more sophisticated receiver design that has larger footprint

and capacitance.

Thus low-swing links offer tremendous advantages in terms

of power, and latency, but require careful design to ensure

robust performance.

C. Limitations to current synthesis flow

Given a hardware description of a crossbar, the existing

synthesis flow, like the one shown in Figure 4, with a standard

cell library could synthesize and realize a crossbar circuit.

Unfortunately, the existing synthesis flow and standard cell

libraries are designed for full voltage-swing digital circuits.

New features in certain CAD tools enable low power designs

by supporting multiple power domains and power shutdown

techniques. However, none of them support analysis and layout

for low voltage swing operations. Moreover, place-and-route

tools are often too general and cannot take full advantage of

the regularity of a crossbar and fail to generate an area-efficient

layout. Therefore, a system designer needs to custom-design a

low-swing crossbar, which is time-consuming and error-prone.

III. DATAPATH GENERATOR

In this section we present our crossbar and link generator

for low-swing datapaths. The low-swing property is enabled

by replacing the cross-points of a crossbar with low-swing

transmitters, and adding receivers at the end of the links to

convert low-swing signals back to full-swing signals. The

data links that connect transmitters and receivers are equipped

with shielding wires to improve signal integrity. As shown in

Table I, our proposed datapath generator takes architectural

parameters (e.g. the number of inputs and outputs, data width

per port, link length), user layout preferences (e.g. port lo-

cations, link width and spacing), and technology files (e.g.

standard cell library, targeted metal layers, TX and RX cells),

and generates a crossbar and link layout that meets specified

781

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:53 UTC from IEEE Xplore. Restrictions apply.

TABLE I
INPUTS TO PROPOSED DATAPATH GENERATOR

Type Proposed datapath generator

Architectural
parameters

Number of input ports (N)

Number of output ports (M)

Data width in bits (W)

Link length (L)

User preferences
Input port location

Output port location

Link wire width and spacing

Technology related
information

Standard cell library

Metal layer information

Transmitter and receiver design

Second power supply level (if needed)

System design
constraints

Target frequency, power, area

Building block

characterization

Layout generation

Extraction

Post-characterization

for delay, power, area

Verification & extraction

Transmitters and

Receivers Layout

Architectural

Parameters

User

Preferences

Design selection

Library Generation

Selection

.gds, .sp, .lib, .lef,

.v

Can be directly fed

into synthesis flow

Tech

Files

Fig. 5. Proposed Datapath Generator’s Tool flow

user preferences and system design constraints: area, power,

and delay. The output files of our proposed datapath generator

are fed directly into a conventional synthesis tool flow, which

is similar to how we use a memory compiler. Figure 5 shows

the proposed datapath generation flow. The generation involves

two phases, library generation and selection. In the library

generation phase, the program takes a suite of custom-designed

transmitters and receivers, architectural parameters that users

are interested in, and technology files as inputs; Then, it pre-

characterizes the custom circuits. Next, the tool generates the

layout of all possible combinations and simulates them to get

post-layout timing, power, and area. This forms the library of

components for the selection phase. In the selection phase, the

generator takes architectural parameters and user preferences

as inputs to find the most suitable design from the results

generated in the library generation phase, and outputs the files

needed for the synthesis flow.

In the following subsections, we walk through a detailed

example of generating a datapath with a 64-bit 6×6 crossbar,

1mm links, and receivers in a 45nm SOI HVT technology.

Enb

A

Ab

Doutb

VDDL

VDD

Enb

Ab

A

Dout

VDDL

VDD

VDD

VSS

Din

VDD

VSS

AAb

VDD

VSS

En Enb

(a) Transmitter

VDD

VSS

Clk Clk

Din Dinb

Clk

P Pb P

Pb

Dout

Doutb

(b) Receiver

Fig. 6. Schematic of transmitter and receiver

TABLE II
PRE-CHARACTERIZATION RESULTS

Transmitter Receiver

Average current (µA) 2.6 11.0

Input cap (fF)
1.52 (select) 1.05 (clk)
2.87 (data) 0.4 (data)

A. Building block pre-characterization

We treat the 1-bit transmitters and receivers as atomic build-

ing blocks of the generator, thus giving users the flexibility

of using different kinds of transmitter and receiver designs.

Given the transmitter and receiver designs, the generator first

performs pre-characterization using Spice-level simulators (we

used Cadence UltraSim) to obtain average current and input

capacitances. The average current is later used to determine

the power wire width, while the input capacitances are used

to determine the size of the buffers that drive these building

blocks.

For example, Figure 6 depicts the schematic of a low-

swing transmitter design and a receiver design we chose as

inputs to the generator. The experiments in both this section

and Section IV are performed using the IBM 45 SOI HVT

technology, and the pre-characterization results are shown in

Table II.

B. Layout generation

In this step, the generator tiles the transmitters and receivers

to form the datapath, taking various aspects into consideration,

such as building block restrictions, floorplanning, routing, and

link design. This section details each of these aspects.

1) Building block restrictions: We applied constraints to

the transmitters’ and receivers’ pin locations. The reason is

twofold. First, the gates of the transistors for low-swing op-

erations are more sensitive to coupling from full-swing wires.

Therefore, some constraints on transmitters’ and receivers’

pin location are helpful to avoid routing low-layer full-swing

signal wires over these transistors. Second, constraints on pin

locations make the transmitter/receiver cells more easily tile-

able. Without loss of generality, we chose one specific pin

layout, restricted as shown in Figure 7. The power and ground

pins’ locations are chosen to be the same as the corresponding

pins in standard cells. All other pins are placed relative to the

transmitter’s core, which contains noise-sensitive transistors.

For example, the Select pin is on the left of the core, the

Data-in pin is at the bottom, and the Data-out pin is on the

782

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:53 UTC from IEEE Xplore. Restrictions apply.

Transmitter core

(Noise-sensitive)
Select

D
a
ta
o
u
t

Data in

Fig. 7. Transmitter abstract layout

39.73um
1
4
.8
9
u
m

Transmitter

Din

Dout Sel

Fig. 8. Example single-bit crossbar layout with 6 inputs and 6 outputs

right. Similar constraints are also applied to the receiver cell

design.

2) Floorplanning: To achieve higher transmitter cell area

density, we chose the bit-sliced organization, which was shown

earlier in Figure 1(b). The tool first generates a 1-bit N ×M
crossbar as shown in Figure 8. The transmitters are placed

at the cross-points of input horizontal wires and output ver-

tical wires. The tool then places W 1-bit crossbars in a 2-

dimensional array to form a W -bit N×M crossbar, as shown

in Figure 9. The number of 1-bit crossbars on each side is

calculated to square the crossbar layout area so as to minimize

the average length of the wires each bit needs to traverse.

Receivers are placed so that the routing area from the links to

the receiver inputs is minimal.

Although a port-sliced organization is also effective, it

requires a more sophisticated wire routing algorithm to achieve

the same cell area density as a bit-sliced organization. A

naive approach, as shown in Figure 1(a), would result in low-

transistor density and a W 2 bit-to-area relationship, instead

of W which can be readily achieved by using the bit-sliced

organization.

3) Routing: For each 1-bit crossbar, the number of metal

layers needed to route the power and signals is kept minimal

, to maximize the number of available metal layers for output

wire routing. No wiring is allowed above noise-sensitive

transistors in lower metal layers. While this increases the total

crossbar area, it lowers the wiring complexity for Data-out

wires from each 1-bit crossbar to crossbar outputs. Since we

employed the bit-sliced organization, the Data-out wires are

distributed across the entire crossbar. Two metal layers are

used to route the Data-out wires to the edge of the crossbar:

one is used for outputs in horizontal direction, while the other

1-bit Crossbar

Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

t

Data iiinnn

D
a

Noise-sseennssitive Region

S

e

l

eee

ccc

t a
ta
o
uu
tt

Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

Noise-sensitivvee Region

S

e

lll

eeeeeeeee

c

t

Data in

D
a
ta
o
u
t

Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

Nooiisssee---sensitive Reggiioonn

SS

e

l

eee

c

t

DDDaaatttaaa in

D
a
ttaaa
oo
u
ttt Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

Noise-senssiittiivveee Region

S

e

lll

eeeeeeeee

c

t

Data in

D
a
ta
o
u
t

Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

Noise-sensitive

S

e

lll

eeeeeeeee

c

t

Data in

e Region

D
a
ta
o
u
t

Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

NNoise-sensitive
l

eee

c

t

DDData in

ee RRReegggion

DDD
aaa
ttta
o
u
t

S

ee

Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

Nooiissseee--sensitive

SS

e

l

eee

c

t

DDDaaatttaaa in

e Reggiiooonn

D
a
ttaaa
oo
u
ttt

Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

Noisee-sseeennsssitive Region
l

eee

ccc

tt D
t

t

Data iiinnn

D
a
ta
o
uu
tt

S

e

Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

Noiissee--sensitive Regionn

SS

e

l

eee

c

t D
t

tt

DDDaaatttaaa in

D
a
ttaaa
oo
u
t

Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

t D

DDData in

D
a

NNoise-sensitiveee RReeggion

S

ee

ll

eee

c

t

tt
t

a
ta
o
u
t Noise-sensitive Region

S

e

l

e

c

t D
a
ta
o
u
t

Data in

t

DDData in

DD
a

NNoise-sensitivee RReeegggion

S

ee

ll

eee

c

t a
ttta
o
u
t

D

at

a

in

B

uf

fe

r

D

at

a

in

B

uf

fe

r

DD

at

a

in

B

uf

fe

r

D

at

a

in

B

uf

fe

r

D

at

a

iinn

BBB

ufff

fe

r

D

at

a

in

B

uf

fe

r

fe

r

D

at

a

in

B

uf

fff

Dout<0>

Dout<1>

Dout<2>

Dout<3>

1-bit Crossbar

1-bit Crossbar
Link Receiver

Fig. 9. 4-bit crossbar abstract layout with 1 port connecting to the link

235um

2
2
6
u
m

1mm link

Receiver

Fig. 10. Example 6x6 64-bit datapath layout with one link shown

is used for the vertical direction. Since the same metal layer

is used to route all wires in a particular direction, the crossbar

area is limited by the wire pitch if the transmitter’s cell area

is small. Otherwise, it is limited by transmitter cell area. As

shown in Figure 9, Data-out wires coming out from the edge

of the 1-bit crossbar array are routed to the inputs of links.

We carefully designed the routing algorithm so that it takes

minimal wiring area to connect the outputs of a crossbar to

the links.

A structured layout of the power distribution network is

applied. A power ring that surrounds the whole crossbar, one

that surrounds the whole receiver block, and power stripes,

are all automatically generated. The widths of the power wires

are calculated based on the average current so that the current

density is less than 1 mA/um to avoid electromigration. Using

the results from the pre-characterization, we used both 0.8µm-

wide and 0.7µm-wide power wire for crossbar and receiver

respectively.

4) Link Design: Link parameters such as link wire length,

width, and spacing are specified as the inputs of the generator.

Since the links are running at low-swing, they are more

vulnerable to noise. We thus add shielding wires to improve

the noise immunity. We chose the shielding wire organization

that is shown in Figure 11, where a shielding wire is placed

on the same layer as link between two different bits and two

shielding wires are placed right below the differential wires.

This is chosen as it minimizes low-swing noise from other

links and full-swing logic from lower metal layers.

Typically the wire length is set based on the distance

between the crossbar and the components this crossbar is con-

nected to. Different choices of wire width and spacing would

affect the timing and energy consumption of transmitting a

signal. For example, one could reduce the delay by doubling

the wire pitch but it requires larger wiring area. Table III shows

this trade-offs between link area and link performance, where

the wire width is normalized to the minimum wire width and

the wire spacing is normalized to the minimum spacing. The

783

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:53 UTC from IEEE Xplore. Restrictions apply.

Differential

data wires

Shielding wires

Fig. 11. Selected wire shielding topology

TABLE III
PERFORMANCE OF 1MM2 LINK OF TWO ORGANIZATIONS

Wire
width

Wire
spacing

Delay (ps)
Energy/bit

(fJ)
Link area
(mm2)

1 2 70.0 35.0 0.093

2 4 33.7 30.5 0.176

performance was simulated by transmitting a full-swing signal

on the link.

A layout of the example datapath generated is shown in

Figure 10.

C. Verification and Extraction

We use Calibre from Mentor Graphics to check if the

generated circuit obeys the design rules, and to perform layout

versus schematic (LVS) verification. A schematic netlist is

generated for LVS. In order to get a more accurate delay of

the circuit, RC extraction is done for the post-characterization

of the generated design.

D. Post-characterization and selection

Post-characterization is performed to determine the actual

frequency, power, and area the crossbar can achieve. The

selection step chooses the suitable datapath design based on

the results from the post-characterization step, and outputs the

files needed for the standard synthesis flow.

The Table IV shows the simulation results for the walk-

through examples. At the selection step, for example, if the

criteria is to achieve high frequency and have little constraint

on the area, the design with doubled link pitch is returned.

E. Discussion

The proposed generator enables the layout generation of

low-swing datapaths for a given set of architectural parameters

and design constraints, and outputs files for integration with

the standard synthesis flow. The generator removes additional

design effort necessary for a fully custom design by automat-

ically and systematically tiling transceivers and routing wires.

When compared to synthesizing a full-swing datapath using

commercial tools, our generator adds SPICE simulation over-

heads to characterize the properties of the generated datapaths

such as delay and power during the library generation step.

To use the generator with a different technology, the user

needs to provide the technology related information as shown

0.00

20.00

40.00

60.00

80.00

100.00

120.00

32 64 96 128

E
n

e
rg

y
 p

e
r

b
it

 (
fJ

)

Data width (bit)

generated-crossbar synthesized-crossbar

Fig. 12. Energy per bit sent of 6-port datapaths with different data width

in Table I, and to provide the layout of the transmitters and

receivers designed for that specific process.

IV. EVALUATION

In this section, we first evaluate the crossbars generated by

our proposed tool, against the synthesized crossbars. We then

present a case study of a 5-port NoC virtual channel router

that is integrated through the standard synthesis flow with the

low-swing datapath generated by our tool.

In all our experiments, we used Cadence Ultrasim to

evaluate the performance and power consumption of the RC

extracted netlists.

A. Generated vs. synthesized datapath

Using the transmitter and the receiver design we describe

in Section III, we generated low-swing datapaths across a

range of architectural parameters and compared the simulation

results with datapaths generated by standard CAD tools using

only standard cells. We will refer to the crossbar/datapaths

generated by our tool as generated crossbars/datapaths, and

those generated by standard CAD tools using standard cells as

synthesized crossbars/datapaths. Evaluating generated datap-

aths with different transmitter and receiver designs can be done

but is equivalent to evaluating the effectiveness of different

low-swing techniques, which is beyond the scope of this work.

In our experiments, we assumed a link length of 1mm and

specified a delay constraint of 0.6ns from the input of the

crossbar to the output of the link for synthesized datapaths so

that the datapath can be run at 1.5GHz.

Energy per bit. We simulated the datapaths (crossbar and

link) at 1.5GHz and report the results for varying data widths

and varying number of ports in Figure 12 and Figure 13,

respectively. As shown in Figure 12, for both crossbars, as

the data width increases, the energy per bit sent also increases

because an increase in the data width leads to an increase in

the area of the crossbar. This increase results in longer distance

(on average) for a bit to travel from an input port to an output

port. Longer distance translates to higher energy consumption.

The energy per bit sent also increases with the number of

ports, because a bit needs to drive more transmitters. Overall,

our simulations showed that a generated datapath, as in our

784

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:53 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
EXAMPLE GENERATED DATAPATHS

Link wire width Link wire spacing Max freq (GHz) Crossbar area (mm2) Energy/bit (fJ)

1 2 2.5 0.053 46.4
2 4 2.7 0.084 48.3

0.00

20.00

40.00

60.00

80.00

100.00

120.00

4 6 8

E
n

e
rg

y
 p

e
r

b
it

 (
fJ

)

Number of ports

generated-crossbar synthesized-crossbar

Fig. 13. Energy per bit sent of 64-bit datapaths with different number of
ports

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150

C
ro

ss
b

a
r

a
re

a
 (

m
m

2
)

Data width (bit)

4x4 gen-crossbar

6x6 gen-crossbar

8x8 gen-crossbar

4x4 syn-crossbar

6x6 syn-crossbar

8x8 syn-crossbar

Fig. 14. Crossbar area with various architectural parameters

design, results in 50% energy savings (on average per bit sent)

compared to a synthesized datapath.

Area. Figure 14 shows the area of the generated vs. synthe-

sized crossbars. Due to the bit-sliced organization and larger

transmitter size, the generated crossbar area is dominated

by the transmitter area. Using this organization results in

its crossbar area growing linearly with the data width and

quadratically with the number of ports, as captured in Fig-

ure 14. On the other hand, as Figure 14 indicates, a synthesized

crossbar has a smaller area footprint because the transmitter

design we are simulating is differential, and our wire routing

is conservative to achieve high immunity to noise. Both of

these factors result in increased area footprint, a trade-off

for better latency and lower power of low-swing datapath. In

addition, the design of low-swing transceivers for on-chip is

in its infancy. Future designs may be more area-efficient, and

continue to be pluggable into our generator toolchain.

Router

Processing Unit

Fig. 15. Five-port router in a mesh network

TABLE V
ROUTER SPECIFICATIONS

of input ports 5

of output ports 5

Data width 64

of buffers per port 16 (1k bits)

Flow control Wormhole with VC

Buffer management On/Off

Working frequency 1 GHz

B. Case Study

We synthesized a typical NoC router of a mesh topology

integrated with a low-swing datapath using the files generated

by our tool. The router is a 3-stage pipelined input buffered vir-

tual channel (VC) router with five inputs and five outputs [23],

and with a 64-bit data path. As shown in Figure 15, one input

and one output port are connected to the local processing

unit, while the remaining ports are connected to neighboring

routers. We assumed that the local processing unit resides next

to the router, the distance between routers is 1mm, and the

target working frequency is 1GHz. Table V shows the detailed

router specifications.

We used the same synthesis flow shown in Figure 4 to

realize the router design from RTL to layout. Figure 16 shows

the final layout of the router with the generated datapath.

The black region in the figure is assumed to be occupied by

processing units. The low-swing crossbar occupies about 30%

of the total router area. The delay of the low-swing datapath

is 630ps. The power consumed in the generated datapath

is 18% of the total power consumed by the router1. The

power consumption was obtained from UltraSim simulations

by feeding a traffic trace through all the ports of the router.

The traffic trace was generated from RTL simulations of a 4x4

NoC; every node injects one message every cycle destined to a

random node. The final synthesized router with the generated

low-swing crossbar and links consists of 286,079 transistors.

1It should be pointed out that this is a textbook NoC router. With a
bypassing NoC router, such as that in [14], the NoC power will be largely that
of the datapath, since most packets need not be buffered and can go straight
from the input port through the crossbar to the output port and link.

785

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:53 UTC from IEEE Xplore. Restrictions apply.

Processing

Unit 0

Processing

Unit 1

Processing

Unit 2

Processing

Unit 3

Links to west
L
in
k
s
to
s
o
u
th

Links to east

L
in
k
s
to
n
o
rth

Linnkks to east

394um

3
9
0
u
m

1
m
m

1mm

1
9
2
u
m

207um

Crossbar

Fig. 16. Synthesized router with generated low-swing datapath

V. CONCLUSION

In this work, we present a low-swing NoC datapath gen-

erator that automatically creates layouts of crossbar and link

circuits at low voltage swings, and enables the ready inte-

gration of such interconnects in the regular CAD flow of

many-core chips. Our case study demonstrates our generated

datapath embedded within the synthesis flow of a 5-port NoC

mesh router, leading to 50% savings in energy-per-bit. While

our case study leverages a specific low-swing transmitter and

receiver circuit, our generator can work with any TX/RX

building block and we will release it upon publication. We

hope this will pave the way for low-swing signaling techniques

to be incorporated within mainstream VLSI design, realizing

low-power NoCs and enabling many-core chips.

ACKNOWLEDGMENT

The authors acknowledge the financial support of the Inter-

connect Focus Center, one of the six research centers funded

under the Focus Center Research Program, a Semiconductor

Research Corporation program, as well as NSF CPA-0811375.

REFERENCES

[1] A. Pullini, F. Angiolini, S. Murali, D. A. G. D. Micheli, and L. Benini,
“Bringing NoCs to 65nm,” IEEE Micro, vol. 12, no. 5, pp. 75–85,
September 2007.

[2] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS 2009), April 2009, pp. 163–174.

[3] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, 2007.

[4] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51–61, September 2007.

[5] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,
H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “Evaluation
of the Raw microprocessor: An exposed-wire-delay architecture for ILP
and streams,” in Proc. Intl. Symp. Computer Architecture (ISCA), June
2004.

[6] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture,” in Proc. Intl. Symp. Computer

Architecture (ISCA), June 2003.

[7] S. Vangal, N. Borkar, and A. Alvandpour, “A six-port 57gb/s double-
pumped nonblocking router core,” in Symp. VLSI Circuits, June 2005,
pp. 268–269.

[8] H. Wang, L.-S. Peh, and S. Malik, “Power-driven design of router
microarchitectures in on-chip networks,” in Proc. Intl. Symp. Microar-

chitecture (MICRO), 2003.
[9] K. Lee, S.-J. Lee, S.-E. Kim, H.-M. Choi, D. Kim, S. Kim, M.-

W. Lee, and H.-J. Yoo, “A 51mw 1.6ghz on-chip network for low-
power heterogeneous SoC platform,” in IEEE Intl. Solid-State Circuits

Conference (ISSCC), February 2004.
[10] B. Kim and V. Stojanovic, “A 4gb/s/ch 356fj/b 10mm equalized on-

chip interconnect with nonlinear charge-injecting transmit filter and
transimpedance receiver in 90nm cmos,” IEEE International Solid-State

Circuits Conference, Digest of Technical Papers., pp. 66–68, Feb. 2009.
[11] D. Schinkel, E. Mensink, E. Klumperink, A. van Tuijl, and B. Nauta,

“Low-power, high-speed transceivers for network-on-chip communi-
cation,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 17, no. 1, pp. 12–21, January 2009.
[12] M. Sinha and W. Burleson, “Current-sensing for crossbars,” in IEEE

Intl. ASIC/SOC Conference, September 2001.
[13] P. Wijetunga, “High-performance crossbar design for system-on-chip,”

System-on-Chip for Real-Time Applications, International Workshop on,
vol. 0, p. 138, 2003.

[14] T. Krishna, J. Postman, C. Edmonds, L.-S. Peh, and P.Chiang, “SWIFT:
A SWing-reduced Interconnect For a Token-based Network-on-Chip in
90nm CMOS,” in Proc. Intl. Conference on Computer Design (ICCD),
Oct. 2010.

[15] R. Sredojevic and V. Stojanovic, “Optimization-based framework for
simultaneous circuit-and-system design-space exploration: A high-speed
link example,” Computer-Aided Design, International Conference on,
vol. 0, pp. 314–321, 2008.

[16] “ARM AMBA,” http://www.arm.com/products/system-ip/amba.
[17] “Stbus communication system: Concepts and definitions,” http://www.

st.com/stonline/books/pdf/docs/14178.pdf.
[18] D. Wingard, “Micronetwork-based integration for SoCs,” in Proc. De-

sign Automation Conference (DAC), May 2001, pp. 673–677.
[19] “IBM CoreConnect,” https://www-01.ibm.com/chips/techlib/techlib.nsf/

productfamilies/CoreConnect Bus Architecture.
[20] M. A. Shalan, E. S. Shin, and V. J. M. III, “DX-GT: Memory man-

agement and crossbar switch generator for multiprocessor system-on-a-
chip,” in Proc. Workshop on Synthesis and System Integration of MIxed

Technologies, April 2003, pp. 357–364.
[21] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini,

“xpipes: a latency insensitive parameterized network-on-chip architec-
ture for multi-processor SoCs,” in Proc. Intl. Conference on Computer

Design (ICCD), October 2003.
[22] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated

Circuits: A Design Perspective, second edition. Prentice Hall, 2003.
[23] W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers, 2004.

786

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:53 UTC from IEEE Xplore. Restrictions apply.

