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Abstract—Recommendation model DNNs have gained signif-
icant attention due to their vital role in recommending the
best content to the user. However, in order to further increase
accuracy, DNNs are becoming more complex with more data
to be trained, making them infeasible for training on a single
node. Distributed training is a solution to tackle this problem
by employing multiple nodes for training. The importance
of recommendation models necessitates to design customized
HW/SW platforms for training such networks in order to
minimize the communication overheads among different nodes.
However, exploring this design space is difficult due to the
presence of many HW/SW parameters and the limitations to
change the HW parameters in real systems.

In this paper, we port the previously proposed ASTRA-
SIM simulation platform on top of the versatile NS3 network
simulator by introducing a portable network interface for
ASTRA-SIM. Using NS3 enables modeling a wide variety of
networks with much better accuracy. Furthermore, we enhance
NS3 with detailed modeling of TCP/IP.

Finally, we study various HW/SW platforms for the DLRM
recommendation model with TCP/IP as the network protocol
and analyze the communication overheads in the presence of
various interconnect configurations.

Keywords-distributed training, collective communication, rec-
ommendation models

I. INTRODUCTION

Neural network-based recommendation models [4], [7],
[13] have recently emerged as an important class of Deep
Learning (DL) algorithms. These models are used extensively
in ranking and click through rate (CTR) prediction tasks - a
major contributor to revenue across numerous online services.
Inputs to recommendation models comprise of both dense
and sparse features. The dense or the continuous features are
processed with multilayer perceptron (MLPs) while the sparse
or the categorical features are processed using embeddings.
A single embedding table contains tens of millions of
vectors, each with hundreds of elements, requiring significant
memory capacity, on the order of GBs. Therefore, training
of recommendation models often requires the distribution
of the model across multiple devices using a combination
of data parallelism for MLPs and model parallelism for
embedding tables [7]. In short, recommendation models differ
significantly from MLP heavy Computer Vision and Natural

Language Processing workloads, and require re-thinking how
we design distributed training systems at scale [8].

This work is focused on addressing the challenges involved
in designing highly scalable DL training platforms for
recommendation models through SW/HW co-design. We
use the MLPerf Deep Learning Recommendation Model
(DLRM) [7] benchmark as a representative recommendation
model workload. We make the following contributions.

• First, to enable exploration among a wide range of
HW/SW platforms, we develop a comprehensive simula-
tion methodology by combining the ASTRA-SIM1 [10]
training simulator with NS3 [12], a powerful network
simulator capable of modeling data-center switches and
NICs accurately. We accomplish this by introducing
a portable network API that enables ASTRA-SIM to
support different network simulators on the backend.
ASTRA-SIM implements topology-aware collective algo-
rithms and different parallelism approaches for training.
It provides a high-level interface to the user to define
new DNN models and helps simulate distributed training
on different network topologies. On the other hand, NS3
enables modeling a wide variety of network hierarchies.

• We extend NS3 to include detailed modeling of TCP/IP
which serves as the transport layer for distributed training
in our evaluations.

• We capture the DLRM workload in the ASTRA-SIM +
NS3 framework and quantify the impact of various SW
(e.g. collective algorithms, levels of concurrency, chunk
sizes) and HW choices (e.g. flat vs. hierarchical topology,
size of switch buffer) on end workload performance for
a 128 GPU system2.

• We demonstrate the importance of simulation methodol-
ogy as a tool for design of efficient DL training platforms
that: (i) enables accurate modeling compared to the simple
and inaccurate analytical models, and (ii) addresses the
limitations of real system measurements.

• From our studies, we observe that for DLRM, the MLP

1https://github.com/astra-sim/astra-sim
2We use the term node and GPU device interchangeably.

https://github.com/astra-sim/astra-sim


Table I: Different parallelism approach communications

Parallelism Activations during
the forward pass

Weight
gradients

Input
gradients

Data
Model
Hybrid partially partially partially

layer communication (allreduce) is better handled on
hierarchical topology, while embedding communication
(all-to-all) is better handled on flat topology. We also show
how the combination of physical topology+collective
algorith, changes the buffer requirements of network
switches. For instance, with TCP running over a hierar-
chical topology, increasing buffer size from 64 MB to 1
GB reduces time per iteration time by 22.9×.

The rest of the paper is organized as follows: Section
II provides background on distributed training. Section III
describes the proposed simulation methodology followed by
the experimental results in Section IV. Section V describes
related work. We conclude the paper in Section VI.

II. BACKGROUND ON DISTRIBUTED TRAINING

When it comes to parallelizing the training task across
multiple nodes (CPU/GPU/TPU), two main questions arise:
(i) how to synchronize the weight updates? (ii) how to dis-
tribute the parameters (e.g., training data, model parameters)
across different nodes? The most common approach used
to address the first question is called synchronous training,
where each node works on its own data and produces its
local gradients, which are then accumulated/reduced across
all or a certain number of nodes to update the weights before
the next iteration can start.

The answer to the second question depends on the par-
allelization strategy employed. The common parallelization
techniques for partitioning work across multiple nodes
are data parallelism (replicating the entire model), model
parallelism (splitting the model), pipelined parallelism, or
some combination of these. In data parallel, each node is
assigned a subset of samples and during each iteration, works
on its minibatch (chosen from its own dataset) to produce
the local gradients. In model parallel, the nodes have the
same datasets and work on the same minibatch, but since
the model is divided, each model is responsible for a portion
of model gradients. In hybrid parallel, nodes are divided
into different groups and the training within the group is
data parallel/model parallel while between groups is model
parallel/data parallel. The different parallelism approaches
have different indications in terms of communication patterns
between the nodes. Table I shows when data should be
exchanged for different parallelism approaches [10].

As Table I indicates, different communications are initiated
at different phases for different parallelism approaches. All
these communications are handled by using some set of
collective communication operations described in Fig. 1.
Libraries like NCCL [9] provide efficient topology-aware
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Figure 1: Overview of collective communication operation used in
DNN training networks.
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Figure 2: High level architecture of DLRM Model

implementations for these collectives for modern NVIDIA
GPU-based training platforms.

III. SIMULATION METHODOLOGY: ASTRA-SIM + NS3

A. Target Workload

For the real workload analysis section of this paper we
mainly focus on the DLRM model. Fig. 2 shows the high-
level architecture of the DLRM model. THe input features are
divided into dense and sparse partitions where dense features
are fed into the stack of Multilayer perceptron (MLP) layers
called bottom MLP. Sparse features are used to look up
the embedding tables and the output result, along with the
output of bottom MLP, are interacted with each other (e.g.
dot-product, concatenate) to generate the inputs for the top
MLP layers. Finally, the output of the top MLP layers predicts
the probability of a certain action (e.g. the probability that
user x likes advertisement y).

Fig. 3 shows how the DLRM distributed training flow
works and how it overlaps between the compute and
communication. The forward pass begins by embedding
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Figure 4: The AllToAll based training system topology

lookup followed by all-to-all communication. In parallel
with all-to-all, the forward pass computation is started for
bottom MLPs3. The forward pass for top MLP layers is
done ONLY after the all-to-all is finished. During back
propagation, the weight gradient communications of MLP
layers are overlapped with the computation of input and
weight gradients of next layers. As back propagation proceeds,
it flows through both embedding and bottom MLP branches.
In the embedding branch, it generates a blocking all-to-all,
followed by embedding update. Bottom MLP branch flow is
the same as top MLP and at end it stops at the first MLP
layer, waiting to start the next forward pass after the first
layer communication and embedding update are finished.

B. Target Training Platforms

Fig. 4 describes the target AllToAll based topology we
use in our analysis that is similar to Facebook’s Zion [2] and
NVIDIA’s DGX-2 [11] systems. Such systems are suitable
for training recommendation models with all-to-all collective
on their critical path [7]. It consists of supernodes where
each supernode consists of one or multiple compute nodes
(e.g. GPUs). There is a network within each supernode that
enables local communicates (e.g. through NVLink) between
the nodes belonging to the same supernode (i.e. local/scale-
up dimension). Supernodes communicate (e.g. through TCP)
with each other through global switches (i.e. alltoall/scale-out
dimension). In our terminology, flat topology has only one
node per supernode (local dimension=1) while hierarchical

3Note that the forward pass for each layer is proceed ONLY after making
sure that the weight update corresponding to the previous training iteration
is finished.
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topology has more than one node per supernode (local
dimension>1).

Table II describes the terms used in this paper. This table
describes the physical topologies and collective communi-
cation algorithms used for these topologies. In addition, it
describes the hierarchy of links that form such topologies.

Topologies Under Test. We simulated two systems, both
with 128 nodes:
• A flat system where all the nodes are connected via a

single switch.
• A hierarchical system consisting of 16 super-nodes, each

with 8 nodes. The 8 nodes within a super node are
interconnected with a local NV switch equivalent. Each
of the 128 nodes are also interconnected with a single
switch.

C. Simulation Methodology

The design space of the large-scale deep learning systems
can be organized along the layering stack shown in Fig. 5.
Designing an efficient training platform requires consideration
of the model type and parameters, logical communication
algorithms (e.g. ring, tree, etc), pipelining, concurrency and
scheduling mechanisms, congestion management/avoidance
schemes, lossless versus lossy network protocols, physical
network topology and hierarchy, link speeds, buffering and
flow-control management, and so on.



Table II: Terminology

Term Meaning
Flat Topology A physical topology where all nodes are only connected to the global switches.

Hierarchical Topology A physical topology where the nodes within a super-node locally communicate (e.g. via a local switch or rings) and they are
also connected to nodes in other super nodes via the global switches.

AllToAll (aka A2A)

A family of collective communication algorithms.In all-reduce, The i’th node is responsible to globally reduce i’th segment,
so all nodes send their i’th segment to node i for reduction (reduce-scatter phase). After reduction, each node simply broadcasts
its reduced segment to all other nodes (all-gather), resulting in all-reduce. Another example of A2A is the personalized all-to-all
operation (see description below in this table). To perform an A2A collective, all nodes simply exchange all of their data
simultaneously and in a single step. Due to its nature, it is mostly suitable on switch based or fully connected network.

DBT

Double Binary Tree algorithm for performing an all-reduce collective. Two trees with roles of leafs and parents swapped. In each
tree, data travels from 2 children to their parent which locally reduces the data. Parent then propagates this reduced data upward
until we get to the root. The root will have the complete reduced data (reduce phase). The root then broadcast the reduced data down
to its two children and they in turn, broadcast to their children until all leafs get the reduced data (broadcast phase).

all-to-all We use this term to refer to “Personalized all-to-all" that is used to exchange embedding parameters between nodes.
Usually, A2A algorithm is used to do this.

all-to-all hierarchical Same as “personalized all to all” except all communication from one super node to the i’th node in any other super node
happens thru that super node’s i’th node.

Hierarchical all-reduce All nodes in a super node do a full all-reduce. Then i’th nodes in all super nodes do all reduce together.
Hierarchical Optimal all-reduce
(aka 3-phase all-reduce)

Nodes within a super node do reduce scatter, then i’th nodes in all super nodes do full all-reduce, then nodes within a super
node do all gather.

Scale-up link A link connecting a node to any other node within a super node
Scale-out link A link connecting a node in one super node to a node in another super node. In a flat system, all links are scale-outs.

Fig. 6 shows the high-level structure of our simulator to
model this stack. Our simulation methodology consists of
three components:

• A front-end workload simulator, called ASTRA-SIM [10],
that simulates the: (i) workload, the training loop that
carries out various high-level parallelization strategies and
(ii) the system software that provides different collective
communication primitives and manages the concurrency
and pipelining across different communication tasks.

• A back-end simulator built on top of NS3 [12] that
simulates the transport protocol, the network hardware,
and the physical topology. The back-end is customized to
include much more communication protocols and more
accurate modeling and it replaces the ASTRA-SIM de-
fault network simulator (i.e. Garnet [1]). We adopted NS3
as our back-end simulator due its capability/extendibility
to model various levels of networks including the network
of data-center platforms accurately [5].

• We develop a new “Network API" that is meant to provide
decoupling and portability of the aforementioned two
components. It provides a logical two-sided commu-
nication interface (e.g. send, receive) to the front-end
while the actual physical implementation of the interface
is back-end specific and depends on how the physical
communication protocol is modeled inside the network
simulator.

In order to maintain time causality between the two distinct
pieces of software (ASTRA-sim workload layer and NS3),
we treat NS3’s event scheduler as a master and require the
workload layer to schedule events in NS3’s event queue while
allowing the front-end to have its local event-queue for its
internal events.

This simulation framework provides the ability to easily
test the effects of changing hardware and software parameters

and tune them for next generation training platforms. We
focus on sync training with data parallelism for MLP and
model parallelism for embedding tables in this paper — we
will focus on other aspects like async training in future work.

1) Modeling Scheduling, Pipelining, and Concurrency:
The scheduling discipline for the simulations is Last-In-First-
Out (LIFO). That means that a later issued collective will
take precedence over the earlier ones at the system layer.
There is however one exception that are all-to-all collectives,
since they are on the critical path in our training model, they
get the highest priority among all collectives. In the network
layer, the LIFO discipline is not the case (yet).

We define “chunk” as the smallest unit of data on which
the various schedulers operate in the system layer. A chunk
inherits its parent collective’s priority. All chunks of a given
collective have the same priority regardless of the phase they
belong to. For instance, in a hierarchical optimal all-reduce,
there are 3 phases: reduce scatter on local dimension, all
reduce on global dimension, and all gather on local dimension.
We apply priority at the collective level. The scheduling
discipline we have used in the simulations here is as follows:

• All chunks of a collective inherit the priority of the parent
collective

• Between the all-reduce collective, the scheduling in LIFO
meaning all chunks of layer N-1 all-reduce take priority
over all chunks of layer N all reduce (with the exception
of the chunks at the head of the queue which are already
committed to execution)

• The all-to-all collective get the highest priority. The back
prop and forward all-to-alls have equal priority.

Chunking effectively enables pipelining as the network,
DRAM, and compute functions operate on each chunk. We
allow up to 64 concurrent chunks per dimension per node
total to be outstanding at any given time.



2) Network Modeling and Approximations: We tune
the network protocol differently for scale-up and scale-out
network for accurate modeling.

Scale-up Network: We approximate the NV switch scale-
up network within each supernode in a hierarchical topology
with a generic switch model running TCP within NS3. We
make sure that the TCP and switch parameters are tuned to
eliminate packet drops in this scale-up network while utilizing
the link fully. Across the supernodes (i.e., scale-out), regular
TCP (with packet drops) is simulated. In the local dimension,
we use 7 switches to interconnect the 8 nodes of a super
node. We use this formula for load balancing traffic from a
node: nvSwitch_id = (src_id + dst_id) mod 7 where src_id
and dst_id are in (0..7) range.

Scale-out Network: We use “injection latency” as a proxy
for memory copy effects: Injection latency is the time it takes
for unit of data (i.e. a chunk) from network interface (NIC)
to reach the compute and vice versa (e.g. for local reduction
in the all-reduce).

We lump the TCP Ack delay into the link latency parameter.
As such, the link latency includes both the light travel time
on link as well as TCP turnaround time due to traversing
the linux stack.

We use a simple generic switch model with following
attributes:

• Total buffer is divided evenly among the ports
• Main buffering and queueing point is at the egress port
• Tail drop policy is implemented when an egress queue is

completely full (i.e. the new packet would have overrun
the queue)

We will replace these approximations with proper models in
the follow-on work.

Table III: Design parameters

Parameter Flat Hierarchical
Scale-up link BW N/A 1200 Gb/s (total)
Scale-up link latency N/A 0.5us
Scale-up link
communication
protocol

N/A TCP

NV Switch buffer size N/A 64 MB
Scale-out link
communication
protocol

TCP TCP

Allreduce algorithm DBT (scale-out) A2A (scale-up)
+ DBT (scale-out)

Alltoall algorithm all-to-all all-to-all hierarchical

D. Design Parameters

Table III shows the design parameters. Table IV shows
the experiments setup and the parameters that are changed
during our experiments. Table V describes DLRM we use
which is a scaled version of MLPerf’s [6] DLRM model to
stress both compute and communications.

Table IV: Experiments setup

Variable Parameters Default Value Range
Global Batch Size 65536
GPU Model V100
Number of GPUs 128
Compute Power Per GPU 60 TFLOPS
Per GPU batch size 512
Scale-out link BW 100 Gb/s {100, 800}
Scale-out switch buffer 1GB {64MB, 1024MB}
Link latency + TCP Ack delay 0.5us
Injection latency 0.01usec {0.01, 1, 10, 100}
TCP window size 0.5MB {0.5, 0.1}
all-reduce algorithm DBT {DBT, A2A}

Number of chunks
1024 (flat),
128 (hierarchical) {1024, 128, 32}

Chunk parallelism 64 {64, 128}
Collective Scheduling LIFO

Table V: DLRM Model parameters

Model Parameters Value Unit
Size of embedding data-type 16 bits
Pooling factor 60
Top MLP layers 10+2
Bottom MLP layers 5+2
Dense features 1600
Top MLP layer size 2048
Bottom MLP layer size 1024
Sparse features 64
Embedding dimension 64

IV. SIMULATION RESULTS

A. Simulation vs. Analytical Model for Single All-Reduce

The intent of this experiment is to use a single all-reduce
collective to familiarize readers with the design concepts and
simulation results, and to demonstrate how the front-end and
back-end stats are used to explain observed behaviors. In
addition, this experiment illustrates the gap that can exist
between the results from a linear analytical model (that
ignores the network congestion effects) and those from a
detailed network simulator (as much as 20x in the example
below).

We use a flat topology with 128 nodes with the following
parameters:

• The flat physical topology consists of 128 NICs intercon-
nected via a single switch

• Each NIC has a single 100 Gbps link to switch
• The transport protocol is TCP with 0.5 MB congestion

window
• The switch has 64 MB, 1 GB of buffering space evenly

divided amongst the 128 ports
• The algorithms used are DBT, AllToAll
• We vary the size of the matrix (in MB) to be reduced: 8,

16, 32, 64, 128, 256

1) Analytical Model: We know that the total amount
of data that a node sends and receives for one all-reduce
operation is roughly 2×D where D is the size of the matrix
to be reduced. For instance, if D=8MB, and link speed =



Figure 7: Total raw latency for a single all-reduce

100 Gbps, then the time it takes to transfer this much data
on the link will be 2×8 MB / 100 Gbps = 1.28 msec. This is
called the insertion delay. To this delay, we need to add the
transit delay which includes, among other things, the switch
queuing delay. The queuing delay is variable and depends on
the buffer build up in the switch. For instance, if an egress
queue has 512 KB buffering capacity and it is completely
full, and the port is being drained at 100 Gbps, then the
transit time thru this queue will be 512 KB / 100 Gbps =
40 µsec. Since in the analytical analysis we have no idea
what the queuing delay might be (anywhere between 0 and
40 µsec in our example), we typically ignore it.

2) Network Simulator: Now let us study the results from
our ASTRA-sim + NS3 simulator. Fig. 7 illustrates the
completion times, and deviation from the analytical model
for a single all-reduce for different test configurations. The
total latency stats are produced by the front-end ASTRA-sim.

The network stats for this experiment, produced by the
back-end NS3 simulator are presented next. Fig. 8 shows the
average link utilization across all ports for the duration of 2
iterations on the left axis, and the total number of RTOs (TCP
retransmission timeout) events on the right axis. Fig. 9 shows
the average packet round trip time (RTT) for percentile 50
and percentile 99 of packets. The RTT value for each flow is
sampled every 1 ms of simulation time. These RTT samples
are averaged per flow (i.e. source/destination pair of nodes)
at the end of the simulation. These per-flow averages are
used to create the average, p50, and p99 plots. Fig. 10 shows
the average packet RTT and total number of retransmitted
packets across all flows.

3) Discussion: In order to show the difference between
the simulator results and the analytical model, we make few
observations based on Fig. 7 and further elaborate them using
network simulator results in the explanations.

Observation 1. Consider “Flat A2A (64 MB switch
buffer)": For 8 MB collective size, the difference between the
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Figure 8: Average link utilization and total number of packet re-
transmission timeout (RTO) corresponding to the systems simulated
in Fig. 7
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Figure 9: Average packet round trip time (RTT) for percentile 50
and percentile 99 of packets corresponding to the systems simulated
in Fig. 7

analytical model (bytes/link_speed) and the network simulator
results is around 37%.

Explanation. The average link utilization was 81% (Fig. 8)
and the total number of retransmission events was 907
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Figure 10: Average packet round trip time (RTT) and total number
of retransmitted packets corresponding to the systems simulated in
Fig. 7

(Fig. 10). There were no RTO events. This explains the
37% deviation from the analytical model prediction.

In addition, based on Fig. 7, when going from 8 MB to
16 MB size, the difference between the linear model and the
network simulator jumps to over 50x. The reason is that at
16 MB size, there are 997 RTO events, the link utilization
collapses (Fig. 8), and both the number of retransmissions
and the average RTT shoot up (Fig. 9 and Fig. 10). The RTO
timer was set to 50 ms.

Observation 2. As data size is increased, the small switch
buffer configurations severely deviate from the analytical
model with DBT being more optimal for smaller collectives
and A2A being more optimal for larger collectives.

Explanation. This observation is supported by the link
utilization and RTO event count (Fig. 8). The real interesting
observation here is that the DBT algorithm is much more
susceptible to packet drops and RTO events than the A2A one.
Note that in the 32 MB collective size case, a handful of RTO
events (5 to be exact) bring down the average link utilization
in the DBT configuration, while the A2A counterpart has
2000 RTO events with slightly less average link utilization.
To explain this, one needs to consider the synchronous nature
of the tree algorithm where the entire collective could be at
mercy of a single point to point transfer. The parent node in
the tree that fails to receive the data from one of its children
will stall the rest of the tree and if this occurs close to the
leaf layer, the subsequent layers of the tree are stalled.

Observation 3. For all collective sizes up to 256 MB, the
1GB switch buffer configurations stay reasonably close to
the analytical model with DBT being better than the A2A.
The DBT with 1GB buffer stays within 16% of the analytical
for all collective sizes.

Explanation. Note that DBT configurations maintain close
to 100% link utilization and zero retransmits/RTOs across
all collective sizes (Fig. 8). This should not be surprising
because of the organized nature of the tree and the 2*log(N)
sequential communication steps. In contrast, in the A2A all
nodes simultaneously blast their data into the switch. The

retransmit events occur more frequently as collective size
increases, and the link utilization drops significantly (to 52%)
when the RTO events occur at 256MB collective size.

4) Conclusions: The intent of this section was to dissect
the simple case and demonstrate key concepts and tools and
show why simulation is necessary for accurate modeling.
However, additionally there are some takeaway messages
from the previous simulations that are briefly presented here.

Granted, we are simulating a lossy TCP network here,
but if we consider the 1GB buffer cases in the zero drop
regime (8, 16, 32, 64 MB collectives), it is evident that
the DBT algorithm outperforms the A2A both in terms
of collective completion time and link utilization for the
all-reduce collective. This indicates that the sequential and
network friendly nature (e.g. much lower in-cast effect) of
the DBT outweighs its multi-step aspect.

On the other hand, when packet drops do occur in a lossy
network, the A2A is much more resilient than the DBT. The
reason for this is the way the DBT algorithm moves in lock
step. The tree cannot make further progress until data from
both children are received by parent and reduced.

Next, we investigate the various system/network configura-
tions when running real workloads. In all the experiments of
subsequent sections, we simulated 2 iterations of the DLRM
loop. All parameters except for the variable under study are
set to the default values specified in Table III, and Table IV.
The largest weight matrix is for top MLP layer 0 = 16.2 MB.
The second largest matrices are for the top MLP layers =
8 MB. In the first experiment, we show the per-layer and
the aggregate stats but in the subsequent experiments, for
brevity, we only show the aggregate compute versus exposed
communication.

B. DLRM Experiment 1: Effect of Physical Topology

We fix all parameter to default and focus on comparison
between 4 systems hierarchical (hier in short), hierarchicalOp-
timal (hierOpt in short), flat100, flat800. The switch buffer
size is set to 1GB. The 2 flavors of the flat systems refer to
the scale-out link bandwidth (i.e. 100 Gbps vs. 800 Gbps)
while in both hierarchical and hierarchicalOptimal the scale-
out link bandwidth is 100 Gbps (refer to Table II for more
information regarding each configuration).

1) Raw Latencies: Fig. 11 shows the layer-wise raw
collective communication time. The raw communication
latency is measured from the time collective is created until it
is completely finished. The collectives of different layers can
run in parallel and are mostly overlapped with computation
(discussed later).

Observation 1: The LIFO Scheduling Effect. As can
be seen in Fig. 11, the all-reduce operation for the last layer
of the top MLP (layer 11) completes in very short time.
One reason is the smaller communication size for this layer.
Additionally, it practically encounters an empty network as



Figure 11: Total raw communication delay for two training iterations of DLRM

it is the very first collective that is issued and it is finished
before the arrival of the next collectives.

Moreover, for layers 10, 9, ..., 1 — all with equal weight
matrix size — since the later issued collectives (e.g. top layer
1) are inferred with the earlier issued ones (e.g. top layer
10), LIFO scheduling makes the later issued collectives to
complete faster.

Observation 2: The MLP Size. In total, the top MLP
layer 0 has the largest compute time and communication size.
The reason is it has a large input dimension, creating a large
weight matrix. Due to its high computation latency, most of
the previous top layer communications are already finished
before the collective of this layer is issued. This explains the
lower raw communication latency of many other top layers
in the presence of LIFO scheduling.

Observation 3: Forward and Back Prop All-to-all.
Looking at the embedding part in Fig. 11, we note that
the flat800G is the best topology for all to all type collective.
Flat performs all-to-all in a single phase while hierarchical
needs 2 steps one for each dimension (see the Table II for
all-to-all hierarchical). Also note that all-to-all hierarchical
does not reduce the total traffic injected into the scale-out
dimension, hence in this case flat shows better performance.
Back prop all-to-all takes longer than forward pass all-to-all,
since back prop all-to-all sees more in-execution chunks
ahead of itself (and hence more queuing delay) compared to
forward pass all-to-all.

Observation 4: All-reduce Latency: In terms of all-
reduce latency hierOpt is working the best. Compared to flat,
in hierarchical less number of steps are needed to finish a
collective, since trees in scale-out dimension are shallower in
hierarchical (4 in hierarchical vs. 7 in flat) and the A2A in
local dimension only requires 2 steps (one for reduce-scatter
and one for all-gather). HierarchicalOptimal also reduces
the amount of data to be sent to the scale-out dimension,
resulting in better all-reduce performance.

2) EndToEnd Latency: Fig. 11 shows the layer-wise
compute times and exposed communication times. Exposed
communication latency is the amount of latency that the
algorithm is forced to stop because it is waiting for that

communication to be finished. This is the effective commu-
nication latency that actually increases the training time. So
just a portion of raw communication latency will translate
into exposed latency and the rest will be overlapped with
compute times.

Observation 5: Top MLP Layer 0. Recall that Fig. 11
showed huge raw latency in completion time of MLP Layer 0
communication. Fig. 12 shows that when we arrive at the Top
MLP layer 0 in the current iteration, we have to stall because
the weight gradient update from the back prop stage of the
previous iteration has not completed. Hence the “exposed
communication” is large. This is due to Top 0 large size,
LIFO scheduling, and the strict priority of the all-to-alls.

Observation 6: All-to-all Collective. Looking at the
Embedding section, we note again, how the flat800G has no
exposed all-to-alls. For the other systems, we note that both
the back prop and forward all-to-alls have different degrees
of exposure:

• Back prop all-to-all takes longer than the partially
overlapping back prop bottom MLP

• Forward all-to-all takes longer than the partially overlap-
ping forward bottom MLP

3) Total exposed communication latency to compute la-
tency (per training iteration): Fig. 13 shows the ratio of
exposed communication to total computation time per training
iteration. Our goal should be minimizing the amount of
exposed communication as it means that our compute re-
sources would be idle. This diagram conveys the information
in the previous figure in an aggregate way: Sum of all
exposed communications across all layers versus sum of all
compute times across all layers in the previous figure would
yield the figure below. As mentioned before, the exposed
communication time is the time during which the compute
is idle only because it is waiting for network operations to
complete.

Observation 7: Comparison of Different Configura-
tions. The net performance delta between an optimal topology
(flat800G or hierOpt) and a not-so-optimal one (flat100G,
hier) is around 3x. More specifically, flat800G reduces the
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Figure 12: Total end-to-end latency (compute+exposed comm) latency for 2 iterations

Figure 13: Ratio of total compute vs. total exposed comm per
iteration

percentage of exposed communication from 73.1% in the
case of flat100G to 20%, resulting in 2.97× better iteration
time. On the other hand, hierOpt reduces the percentage of
exposed communication from 73.2% in the case of hier to
22.1%, making the iteration time 2.91× better.

Observation 8: Optimal Configurations Tradeoff. The
two optimal topologies — flat800G and hierOpt — repre-
sent the tradeoff between network capacity and algorithm
complexity. The flat800G needs 8x more network capacity
in the global (scale-out) dimension but the communication
algorithm (DBT) has a single phase (simpler to implement).
On the other hand, the hierOpt achieves same performance
with 100 Gbps scale out links, but the 3-phase all-reduce
algorithm is more complex as it requires multiple phases
(reduce scatter local, all reduce global, all gather local).

C. DLRM Experiment 2: Effect of memory copies

As stated earlier, we model the network-to-compute latency
with a fixed parameter called “injection latency”. This is the
latency required by the node to process and handle each
message it receives from other nodes. Most of this delay
corresponds to modeling the effect of memory copies (e.g.
(i) writing to receiver node’s memory address and (ii) then
reading again doing local reduction and then (iii) sending the
message out to the network again). In this experiment, we fix
all parameters and show the effect of injection latency 10 ns,
1 µs, 10 µs, 100 µs for 4 topologies hier100, hierOpt100,
flat100, flat800. The switch buffer size is set to 1 GB.
Fig. 14 shows the ratio of exposed communication to total
computation time per training iteration.

Observation 9: Tolerance to Injection Latency. As the
injection latency increases, the flat topologies performance

Figure 14: Ratio of total compute vs. exposed comm for different
injection latencies

Figure 15: Ratio of total compute vs. total exposed comm for
different global switch buffer size

degrades far more than the hierarchical ones. The main
reason is that flat all-reduce requires more steps compared
to hierarchical topology (14 steps vs. 10). Hence, increased
node response has more severe effect in hierarchical. When
injection latency is increased from 10 ns to 100 µs, flat800G
compute ratio is reduced from 79.9% to 1.5%, while
HierarchOpt’s compute ratio is reduced from 77.8% to 17.5%.
This results in degradation of overall iteration time by around
50× and 4.53× for flat800G and HierarchOpt, respectively.

D. DLRM Experiment 3: Effect of the switch buffer size

In this experiment, we vary the buffer size of the switch in
the global dimension (the scale-out). We fix all parameters
and show effect of switch buffer 64 MB, 128 MB, 1
GB for 4 topologies hier100, hierOpt100, flat100, flat800.
Fig. 15 shows the ratio of exposed communication to total
computation time per training iteration.

Observation 10: Switch Buffer Size Requirements.
Note that both flat100G and flat800G systems are insensitive
to switch buffer size. Recall that the largest weight matrix
is 16 MB in the model we simulated. The single all-reduce



Figure 16: Ratio of total compute vs. total exposed comm for
different scheduling policies

results earlier also indicated that flat100G with DBT shows
completion time within 16% of the analytical model for
both 64 MB and 1 GB buffer sizes for 8 MB and 16 MB
collectives (with no packet drops and close to 100% link
utilization). It is logical that the flat800G system would also
be insensitive to switch buffer size. In the case of HierarchOpt,
increasing the global switch buffer size from 64 MB to 1
GB increases the ratio of compute time from 3.4% to 77.8%,
enhancing the iteration time by 22.9×. The main reason
for this enhancement is that compared to flat, hierarchical
topology execute on multiple shallower depth DBTs that
inject more traffic-per-time compared to single in-depth DBT
of flat, hence, requiring more buffer size.

E. DLRM Experiment 4: Effect of Pipelining and Scheduling

In the last experiment, we explore the effects of optimiza-
tions in the system layer of the front-end simulator. We vary
the chunk size and degree of the concurrency for flat800G
and hierOpt topologies. The switch buffer size is set to 1
GB. Fig. 16 shows the ratio of exposed communication to
total computation time per training iteration.

Observation 11: Optimal Concurrency Degree. There
is as much as 8.89× variation in exposed communication
time (21.5% variation in total iteration time) for the flat800G
topology and 1.54× difference in exposed communication
time (7.4% variation in total iteration time) for the hierOpt
as we change the degree of chunking and concurrency. This
variation is primarily due to moving towards and away from
the optimal point of operation between the link utilization
and degree of network congestion. As long as network is not
too congested, we would like to increase the link utilization
to reduce the training iteration time. However, as the network
becomes more and more congested, increasing the link
utilization will have the inverse effect as retransmission and
RTO events come into play. Varying the chunk size and
degree of concurrency effectively control the offered load
into the network.

V. RELATED WORK

Due to growing importance of training, several works
studied the training design space exploration on various
platforms during the recent years. For instance, authors in
[3] and [8] explored the design choices for training of ResNet-
50 and DLRM networks, respectively. However, since their
methodology relies on real systems, their hardware parameter

exploration is limited to whatever hardware is available.
The original ASTRA-SIM paper [10] studied the impact
of topology and algorithm for Resnet-50 using the ASTRA-
SIM frontend with the GARNET network simulator [1] as
the backend. However, unlike this work, the analysis was
limited to scale-up networks. Also, as described in this paper,
Resnet-50 has very different characteristics compared to
recommendation models such as DLRM.

VI. CONCLUSION

Our work is focused on addressing the challenges in-
volved in designing highly scalable DL training platforms
for recommendation models through SW/HW co-design.
We presented an end-to-end simulation infrastructure and
evaluated the impact of Hierarchical vs. Flat topologies for
scaling DLRM. Further, we studied the impact of various
SW (e.g. collective algorithms, levels of concurrency, chunk
sizes) and HW choices (e.g. size of switch buffer) on end
workload performance. We plan to extend this work to larger
system sizes and different transport protocols (e.g. RDMA
over Converged Ethernet) as part of future work.
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