
HAAG NLP Summarization Week 10

Michael Bock

October 2024

1 Slack Questions

What did you accomplish this week?

• Tested Ollama pipeline, but got poor results

• Provided settlements to OCR team

What are you planning on working on next?

• We beleive that LLaMa had trouble understanding the insurance terminology, so Nathan
advised me to fine tune. I have a script set up, but it isn’t working because I can’t figure out
the context length of LLaMa. It says 128,000, but then I pass in that many tokens and it
throws an error.

What is blocking you from progressing?

• None

2 Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural
networks in an encoder-decoder configuration. The best performing models also connect the encoder
and decoder through an attention mechanism. We propose a new simple network architecture, the
Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to be superior in quality
while being more parallelizable and requiring significantly less time to train. Our model achieves
28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best
results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5
days on eight GPUs, a small fraction of the training costs of the best models from the literature.
We show that the Transformer generalizes well to other tasks by applying it successfully to English
constituency parsing both with large and limited training data.

Link: https://arxiv.org/abs/1706.03762

1

2.1 Brief Analysis

I don’t believe I’ve ever linked Attention is all you need here, but all the work I’ve done is based on
it. Attention is all you need introduces transformers, which are a neural network architecture that
is common in natural langauge processing. A key feature of natural langauge is long range depen-
dencies; we have words like “the” and “is” that aren’t as important as others in a sentence. Most
important words are far away from each other. At the time, established architectures like RNNs
and CNNs relied on small perceptive fields which combined nearby features to produce a useful
representation of data for classification or regression. Transformers take the opposite approach -
they rely on combining features from words that are far away from each other. Transformers use
an attention mechanism. Attention mechanisms weight each word in a sentence. More important
words get higher weights and less important words get weights of zero. Then, the model proceeds
as a normal multi-layer perceptron.

This use of attention lets the model filter out unimportant words and only focus on important
words, similar to how a CNN may apply filters to extract edges or basic textures. The critical
difference is that attention combines features from important words that are far away from each
other. This improved feature extraction led to transformers achieving state of the art results on
most tasks.

Since Attention is all you need, transformers have become the dominant neural network archi-
tecture in natural language processing. The most well known use of transformers is in chat bots
like ChatGPT and other conversational AI. However, we can make use of transformers the same
way we’d make use of any other backbone. I plan to use transformers for classification by taking
the output features from a pretrained transformer and training classifiers with them.

3 Scripts and Code Blocks

generate pdfs.py

1 from summarizers.get_complaints import get_complaint_only_cases , get_orders_cases

2 from summarizers.ocr import read_doc , extract_text_from_pdf

3 from tqdm import tqdm

4 import pandas as pd

5 import os

6 from urllib.request import urlretrieve

7 import pypdf

8

9 #os.mkdir(’pdfs ’)

10

11 data = get_orders_cases("all_cases_clearinghouse.pkl")

12

13 data_entries = []

14 df = {

15 ’ID’ : [],

16 ’Summary ’: [],

17 ’Name’: [],

18 ’docUrls ’: [],

19 ’Documents Text’: []

20 }

21

22 for entry in tqdm(data):

23 try:

24 if not entry or not entry.case_documents or len(entry.case_documents) < 1:

2

25 continue

26 doc_types = ’’

27 for i, doc in enumerate(entry.case_documents):

28 text = ""

29 if doc.document_type == ’Order/Opinion ’ or doc.document_type == ’

Settlement Agreement ’ or doc.document_type == ’Complaint ’:

30 print(doc.file , doc.document_type , entry.id)

31 doc_types += doc.file+’|’

32 doc_type = doc.document_type.replace("/", "_").replace(" ", "_")

33 #urlretrieve(doc.file , f’pdfs/{entry.id}_{doc_type}_{i}.pdf ’)

34 text += f"\n======================== CASE DOCUMENT {doc_type}_{i}

=========================\n{read_doc(doc)}"

35 df[’Name’]. append(entry.name)

36 df[’Summary ’]. append(entry.summary)

37 df[’Documents Text’]. append(text)

38 df[’ID’]. append(entry.id)

39 df[’docUrls ’]. append(doc_types)

40 except pypdf.errors.PdfStreamError:

41 pass

42

43 df = pd.DataFrame.from_dict(df)

44 df.to_csv(’./ cases_multi_doc.csv’)

model.py

1 from datasets import load_dataset , Dataset

2 from transformers import AutoTokenizer

3 from transformers import AutoModelForSequenceClassification , AutoModel

4 from transformers import TrainingArguments , Trainer

5 import numpy as np

6 import evaluate

7 import os

8 import pandas as pd

9 from torch import nn

10 from labels import DNO_ISSUES

11

12 class LongFormerClassification(nn.Module):

13 def __init__(self , n_issues = 51):

14 super().__init__ ()

15 self.heads = []

16 self.backbone = AutoModel.from_pretrained("meta -llama/Llama -3.2-1B", token =

os.environ[’HF_TOKEN ’])

17 for _ in range(n_issues):

18 self.heads.append(nn.Sequential(nn.Linear(self.backbone.config.

hidden_size , 1), nn.Sigmoid ()))

19 print(f"LLaMa max sequence length: {self.backbone.config.

max_position_embeddings}")

20 print(self.backbone)

21

22 def forward(self , input_ids , attention_mask):

23 print(’Input Id shape: ’, input_ids.shape)

24 print(’Attention Mask shape: ’, attention_mask.shape)

25 x = self.backbone(input_ids , attention_mask)

26 x = x[0]

27 outputs = []

28 for head in self.heads:

29 outputs.append(head(x))

30 return tuple(outputs)

31

3

32 metric = evaluate.load("accuracy")

33

34 def compute_metrics(eval_pred):

35 logits , labels = eval_pred

36 predictions = np.argmax(logits , axis=-1)

37 return metric.compute(predictions=predictions , references=labels)

38

39 training_args = TrainingArguments(output_dir="/home/hice1/mbock9/scratch/

tutorial_runs/", eval_strategy = ’epoch’, save_total_limit = 5,

load_best_model_at_end = True , save_strategy = "epoch", num_train_epochs = 50)

40

41 df = pd.read_csv("dno_labels.csv", sep=",").dropna ()

42

43 dataset = Dataset.from_pandas(df).train_test_split(test_size =0.2)

44

45 tokenizer = AutoTokenizer.from_pretrained("meta -llama/Llama -3.2 -1B", token = os.

environ[’HF_TOKEN ’])

46 tokenizer.add_special_tokens ({’pad_token ’: ’[PAD]’})

47

48 max_seq_length = tokenizer.model_max_length # or model.config.

max_position_embeddings

49 print(f"Model’s maximum sequence length: {max_seq_length}")

50

51 def tokenize_function(examples):

52 examples[’Text’] = [e.replace(’\n’, ’’) for e in examples["Text"]]

53 return tokenizer(examples[’Text’], padding="max_length", max_length=

max_seq_length , truncation=True , return_tensors=’pt’)

54

55 tokenized_dataset = dataset.map(tokenize_function , batched=True)

56 tokenized_dataset = tokenized_dataset.remove_columns (["Text"])

57 tokenized_dataset = tokenized_dataset.remove_columns (["Name"])

58 #tokenized_dataset = tokenized_dataset.rename_column (" label", "labels ")

59 tokenized_dataset.set_format("torch")

60

61 #small_train_dataset = tokenized_dataset ["train "]. shuffle(seed =42).select(range

(1000))

62 #small_eval_dataset = tokenized_dataset ["test "]. shuffle(seed =42).select(range (1000))

63 #trainer = Trainer(model = model , args = training_args , train_dataset=

small_train_dataset , eval_dataset=small_eval_dataset , compute_metrics =

compute_metrics)

64 #trainer.train ()

65 from torch.utils.data import DataLoader

66

67 train_dataloader = DataLoader(tokenized_dataset["train"], shuffle=True , batch_size

=2)

68 eval_dataloader = DataLoader(tokenized_dataset["test"], batch_size =2)

69 from torch.optim import AdamW

70

71 model = LongFormerClassification ()

72

73 optimizer = AdamW(model.parameters (), lr=5e-5)

74

75 from transformers import get_scheduler

76

77 num_epochs = 3

78 num_training_steps = num_epochs * len(train_dataloader)

79 lr_scheduler = get_scheduler(

80 name="linear", optimizer=optimizer , num_warmup_steps =0, num_training_steps=

4

num_training_steps

81)

82 import torch

83

84 device = torch.device("cpu")#torch.device ("cuda") if torch.cuda.is_available () else

torch.device ("cpu")

85 model.to(device)

86 from tqdm.auto import tqdm

87

88 progress_bar = tqdm(range(num_training_steps))

89 criterion = nn.BCELoss ()

90

91 for epoch in range(num_epochs):

92 model.train ()

93 for batch in train_dataloader:

94 batch = {k: v for k, v in batch.items ()}

95 inputs = {"input_ids" : batch["input_ids"].to(device), "attention_mask":

batch["attention_mask"].to(device)}

96 outputs = model (** inputs)

97 labels = {k: batch[k].to(device) for k in DNO_ISSUES}

98 total_loss = sum([criterion(output , labels[k]) for output , k in zip(outputs ,

DNO_ISSUES)])

99 #loss = outputs.loss

100 total_loss.backward ()

101

102 optimizer.step()

103 lr_scheduler.step()

104 optimizer.zero_grad ()

105 progress_bar.update (1)

106

107 """ import evaluate

108

109 metric = evaluate.load(" accuracy ")

110 model.eval()

111 for batch in eval_dataloader:

112 batch = {k: v.to(device) for k, v in batch.items()}

113 with torch.no_grad ():

114 outputs = model (** batch)

115

116 logits = outputs.logits

117 predictions = torch.argmax(logits , dim=-1)

118 metric.add_batch(predictions=predictions , references=batch [" labels "])

119

120 print(metric.compute ())"""

4 Documentation

The first script is how I got the dataset that I sent to the OCR team. In order to run it you
only need the all_cases_clearinghouse.pkl pickle file, which holds a scrape of the clearinghouse
api. The script takes no arguments. The output is the same as all the csvs I’ve been sending this
semester, except it adds in a docUrl field, which has the url of every PDF in the case separated by
a pipe character.

5

5 Scription Validation(Optional)

N/A, the script doesn’t work yet.

6 Results Visualization

Below is the error I am currently getting. I am running on PACE with LLaMa-1B. Huggingface
and Sam Pang(another student who has fine tuned LLaMa) says that LLaMa has a context window
of 128,000, but I get this error if I run more than 2048 tokens. I think this is not a coincedence,
the dimensionality of the embedding is 2048 so maybe I have the wrong input shape. Huggingface
documentation doesn’t include an input shape so this will include trial and error to find what is
wrong. Sam provided me an example on Colab of him fine tuning LLaMa, so I am going to try to
run his script on my PACE account. I have the same tokenization and model as him so I think it
may have something to do with my dataset that breaks huggingface.

1 ---------------------------------------

2 Begin Slurm Prolog: Oct -25 -2024 13:26:53

3 Job ID: 885152

4 User ID: mbock9

5 Account: coc

6 Job name: HGX_H100_Example

7 Partition: coe -gpu

8 ---------------------------------------

9 Lmod has detected the following error: The following module(s) are unknown:

10 "python /3.6"

11

12 Please check the spelling or version number. Also try "module spider ..."

13 It is also possible your cache file is out -of-date; it may help to try:

14 $ module --ignore_cache load "python /3.6"

15

16 Also make sure that all modulefiles written in TCL start with the string

17 #%Module

18

19

20

21 /var/lib/slurm/slurmd/job885152/slurm_script: line 11: pip: command not found

22 /usr/bin/python: No module named pip

23 Model’s maximum sequence length: 131072

24 Map: 100%|| 660/660 [00:35 <00:00 , 18.79 examples/s]

25 Map: 100%|| 166/166 [00:08 <00:00 , 20.14 examples/s]

26 LLaMa max sequence length: 131072

27 LlamaModel(

28 (embed_tokens): Embedding (128256 , 2048)

29 (layers): ModuleList(

30 (0-15): 16 x LlamaDecoderLayer(

31 (self_attn): LlamaSdpaAttention(

32 (q_proj): Linear(in_features =2048 , out_features =2048, bias=False)

33 (k_proj): Linear(in_features =2048 , out_features =512, bias=False)

34 (v_proj): Linear(in_features =2048 , out_features =512, bias=False)

35 (o_proj): Linear(in_features =2048 , out_features =2048, bias=False)

36 (rotary_emb): LlamaRotaryEmbedding ()

37)

38 (mlp): LlamaMLP(

39 (gate_proj): Linear(in_features =2048, out_features =8192 , bias=False)

40 (up_proj): Linear(in_features =2048, out_features =8192, bias=False)

6

41 (down_proj): Linear(in_features =8192, out_features =2048 , bias=False)

42 (act_fn): SiLU()

43)

44 (input_layernorm): LlamaRMSNorm ((2048 ,), eps=1e-05)

45 (post_attention_layernorm): LlamaRMSNorm ((2048 ,), eps=1e-05)

46)

47)

48 (norm): LlamaRMSNorm ((2048 ,), eps=1e-05)

49 (rotary_emb): LlamaRotaryEmbedding ()

50)

51 0%| | 0/990 [00:00 <? , ?it/s]Input Id shape: torch.Size([2, 131072])

52 Attention Mask shape: torch.Size([2, 131072])

53 Traceback (most recent call last):

54 File "/home/hice1/mbock9/law -data -design -vip/ner/llamas/model.py", line 96, in <

module >

55 outputs = model (** inputs)

56 File "/home/hice1/mbock9 /.local/lib/python3 .9/site -packages/torch/nn/modules/

module.py", line 1511, in _wrapped_call_impl

57 return self._call_impl (*args , ** kwargs)

58 File "/home/hice1/mbock9 /.local/lib/python3 .9/site -packages/torch/nn/modules/

module.py", line 1520, in _call_impl

59 return forward_call (*args , ** kwargs)

60 File "/home/hice1/mbock9/law -data -design -vip/ner/llamas/model.py", line 25, in

forward

61 x = self.backbone(input_ids , attention_mask)

62 File "/home/hice1/mbock9 /.local/lib/python3 .9/site -packages/torch/nn/modules/

module.py", line 1511, in _wrapped_call_impl

63 return self._call_impl (*args , ** kwargs)

64 File "/home/hice1/mbock9 /.local/lib/python3 .9/site -packages/torch/nn/modules/

module.py", line 1520, in _call_impl

65 return forward_call (*args , ** kwargs)

66 File "/home/hice1/mbock9 /.local/lib/python3 .9/site -packages/transformers/models/

llama/modeling_llama.py", line 950, in forward

67 inputs_embeds = self.embed_tokens(input_ids)

68 File "/home/hice1/mbock9 /.local/lib/python3 .9/site -packages/torch/nn/modules/

module.py", line 1511, in _wrapped_call_impl

69 return self._call_impl (*args , ** kwargs)

70 File "/home/hice1/mbock9 /.local/lib/python3 .9/site -packages/torch/nn/modules/

module.py", line 1520, in _call_impl

71 return forward_call (*args , ** kwargs)

72 File "/home/hice1/mbock9 /.local/lib/python3 .9/site -packages/torch/nn/modules/

sparse.py", line 163, in forward

73 return F.embedding(

74 File "/home/hice1/mbock9 /.local/lib/python3 .9/site -packages/torch/nn/functional.py

", line 2237, in embedding

75 return torch.embedding(weight , input , padding_idx , scale_grad_by_freq , sparse)

76 IndexError: index out of range in self

77 0%| | 0/990 [00:00 <? , ?it/s]

78 ---------------------------------------

79 Begin Slurm Epilog: Oct -25 -2024 13:27:56

80 Job ID: 885152

81 Array Job ID: _4294967294

82 User ID: mbock9

83 Account: coc

84 Job name: HGX_H100_Example

85 Resources: cpu=1,gres/gpu:h100=1,mem =224G,node=1

86 Rsrc Used: cput =00:01:04 , vmem=0,walltime =00:01:04 , mem =11571236K,energy_used =0

87 Partition: coe -gpu

7

88 Nodes: atl1 -1-03-012-8-0

89 ---------------------------------------

7 Proof of work

8

Figure 1: Retrieving URLs from clearinghouse api

8 Next Week’s proposal

• We beleive that LLaMa had trouble understanding the insurance terminology, so Nathan
advised me to fine tune. I have a script set up, but it isn’t working because I can’t figure out
the context length of LLaMa. It says 128,000, but then I pass in that many tokens and it
throws an error.

9

HAAG Research Report
NLP - Sentencias / NLP - Gen Team

Week 10
Víctor C. Fernández

October 2024

1 WEEKLY PROJECT UPDATES

What progress did you make in the last week?

• Implemented a benchmark for evaluating different models when retrieving

context for the dates.
• Created graphical views comparing all models.
• Completed a basic abstract for our paper within the overleaf template.
• Created a presentation/PPT for our future call with the judge Miguel.
• Researched on creating a pipeline to orchestrate the whole process using pre-

fect.
• Researched on creating a simple UI to load and view results using Gradio.
• Met with the NLP-Sentencias team on Monday 21st to align on our goals and

distribute our tasks.
• Meeting with the NLP team on October 25th for our weekly meeting.
• Meeting with Dr. Alexander and Nathan Dahlberg on October 25th to get

further insights on NLP research.

What progress are you making next?

• Researching ways to improve context retrieval for the dates.
• Implement a simple pipeline to run all processess end to end.
• Implement a simple UI to interact with the pipeline and upload and process a

single file.
• Work on getting more content in for our paper.

Is there anything blocking you from making progress?

No blockers at this moment.

1

2 ABSTRACTS

1. Title: Segmentation of legal documents
• URL: https://dl.acm.org/doi/10.1145/3594536.3595142 (requires accessing

with GaTech credentials to view actual paper)

• Abstract: The computational cost of transformer-based models has a quadratic

dependence on the length of the input sequence. This makes it challenging

to deploy these models in domains in which long documents are especially

lengthy, such as the legal domain. To address this issue, we propose a three-

stage cascading approach for long document classification. We begin by fil-

tering out likely irrelevant information with a lightweight logistic regression

model before passing the more challenging inputs to the transformer-based

model. We evaluate our approach using CUAD, a legal dataset with 510

manually-annotated, long contracts. We find that the cascading approach

reduces training time by up to 80% while improving baseline performance.

We hypothesize that the gains in performance stem from localizing the clas-

sification task of the transformer model to particularly difficult examples.
• Summary: The paper, proposes a three-stage cascading model to improve

the efficiency of transformer-based models when processing lengthy legal

documents. The pipeline begins by dividing the document into manage-

able chunks and applies a lightweight logistic regression model to filter out

irrelevant segments. Only the challenging segments are passed on to a trans-

former model, significantly reducing computational cost. Evaluations on a

legal dataset of long contracts showed that the cascading model reduced

training time by up to 80% while maintaining or improving classification

accuracy, demonstrating that this approach can optimize resources in NLP

tasks involving long texts.

• Relevance: This paper provides an efficient approach for handling lengthy

legal documents. The cascading pipeline’s use of lightweight classifiers for

filtering less critical segments could help streamline the processing of senten-

cias, especially as the project focuses on optimizing NLP tools to tackle data

extraction efficiently. This is particularly advantageous given the long-form

nature of judicial decisions and their tendency to include substantial non-

relevant content, mirroring the filtering challenges addressed in the paper.

2

By incorporating this cascading method, our project could reduce processing

time while focusing computational resources on critical information extrac-

tion tasks, such as pinpointing case dates, ultimately supporting efforts to

identify causes of judicial delays and contribute to policy recommendations.

3 SCRIPTS AND CODE BLOCKS

All scripts have been uploaded to the HAAG NLP Repo. Outputs files, processed

sentencias and any other document that may contain sensitive information is

located in the private NLP-Sentencias Repo.

The following code contains the logic and functions I have been working on this

week.

1. Created a function to combine all results from all dates into a single file here.

3

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor
https://github.gatech.edu/calexander97/sentencias
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction_benchmark/4_group_outputs.py

def combine_outputs_per_file_and_model(output_folder):
Iterate over each original file in the output folder
for filename in os.listdir(output_folder):

file_path = os.path.join(output_folder, filename)
if os.path.isdir(file_path):

Iterate over each model folder within the original
file folder↪→

for model in os.listdir(file_path):
model_path = os.path.join(file_path, model)
if os.path.isdir(model_path):

dates_outputs = []
metrics_outputs = []
Iterate over each output file within the

model folder↪→

output_files = sorted([f for f in
os.listdir(model_path) if
f.endswith('.txt')])

↪→

↪→

for output_file in output_files:
if output_file.endswith('_combined.txt'):

continue # Skip combined files
output_file_path =

os.path.join(model_path, output_file)↪→

with open(output_file_path, 'r',
encoding='utf-8') as f:↪→

content = f.read()
Parse the content
sections = content.strip().split('\n\n')
if len(sections) >= 2:

Model output is the first section
model_output_text =

sections[0].strip()↪→

Execution details is the last
section↪→

execution_details_json =
sections[-1].strip()↪→

Clean up model output text
model_output_text =

re.sub(r'^```(?:json)?\s*', '',
model_output_text)

↪→

↪→

model_output_text =
re.sub(r'\s*```$', '',
model_output_text)

↪→

↪→

4

Parse the model output JSON
try:

model_output =
json.loads(model_output_text)↪→

except json.JSONDecodeError as e:
print(f"Error decoding model

output in file
{output_file_path}: {e}")

↪→

↪→

Optionally, print the
problematic text↪→

print(f"Model output text
was:\n{model_output_text}\n")↪→

continue
Extract "date" and "date event"
try:

date = model_output.get("date",
"")↪→

date_event =
model_output.get("date event",
"")

↪→

↪→

except Exception as e:
print(f"Error extracting date and

date event in file
{output_file_path}: {e}")

↪→

↪→

date = ""
date_event = ""

Parse execution details
try:

execution_details_full = json.loa ⌋

ds(execution_details_json)↪→

execution_details =
execution_details_full.get('e ⌋

xecution_details',
execution_details_full)

↪→

↪→

↪→

except json.JSONDecodeError as e:
print(f"Error decoding execution

details in file
{output_file_path}: {e}")

↪→

↪→

execution_details = {}
Add to dates_outputs

5

dates_outputs.append({
"date": date,
"date event": date_event

})
Add to metrics_outputs
metrics_outputs.append(execution_deta ⌋

ils)↪→

else:
Handle unexpected format
print(f"Unexpected format in file

{output_file_path}")↪→

continue
Write dates_outputs to JSON file
dates_output_file = os.path.join(model_path,

f"{filename}_{model}.json")↪→

with open(dates_output_file, 'w',
encoding='utf-8') as f:↪→

json.dump(dates_outputs, f,
ensure_ascii=False, indent=2)↪→

Write metrics_outputs to JSON file
metrics_output_file = os.path.join(model_path,

f"{filename}_{model}_metrics.json")↪→

with open(metrics_output_file, 'w',
encoding='utf-8') as f:↪→

json.dump(metrics_outputs, f,
ensure_ascii=False, indent=2)↪→

print("Combined output files created.")

Code 1—Code for combining all models outputs

2. Code for validating the results obtained from the models and generate corre-

sponding scores for benchmark here.

6

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction_benchmark/5_validate_models.py

def validate_model_outputs(models_output_folder,
validation_set_folder, results_file):↪→

Dictionary to store accumulated metrics per model and
hyperparameters↪→

model_hyperparam_metrics = {}

For each document in models_output_folder
for document_name in os.listdir(models_output_folder):

Log the document being processed
log_in_color(f"Processing document: {document_name}",

"green")↪→

document_path = os.path.join(models_output_folder,
document_name)↪→

if not os.path.isdir(document_path):
continue

Get the validation set for this document
validation_set_file = os.path.join(validation_set_folder,

f"{document_name}_validation.json")↪→

if not os.path.isfile(validation_set_file):
print(f"Validation set for '{document_name}' not

found.")↪→

continue

with open(validation_set_file, 'r', encoding='utf-8') as
f:↪→

validation_set = json.load(f)

For each model in this document's folder
for model_name in os.listdir(document_path):

Log the model being processed
log_in_color(f"Processing model: {model_name}",

"blue")↪→

model_path = os.path.join(document_path, model_name)
if not os.path.isdir(model_path):

continue

7

Read the model outputs
model_output_file = os.path.join(model_path,

f"{document_name}_{model_name}.json")↪→

if not os.path.isfile(model_output_file):
print(f"Model output file '{model_output_file}'

not found.")↪→

continue

with open(model_output_file, 'r', encoding='utf-8')
as f:↪→

model_outputs = json.load(f)

Read the execution metrics
metrics_file = os.path.join(model_path,

f"{document_name}_{model_name}_metrics.json")↪→

if os.path.isfile(metrics_file):
with open(metrics_file, 'r', encoding='utf-8') as

f:↪→

execution_metrics = json.load(f)
else:

execution_metrics = []

Validate the model outputs against the validation
set↪→

correct = 0
incorrect = 0
used_model_indices = set()

for val_date_obj in validation_set:
val_date =

normalize_str(val_date_obj.get('date'))↪→

val_event = normalize_str(val_date_obj.get('date
event'))↪→

match_found = False

8

Search for val_date in model outputs
for idx, model_output in enumerate(model_outputs):

Log the model output index being processed
log_in_color(f"Processing model output index:

{idx}", "magenta")↪→

if idx in used_model_indices:
continue # Skip already matched outputs

mod_date = model_output.get('date', '')
mod_event = model_output.get('date event',

'')↪→

Check if date and date event are strings, if
not, cast them to strings↪→

if not isinstance(mod_date, str):
mod_date = str(mod_date)

if not isinstance(mod_event, str):
mod_event = str(mod_event)

mod_date = normalize_str(mod_date)
mod_event = normalize_str(mod_event)

if val_date == mod_date:
used_model_indices.add(idx)
match_found = True

Check if date events match
if val_event == mod_event:

Correct response
correct += 1

else:
Check for 'otros' in both date

events↪→

if 'otros' in val_event.lower() and
'otros' in mod_event.lower():↪→

correct += 1
else:

incorrect += 1
break

9

if not match_found:
Date not found in model outputs
incorrect += 1

Any remaining model outputs are false positives
false_positives = len(model_outputs) -

len(used_model_indices)↪→

total_validation_dates = len(validation_set)
total_model_dates = len(model_outputs)

Calculate metrics
precision = correct / (correct + false_positives) if

(correct + false_positives) > 0 else 0↪→

recall = correct / total_validation_dates if
total_validation_dates > 0 else 0↪→

f1_score = (2 * precision * recall) / (precision +
recall) if (precision + recall) > 0 else 0↪→

accuracy = correct / total_validation_dates if
total_validation_dates > 0 else 0↪→

Get hyperparameters from the first execution detail
if execution_metrics:

hyperparameters =
execution_metrics[0].get('hyperparameters',
{})

↪→

↪→

Sum processing times
total_processing_time =

sum([em.get('processing_time', 0.0) for em in
execution_metrics])

↪→

↪→

execution_count = len(execution_metrics)
else:

hyperparameters = {}
total_processing_time = 0.0
execution_count = 0
print(f"No execution metrics found for model

{model_name} on document {document_name}")↪→

10

Create key for the model and hyperparameters
hyperparameters_tuple =

tuple(sorted(hyperparameters.items()))↪→

key = (model_name, hyperparameters_tuple)

Initialize or update the metrics in the dictionary
if key not in model_hyperparam_metrics:

model_hyperparam_metrics[key] = {
'model_name': model_name,
'hyperparameters': hyperparameters,
'documents': set(), # Set of documents

evaluated↪→

'total_correct': 0,
'total_incorrect': 0,
'total_false_positives': 0,
'total_validation_dates': 0,
'total_model_dates': 0,
'sum_precision': 0.0,
'sum_recall': 0.0,
'sum_f1_score': 0.0,
'sum_accuracy': 0.0,
'total_processing_time': 0.0,
'execution_count': 0,

}

metrics = model_hyperparam_metrics[key]

Update the set of documents
metrics['documents'].add(document_name)

11

Accumulate performance metrics
metrics['total_correct'] += correct
metrics['total_incorrect'] += incorrect
metrics['total_false_positives'] += false_positives
metrics['total_validation_dates'] +=

total_validation_dates↪→

metrics['total_model_dates'] += total_model_dates
metrics['sum_precision'] += precision
metrics['sum_recall'] += recall
metrics['sum_f1_score'] += f1_score
metrics['sum_accuracy'] += accuracy

Update processing time and execution count
metrics['total_processing_time'] +=

total_processing_time↪→

metrics['execution_count'] += execution_count

Now, after processing all documents and models, prepare the
results↪→

final_results = []

for key, metrics in model_hyperparam_metrics.items():
n = len(metrics['documents']) # Number of documents

evaluated↪→

Calculate average metrics
average_precision = metrics['sum_precision'] / n if n > 0

else 0↪→

average_recall = metrics['sum_recall'] / n if n > 0 else
0↪→

average_f1_score = metrics['sum_f1_score'] / n if n > 0
else 0↪→

average_accuracy = metrics['sum_accuracy'] / n if n > 0
else 0↪→

average_processing_time =
metrics['total_processing_time'] /
metrics['execution_count'] if
metrics['execution_count'] > 0 else 0

↪→

↪→

↪→

12

Prepare result entry
result_entry = {

'model_name': metrics['model_name'],
'hyperparameters': metrics['hyperparameters'],
'documents_evaluated': list(metrics['documents']),
'total_correct': metrics['total_correct'],
'total_incorrect': metrics['total_incorrect'],
'total_false_positives':

metrics['total_false_positives'],↪→

'total_validation_dates':
metrics['total_validation_dates'],↪→

'total_model_dates': metrics['total_model_dates'],
'average_precision': average_precision,
'average_recall': average_recall,
'average_f1_score': average_f1_score,
'average_accuracy': average_accuracy,
'total_processing_time':

metrics['total_processing_time'],↪→

'average_processing_time_per_execution':
average_processing_time,↪→

}

final_results.append(result_entry)

Write the final results to the benchmark_results.json file
with open(results_file, 'w', encoding='utf-8') as f:

print(f"Results written to '{results_file}'")

Code 2—Code for validating the models output

3. Updated clusters for classifying dates here.

13

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction_benchmark/clusters.json

{
"options": [

"fecha de presentacion de demanda",
"fecha de notificacion de demanda",
"fecha de audiencia",
"fecha de fallo reservado",
"fecha de lectura de sentencia",
"tiempo desde la independencia",
"tiempo desde la restauracion",
"otros: "

]
}

Code 3—Clusters used for classifying the dates in the legal docu-

ments

4. In terms of the models, the benchmark was executed comparing the following

models:
• "llama3.2"
• "llama3.1"
• "nemotron-mini"
• "gemma2"
• "mistral-nemo"
• "qwen2"
• "deepseek-coder-v2"
• "phi3"
• "mixtral"
• "mistral-small"
• "gemma2:27b"
• "nemotron"
• "llama3.1:70b"
• "qwen2.5:72b"

14

4 DOCUMENTATION

Similar to what was indicated in past reports, the pipeline/flow we’re currently

following is the one below, where we first extract and clean the documents.

Afterwards, a process takes care of diving the clean documents into smaller

pieces that can be then passed as input to a new layer where a Bert based model

in Spanish, that has been fine tuned to better identify dates over legal documents

for the Dominican Republic, is used to retrieve the dates from the corpus. Once

these dates have been identified, they will be passed on to an additional model

that will then retrieve the context of the date to identify what it is representing.

Finally, all dates will be grouped and included in one file, representing the output

of all the pieces of the original document being put together.

The following diagram represents this flow:

Figure 1—Full date extraction process

15

https://huggingface.co/MMG/xlm-roberta-large-ner-spanish

This week, my focus has been on the second to last step, comparing the outputs

of the different models on the task of retrieving the context of each date and

comparing those results to some manually extracted dates and contexts. The

process for each has been as follows:

Date context extraction

• Input template generated in txt format to feed the model and retrieve the date

context. This template contains placeholders to fill in:
• Content of the piece of text extracted from the original file where a date is

contained (slightly updated this one to obtain different results).
• Options/clusters template containing the categories by which to classify the

different dates retrieved.

The output of the model will be a single text file containing a JSON object with

the input date, a JSON object with the model output and a JSON object con-

taining configuration details for the executed model such as hyperparameters

used, model’s name and execution time.

5 SCRIPT VALIDATION

The model was queried over a set of 5 files generating 10 outputs for each of

the dates contained in the files. Additionally, performance metrics were obtained

from each of the models execution, such as execution time.

Each model was triggered with the following hyperparameters:

• Temperature = 0.0000001,
• Top_k = 5,
• Top_p = 0.5
• Seed = 42

Here is a brief explanation of these hyperparameters:

• Temperature: A very low temperature (0.0000001) ensures that the outputs will

be highly predictable. This is useful when we are looking for consistency and

want results to be stable over time.
• Top-k: This limits the choices to only the top 5 probable words. This ensures

that the model generates meaningful outputs without straying into highly

unlikely predictions. It balances between randomness and relevance.

16

• Top-p: Combined with top-k, this gives fine control over the diversity of model

output. A top_p value of 0.5 means the model will only consider words that

make up 50% of the total probability distribution, ensuring more relevant re-

sults.
• Seed: Setting the seed makes the experiments reproducible, helpful for research

purposes. With the same inputs and hyperparameters, in theory, we should get

the same outputs every time (but in practice this doesn’t always happen).

All generated files and content may be found here.

6 RESULTS VISUALIZATION

The following images provide the results compared between the different models

when retrieving the context for the date given as an input to the model.

Figure 2—Accuracy vs. Processing time for each model

17

https://github.com/Human-Augment-Analytics/NLP-Gen/tree/main/victor/date_context_benchmark/charts

Figure 3—Total processing time for each model

Figure 4—Accuracy comparison between models

7 PROOF OF WORK

The implemented system returns results that follow the correct structure without

issues in this area for the larger models. There are some models like Phi3 which

tend to generate gibberish content.

18

Additionally, to ensure stability in the results, each input was used 10 times to

generate an output, with the expectations that given the low temperature and the

exact same input the model would generate the exact same output. It wasn’t the

case though. Additional data preparation will have to be carried out by chunking

the text into smaller pieces with the expectation that results will be more accurate

and additionally should reduce processing times.

By looking at the results we can observe that the qwen2.5:72b model obtained the

highest accuracy, with a 0.3 result, which is not enough to guarantee the success

of the pipeline being implemented. Also, this results is fully correlated with the

time the model took for generating the response, although it did not do so in the

case of other models such as nemotron. where the difference in processing time

when compared to qwen2.5:72b is way smaller in terms of processing time than

in accuracy.

Smaller models, with less parameters, obtained clearly less accurate results when

carrying out the classification, indicating as well that this configuration does have

an impact on the results of the model for this specific task.

Below is an example of the 10 run obtained by one of the models, where we

can clearly observe the randomness of the results. For information purposes, the

hyperparameters used were the following ones, as mentioned previously:

• Temperature = 0.0000001,
• Top_k = 5,
• Top_p = 0.5
• Seed = 42

19

{
"date": "veinticinco (25) días del mes de enero del año dos

mil veintitrés (2023)",↪→

"date event": "fecha de fallo reservado"
},
{

"date": "veinticinco (25) días del mes de enero del año dos
mil veintitrés (2023)",↪→

"date event": "fecha de presentacion de demanda"
},
{

"date": "veinticinco (25) días del mes de enero del año dos
mil veintitrés (2023)",↪→

"date event": "fecha de fallo reservado"
},
{

"date": "veinticinco (25) días del mes de enero del año dos
mil veintitrés (2023)",↪→

"date event": "fecha de lectura de sentencia"
},
{

"date": "veinticinco (25) días del mes de enero del año dos
mil veintitrés (2023)",↪→

"date event": ""
},

Code 4—Example output over 10 iterations with the same input

on a llama3.1:70b model

20

{
"date": "veinticinco (25) días del mes de enero del año dos

mil veintitrés (2023)",↪→

"date event": "fecha de fallo reservado"
},
{

"date": "veinticinco (25) días del mes de enero del año dos
mil veintitrés (2023)",↪→

"date event": "fecha de presentacion de demanda"
},
{

"date": "veinticinco (25) días del mes de enero del año dos
mil veintitrés (2023)",↪→

"date event": "fecha de lectura de sentencia"
},
{

"date": "veinticinco (25) días del mes de enero del año dos
mil veintitrés (2023)",↪→

"date event": "fecha de fallo reservado"
},
{

"date": "veinticinco (25) días del mes de enero del año dos
mil veintitrés (2023)",↪→

"date event": "fecha de fallo reservado"
},

Code 5—Example output over 10 iterations with the same input

on a llama3.1:70b model

The expectation here was for the model to provide the adequate date event

for each of the provided dates. As it may be observed, for the 10 iterations,

only 2 returned the correct result: "fecha de lectura de sentencia". Given this

randomness in the results, additional actions will be take to reduce variability in

the results: text chunking, model fine-tuning, classes/clusters improval, discard

unrelated text.

21

8 NEXT WEEK’S PROPOSAL

1. Research ways to improve context retrieval for the dates.

2. Implement a simple pipeline to run all processes end to end.

3. Implement a simple UI to interact with the pipeline and upload and process

a single file.

4. Work on getting more content in for our paper.

22

HAAG NLP Sentencias — Week 10 Report

NLP-Gen Team

Karol Gutierrez

October 25, 2024

1 Weekly Project Update

1.1 What progress did you make in the last week?

• Scripts to process data from large PDF file into cleaned split data by court case.

• Generate 800+ more training data files, each containing around 10 dates, using Azure Open AI
Studio.

• Updated model with more data.

• Updating OneNote with video recordings and meeting notes

• Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.

• Continuous meetings with Dr. Alexander, Nathan and team to discuss progress on project and
publication options, as well as internal meetings with team to sync on next steps.

1.2 What are you planning on working on next?

• Add filter for consistency of language in output text (there is mix of Spanish and English in
training data).

• Clusterize the context from the training data.

• Improve fine tuning of model.

• Continue fulfilling my role as Meet Manager/Documentor by working on the tasks expected for
my position (gather notes from meetings and prepare recordings).

1.3 Is anything blocking you from getting work done?

No.

2 Literature Review

Paper: LexNLP: Natural language processing and information extraction for legal and regulatory texts
[aKD18].

2.1 Abstract

LexNLP is an open source Python package focused on natural language processing and machine learn-
ing for legal and regulatory text. The package includes functionality to (i) segment documents, (ii)
identify key text such as titles and section headings, (iii) extract over eighteen types of structured
information like distances and dates, (iv) extract named entities such as companies and geopolitical
entities, (v) transform text into features for model training, and (vi) build unsupervised and supervised

1

models such as word embedding or tagging models. LexNLP includes pre-trained models based on
thousands of unit tests drawn from real documents available from the SEC EDGAR database as well
as various judicial and regulatory proceedings. LexNLP is designed for use in both academic research
and industrial applications, and is distributed at https://github.com/LexPredict/lexpredict-lexnlp.
Keywords: natural language processing, legal, regulatory, machine learning, segmentation, extraction,
open source, Python

2.2 Summary

The paper presents LexNLP as a robust toolkit that facilitates the application of NLP techniques in
legal contexts. It offers features for parsing legal documents, extracting key entities (such as parties
and dates), and performing text classification tasks. The authors conduct experiments to demonstrate
LexNLP’s effectiveness, comparing its performance against existing tools and benchmarks in the legal
NLP space.

• Data Handling: LexNLP effectively processes a wide range of legal documents, including con-
tracts, court opinions, and statutes, enabling users to extract meaningful insights from unstruc-
tured text.

• Entity Recognition: The toolkit incorporates advanced entity recognition algorithms that accu-
rately identify relevant legal entities, significantly improving the extraction process compared to
traditional methods.

• Text Classification: LexNLP provides built-in functionalities for classifying legal texts, allowing
users to categorize documents based on predefined legal categories, enhancing organization and
retrieval.

• Practical Applications: The toolkit is designed to assist legal practitioners, researchers, and
developers in building applications that leverage legal data, contributing to advancements in
legal technology and improving access to legal information.

2.3 Relevance

The paper is directly relevant to our Sentencias project, as LexNLP provides essential tools for pro-
cessing and analyzing legal text, which is crucial for extracting procedural history from court decisions.
We can use similar approach tailored to the Spanish language.

3 Scripts and code blocks

The code is in the private repository repository. The progress for this week is in ./karol/week10/.

3.1 Code developed

The following items were developed this week. The full workflow of the code is shown in Figure 1.

• I created new script to retrieve the sentencias parts from the original large PDF document from
the Supreme court, this script splits the file into smaller ones for each sentencias, code seen in
Figure 2

• Script that calls Azure Studio AI to use GPT-4o API to get the dates and context from each
sentencia, updated script and prompt in in Figure 3

• Script that validates the integrity of such data.

• Updated code to create HuggingFace dataset in Figure ??.

• Use BERT Spanish tokenizer with HuggingFace trainer to produce a trained model in Figure ??

• Plot results.

2

https://github.gatech.edu/calexander97/sentencias

Figure 1: Code logic workflow to process data and train model.

4 Documentation

The documentation is present in the README.md file in the repository. Refer to the repository to
get the most updated instructions on how to run the code. For this week, the useful readme is in
./karol/readme.md.

5 Script Validation

Figure 4 shows the updated validation process for the new generated data.

6 Results Visualization

For this week, the results are related to the generation of training data, some of the folder content can
be seen in Figure 5.

7 Proof of Work

Figures 6 and Figure 7 show the final output of the data generation process, it was observed that
sometimes the context was generated in English and sometimes in Spanish, this will be addressed for
the next deliverable.

8 Next Week’s Proposal

Refer to section 1.2 for details (avoid repetition).

References

[aKD18] Michael J Bommarito II au2, Daniel Martin Katz, and Eric M Detterman. Lexnlp: Natural
language processing and information extraction for legal and regulatory texts, 2018.

3

https://github.gatech.edu/calexander97/sentencias/

Figure 2: Code to split large PDF into sentencias

4

Figure 3: GPT Call to generate training data

5

Figure 4: Proof of work for integrity testing

6

Figure 5: Generated data format

7

Figure 6: Generated data format

Figure 7: Proof of generation of dataset

8

Week 10 Research Report

Thomas Orth (NLP Summarization / NLP Gen Team)

October 2024

0.1 What did you work on this week?

1. Concluded Anthropic tests

2. Tested TogetherAI, no real advantage over Anthropic for use

3. Attended All-hands meeting

4. Looked into commercial finetuning

5. Sent interview team the set of commercial summaries

0.2 What are you planning on working on next?

1. Start summarizing settlements once the data is provided

2. Check Anthropic workbench to see if it can improve prompting

3. Coordinate with subteams as needed

0.3 Is anything blocking you from getting work done?

1. I’ll need the Settlement documents from our OCR team + our interview
team needs to reach out to the law students so that we can know what
kind of relevant info to extract from settlement documents.

1 Abstracts

• Title: Little Giants: Exploring the Potential of Small LLMs as Evaluation
Metrics in Summarization in the Eval4NLP 2023 Shared Task. Conference
/ Venue: ACL 2024, Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers). Link:
https://aclanthology.org/2024.acl-long.51/

• Abstract: Automated evaluation is crucial for streamlining text summa-
rization benchmarking and model development, given the costly and time-
consuming nature of human evaluation. Traditional methods like ROUGE

1

do not correlate well with human judgment, while recently proposed LLM-
based metrics provide only summary-level assessment using Likert-scale
scores. This limits deeper model analysis, e.g., we can only assign one
hallucination score at the summary level, while at the sentence level, we
can count sentences containing hallucinations. To remedy those limita-
tions, we propose FineSurE, a fine-grained evaluator specifically tailored
for the summarization task using large language models (LLMs). It also
employs completeness and conciseness criteria, in addition to faithfulness,
enabling multi-dimensional assessment. We compare various open-source
and proprietary LLMs as backbones for FineSurE. In addition, we con-
duct extensive benchmarking of FineSurE against SOTA methods includ-
ing NLI-, QA-, and LLM-based methods, showing improved performance
especially on the completeness and conciseness dimensions. The code is
available at https://github.com/DISL-Lab/FineSurE.

• Summary: This paper proposes a better LLM judge approach for sum-
marization. They showed they could do finer grain judging than previous
methods. It also finds GPT4o-mini to provide the best overall results as
the backend to the code.

• Relevance: As we investigate LLM-as-a-judge approach to evaluating our
outputs, this research could prove useful.

2 Relevant Info

• Summary Chain of Thought (CoT) is a technique to prompt LLMs for
information to provide context for summarization. I took a domain centric
approach in this experiment to extract entities the Clearinghouse is looking
for specifically.

• Llama 3.2 is a popular LLM given its performance

• Ollama is a way to serve LLMs locally

• Langchain is a popular library for interacting with LLMs

• Anthropic is a company that produces the Claude family of models that
compete with GPT-4.

• Together AI provides open source models through managed infrastructure
like ChatGPT

• The two best models in terms of accuracy and cost tradeoff is Claude 3.5
Sonnet and Claude 3 Haiku

2

3 Scripts

1. All scripts uploaded to https://github.com/Human-Augment-Analytics/NLP-
Gen

2. Scripts were run with the following file for testing: https://gatech.box
.com/s/g3heprllvzamua0gwdkhz5k2r34ocgwt

3. Thomas-Orth/togetherai/domain specific scot chunked.py

• Brief Description: Run a domain specific version of Summary Chain-
of-thought (CoT) on complaints with TogetherAI models, speficially
a Llama model..

• Status: Tested by running the pipeline to completion without issue

• Important Code Blocks:

(a) First block: Read in CSV file, choose document

(b) Second block: Run through prompts, chunking documents, save
summaries

(c) Third Block: Evaluate via manual inspection

• Screenshot of code: No screenshots provided due to the code being
largely the same as last week, just with a different LLM backing it

4. Flow Diagram:

Figure 1: Flow diagram

5. Running scripts:

(a) Download the scripts, the csv from the box link and llm.requirements.txt

(b) Run: python -m pip install -r llm.requirements.txt

(c) Sign up for an TogetherAI account, generate an API Key, and set
”TOGETHER API KEY” in your environment.

(d) Run: python [chosen python script]

4 Documentation

1. Download CSV file, with two columns: Document and Summary

2. Update scripts to point to CSV file

3. Run scripts to output generated summaries

4. Manually evaluate summary

3

https://gatech.box.com/s/g3heprllvzamua0gwdkhz5k2r34ocgwt
https://gatech.box.com/s/g3heprllvzamua0gwdkhz5k2r34ocgwt
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/Thomas-Orth/togetherai/domain_specific_scot_chunked.py

5 Results

5.1 Haiku vs Sonnet

5.1.1 Haiku Summary for Macer Case

This was a class action lawsuit filed on November 18, 1987, in the United States
District Court for the District of Maryland. The plaintiffs, which included in-
carcerated individuals at the Talbot County Detention Center (TCDC) and
their family members/visitors, were represented by the ACLU National Prison
Project and the ACLU of Maryland. The defendants were officials responsible
for the operation and oversight of the TCDC, including the Jail Administrator,
County Manager, and members of the Talbot County Council. The plaintiffs al-
leged that the conditions at the TCDC, which was described as an antiquated,
overcrowded, and dilapidated facility, violated the First, Sixth, Eighth, and
Fourteenth Amendments of the U.S. Constitution. Specifically, they claimed
that the conditions amounted to cruel and unusual punishment for sentenced
prisoners and impermissible punitive conditions for pre-trial detainees, as well
as a denial of the right to visitation, the right to maintain familial relations,
and access to the courts. The plaintiffs sought a declaratory judgment that the
defendants’ actions were unconstitutional, a permanent injunction to prevent
the defendants from engaging in the unlawful practices, the retention of juris-
diction by the court until the order was carried out, and reasonable costs and
attorneys’ fees.

5.1.2 Sonnet Summary for Macer Case

In a class action lawsuit filed on November 18, 1987, prisoners and their families
challenged the conditions at the Talbot County Detention Center in Maryland.
The case, brought before the United States District Court for the District of
Maryland, highlighted severe overcrowding and poor living conditions at the fa-
cility. The plaintiffs, represented by the American Civil Liberties Union (ACLU)
National Prison Project and ACLU Maryland, alleged various constitutional
violations against county officials, including the Jail Administrator, County
Manager, and members of the Talbot County Council. The lawsuit claimed
violations of the First, Sixth, Eighth, and Fourteenth Amendments to the U.S.
Constitution, as well as claims under 42 U.S.C. §1983. The plaintiffs sought
several remedies, including a declaratory judgment stating that the defendants’
policies violated their constitutional rights, a permanent injunction against un-
lawful practices, and retention of court jurisdiction until the order was carried
out. They also requested an award of reasonable costs and attorneys’ fees under
42 U.S.C. §1988, along with other just and equitable relief. The case brought
attention to significant issues within the detention center, including inadequate
medical care, poor sanitation, insufficient safety measures, and restrictions on
visitation and access to courts. These conditions not only affected the inmates
but also impacted their families and community members who interacted with
the facility.

4

6 Proof of work

Both Haiku and Sonnet are both powerful models from Anthropic. Through
manual verification, the facts presented seem correct based on the complaint.

6.1 Known Limitations

Its tough to say which between the two models are the best or how they stack
up compared to GPT4o-mini and Gemini. Sets of summaries were sent to the
interview team for review to determine this.

5

