HAAG NLP Summarization Week 10

Michael Bock
October 2024

1 Slack Questions

What did you accomplish this week?
e Tested Ollama pipeline, but got poor results
e Provided settlements to OCR team
What are you planning on working on next?

e We beleive that LLaMa had trouble understanding the insurance terminology, so Nathan
advised me to fine tune. I have a script set up, but it isn’t working because I can’t figure out
the context length of LLaMa. It says 128,000, but then I pass in that many tokens and it
throws an error.

What is blocking you from progressing?

e None

2 Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural
networks in an encoder-decoder configuration. The best performing models also connect the encoder
and decoder through an attention mechanism. We propose a new simple network architecture, the
Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to be superior in quality
while being more parallelizable and requiring significantly less time to train. Our model achieves
28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best
results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5
days on eight GPUs, a small fraction of the training costs of the best models from the literature.
We show that the Transformer generalizes well to other tasks by applying it successfully to English
constituency parsing both with large and limited training data.
Link: https://arxiv.org/abs/1706.03762

2.1 Brief Analysis

I don’t believe I've ever linked Attention is all you need here, but all the work I’ve done is based on
it. Attention is all you need introduces transformers, which are a neural network architecture that
is common in natural langauge processing. A key feature of natural langauge is long range depen-
dencies; we have words like “the” and “is” that aren’t as important as others in a sentence. Most
important words are far away from each other. At the time, established architectures like RNNs
and CNNs relied on small perceptive fields which combined nearby features to produce a useful
representation of data for classification or regression. Transformers take the opposite approach -
they rely on combining features from words that are far away from each other. Transformers use
an attention mechanism. Attention mechanisms weight each word in a sentence. More important
words get higher weights and less important words get weights of zero. Then, the model proceeds
as a normal multi-layer perceptron.

This use of attention lets the model filter out unimportant words and only focus on important
words, similar to how a CNN may apply filters to extract edges or basic textures. The critical
difference is that attention combines features from important words that are far away from each
other. This improved feature extraction led to transformers achieving state of the art results on
most tasks.

Since Attention is all you need, transformers have become the dominant neural network archi-
tecture in natural language processing. The most well known use of transformers is in chat bots
like ChatGPT and other conversational AI. However, we can make use of transformers the same
way we’d make use of any other backbone. I plan to use transformers for classification by taking
the output features from a pretrained transformer and training classifiers with them.

3 Scripts and Code Blocks

generate_pdfs.py

from summarizers.get_complaints import get_complaint_only_cases, get_orders_cases
from summarizers.ocr import read_doc, extract_text_from_pdf

from tqdm import tqdm

import pandas as pd

import os

from urllib.request import urlretrieve

import pypdf

#os.mkdir (’pdfs’)

data = get_orders_cases("all_cases_clearinghouse.pkl")
; data_entries = []
daf = {
>ID’ : [1,
>Summary’: [],
’Name’: []1,
’docUrls’: I[1],
’Documents Text’: []
}

for entry in tqdm(data):
try:
if not entry or not entry.case_documents or len(entry.case_documents) < 1:

continue
doc_types = 7’
for i, doc in enumerate(entry.case_documents):
text = nn
if doc.document_type == ’0Order/Opinion’ or doc.document_type ==

Settlement Agreement’ or doc.document_type == ’Complaint’:

print (doc.file, doc.document_type, entry.id)
doc_types += doc.file+’|’
doc_type = doc.document_type.replace("/", "_").replace(" ",

n_n)

#urlretrieve (doc.file, f’pdfs/{entry.id}_{doc_type}_{il}.pdf’)
text += f"\n======================== CASE DOCUMENT {doc_typel}_{i}

=====================\n{read_doc (doc) }"
df [’Name’] . append (entry.name)

df [’ Summary’].append(entry.summary)

df [’Documents Text’].append(text)

df [’ID’].append(entry.id)

df [’docUrls’].append(doc_types)

except pypdf.errors.PdfStreamError:

pass

df = pd.DataFrame.from_dict (df)
df .to_csv(’./cases_multi_doc.csv’)

model.py

from datasets import load_dataset, Dataset

from transformers import AutoTokenizer

from transformers import AutoModelForSequenceClassification, AutoModel
from transformers import TrainingArguments, Trainer

import numpy as np

import evaluate

import os

import pandas as pd

from torch import nn

from labels import DNO_ISSUES

class LongFormerClassification(nn.Module):

def

os .

__init__(self, n_issues = 51):
super () . __init__ Q)
self.heads = []
self .backbone = AutoModel.from_pretrained("meta-llama/Llama-3.2-1B"
environ[’HF_TOKEN’])
for _ in range(n_issues):
self .heads.append(nn.Sequential (nn.Linear(self.backbone.config.

hidden_size, 1), nn.Sigmoid()))

print (f"LLaMa max sequence length: {self.backbone.config.

max_position_embeddingsl}")

def

print (self.backbone)

forward(self, input_ids, attention_mask):

print (’Input Id shape: ’, input_ids.shape)

print (’Attention Mask shape: ’, attention_mask.shape)
x = self.backbone (input_ids, attention_mask)

x = x[0]

outputs = []

for head in self.heads:
outputs.append (head(x))
return tuple (outputs)

s>

token

metric = evaluate.load("accuracy")

def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)

training_args = TrainingArguments (output_dir="/home/hicel/mbock9/scratch/
tutorial_runs/", eval_strategy = ’epoch’, save_total_limit = 5,
load_best_model_at_end = True, save_strategy = "epoch", num_train_epochs

df = pd.read_csv("dno_labels.csv", sep=",").dropna()

dataset = Dataset.from_pandas(df).train_test_split(test_size=0.2)

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B", token
environ [’HF_TOKEN’])

tokenizer.add_special_tokens ({’pad_token’: ’[PAD]’})

max_seq_length = tokenizer.model_max_length # or model.config.

max_position_embeddings
print (f"Model’s maximum sequence length: {max_seq_lengthl}")

def tokenize_function(examples):
examples[’Text’] = [e.replace(’\n’, ’’) for e in examples["Text"]]

return tokenizer (examples[’Text’], padding="max_length", max_length=

max_seq_length, truncation=True, return_tensors=’pt’)

tokenized_dataset dataset .map(tokenize_function, batched=True)
tokenized_dataset tokenized_dataset.remove_columns (["Text"])
tokenized_dataset = tokenized_dataset.remove_columns (["Name"])
#tokenized_dataset = tokenized_dataset.rename_column("label", "labels")
tokenized_dataset.set_format ("torch")

#small_train_dataset = tokenized_dataset["train"].shuffle(seed=42).select(range

(1000))

#small_eval_dataset = tokenized_dataset["test"].shuffle(seed=42) .select(range (1000))

#trainer = Trainer (model = model, args = training_args, train_dataset=

small_train_dataset, eval_dataset=small_eval_dataset, compute_metrics

compute_metrics)
#trainer.train ()
from torch.utils.data import DatalLoader

train_dataloader = Dataloader (tokenized_dataset["train"], shuffle=True,
=2)
eval_dataloader = DatalLoader (tokenized_dataset["test"], batch_size=2)

from torch.optim import AdamW

model = LongFormerClassification ()

optimizer = AdamW(model.parameters(), lr=5e-5)
from transformers import get_scheduler
num_epochs = 3

num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(

name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=

batch_size

num_training_steps
)

import torch

device = torch.device("cpu")#torch.device("cuda") if torch.cuda.is_available() else
torch.device ("cpu")

model.to(device)

from tqdm.auto import tqdm

progress_bar = tqdm(range (num_training_steps))
criterion = nn.BCELoss ()

for epoch in range (num_epochs):
model.train ()
for batch in train_dataloader:
batch = {k: v for k, v in batch.items ()}
inputs = {"input_ids" : batch["input_ids"].to(device), "attention_mask":
batch["attention_mask"].to(device)}
outputs = model (x*inputs)
labels = {k: batch[k].to(device) for k in DNO_ISSUES}
total_loss = sum([criterion(output, labels[k]) for output, k in zip(outputs,
DNO_ISSUES)]1)
#loss = outputs.loss
total_loss.backward ()

optimizer.step ()
lr_scheduler.step ()
optimizer.zero_grad()
progress_bar.update (1)

"""import evaluate

metric = evaluate.load("accuracy")
model.eval ()
for batch in eval_dataloader:
batch = {k: v.to(device) for k, v in batch.items ()}
with torch.no_grad():
outputs = model (**batch)

logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])

print (metric.compute())"""

4 Documentation

The first script is how I got the dataset that I sent to the OCR team. In order to run it you
only need the all_cases_clearinghouse.pkl pickle file, which holds a scrape of the clearinghouse
api. The script takes no arguments. The output is the same as all the csvs I've been sending this
semester, except it adds in a docUrl field, which has the url of every PDF in the case separated by
a pipe character.

5 Scription Validation(Optional)

N/A, the script doesn’t work yet.

6 Results Visualization

Below is the error I am currently getting. I am running on PACE with LLaMa-1B. Huggingface
and Sam Pang(another student who has fine tuned LLaMa) says that LLaMa has a context window
of 128,000, but I get this error if I run more than 2048 tokens. I think this is not a coincedence,
the dimensionality of the embedding is 2048 so maybe I have the wrong input shape. Huggingface
documentation doesn’t include an input shape so this will include trial and error to find what is
wrong. Sam provided me an example on Colab of him fine tuning LLaMa, so I am going to try to
run his script on my PACE account. I have the same tokenization and model as him so I think it
may have something to do with my dataset that breaks huggingface.

Begin Slurm Prolog: Oct-25-2024 13:26:53

Job ID: 885152
User ID: mbock9
Account: coc

Job name: HGX_H100_Example

Partition: coe-gpu

Lmod has detected the following error: The following module(s) are unknown:
"python/3.6"

Please check the spelling or version number. Also try "module spider ..."
It is also possible your cache file is out-of-date; it may help to try:
$ module --ignore_cache load "python/3.6"

Also make sure that all modulefiles written in TCL start with the string
#/%Module

/var/1lib/slurm/slurmd/job885152/slurm_script: line 11: pip: command not found
/usr/bin/python: No module named pip
Model’s maximum sequence length: 131072
Map: 100%|| 660/660 [00:35<00:00, 18.79 examples/s]
Map: 100%|| 166/166 [00:08<00:00, 20.14 examples/s]
LLaMa max sequence length: 131072
LlamaModel (
(embed_tokens): Embedding (128256, 2048)
(layers): ModuleList(
(0-15): 16 x LlamaDecoderLayer (
(self_attn): LlamaSdpaAttention (
(g_proj): Linear(in_features=2048, out_features=2048, bias=False)
(k_proj): Linear(in_features=2048, out_features=512, bias=False)
(v_proj): Linear(in_features=2048, out_features=512, bias=False)
(o_proj): Linear(in_features=2048, out_features=2048, bias=False)
(rotary_emb): LlamaRotaryEmbedding ()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=2048, out_features=8192, bias=False)
(up_proj): Linear(in_features=2048, out_features=8192, bias=False)

41 (down_proj): Linear(in_features=8192, out_features=2048, bias=False)
42 (act_fn): SiLU()

43)

44 (input_layernorm): LlamaRMSNorm ((2048,), eps=1e-05)

45 (post_attention_layernorm): LlamaRMSNorm((2048,), eps=1e-05)
16)

a7)

48 (norm): LlamaRMSNorm((2048,), eps=1e-05)

49 (rotary_emb): LlamaRotaryEmbedding ()

0)

1 0% 1 | 0/990 [00:00<?, ?it/s]Input Id shape: torch.Size([2, 131072])

2 Attention Mask shape: torch.Size([2, 131072])

3 Traceback (most recent call last):

4 File "/home/hicel/mbock9/law-data-design-vip/ner/llamas/model.py", line 96, in <
module >

55 outputs = model (x*inputs)

56 File "/home/hicel/mbock9/.local/lib/python3.9/site-packages/torch/nn/modules/
module.py", line 1511, in _wrapped_call_impl

57 return self._call_impl (*xargs, *xkwargs)

58 File "/home/hicel/mbock9/.local/lib/python3.9/site-packages/torch/nn/modules/
module.py", line 1520, in _call_impl

59 return forward_call (xargs, **kwargs)

60 File "/home/hicel/mbock9/law-data-design-vip/ner/llamas/model.py", line 25, in
forward

61 x = self.backbone (input_ids, attention_mask)

62 File "/home/hicel/mbock9/.local/lib/python3.9/site-packages/torch/nn/modules/

module.py", line 1511, in _wrapped_call_impl
63 return self._call_impl (*xargs, *xkwargs)
64 File "/home/hicel/mbock9/.local/lib/python3.9/site-packages/torch/nn/modules/
module.py", line 1520, in _call_impl
65 return forward_call (xargs, **kwargs)
66 File "/home/hicel/mbock9/.local/lib/python3.9/site-packages/transformers/models/
llama/modeling_llama.py", line 950, in forward
67 inputs_embeds = self.embed_tokens (input_ids)
68 File "/home/hicel/mbock9/.local/lib/python3.9/site-packages/torch/nn/modules/
module.py", line 1511, in _wrapped_call_impl
69 return self._call_impl (*xargs, *xkwargs)
70 File "/home/hicel/mbock9/.local/lib/python3.9/site-packages/torch/nn/modules/
module.py", line 1520, in _call_impl
return forward_call (xargs, **kwargs)
File "/home/hicel/mbock9/.local/lib/python3.9/site-packages/torch/nn/modules/
sparse.py", line 163, in forward
73 return F.embedding(
74 File "/home/hicel/mbock9/.local/lib/python3.9/site-packages/torch/nn/functional.py
", line 2237, in embedding
5 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
6 IndexError: index out of range in self
7 0%l | 0/990 [00:00<?7, ?it/s]

NI
(S

9 Begin Slurm Epilog: 0Oct-25-2024 13:27:56

8o Job ID: 885152

81 Array Job ID: _4294967294

82 User ID: mbock9

83 Account: coc

84 Job name: HGX_H100_Example

85 Resources: cpu=1,gres/gpu:h100=1,mem=224G,node=1

36 Rsrc Used: cput=00:01:04, vmem=0,walltime=00:01:04,mem=11571236K, energy_used=0
87 Partition: coe-gpu

ss Nodes: atll1-1-03-012-8-0

89 R e e e L i

7 Proof of work

Tgnoring wrong pointing object 41 6 (offset 0)
Ignoring wrong pointing object 43 6 (offset 0)
1gnoring wrong pointing object 48 6 (offset ©)
ng object 56 6 (offset 6)

2083/2216 [1:12:15<62:27, 1.11s/it]

/clearinghouse-unich-production.s3.anazonaws .con/media/doc/147763.pdf Complaint 45389
/clearinghouse-unich-production.s3. .con/media/doc/147621.pdf Order/Opinion 4538
clearinghou ich-production.s3.ai _con/nedia/doc/147626.pdf Order/0,
2087/2216 [1:12:16<61:50, 1.17it/s]
ringhouse-unich-production.s3.amazonaws.con/media/doc/147833.pdf Order/Opinion 45390
/clearinghouse-unich-production.s3.amazonaws . con/media/doc/147618.pdf Order/Opinion 45390
broduction.s3.amazonaws media/doc/147746.pdf Complaint 45390
2088/2216 [1:12:18<61:54, 1.121t/s]
-con/media/doc/147623.pdf Order/Opinion 45391
.com/media/doc/147625.pdf Order/Opinion 45391
/clearinghouse-unich-production.s3. naws . con/media/doc/147624.pdf Order/Opinion 45391
clearinghouse-umich-production.s3.ar _con/nedia/d 0
2089/2216 [1:12:19<62:01, 1.051t/s]

2095/2216 [1:12:20<01:02, 1.93it/s]
2097/2216 [1:12:21<01:00, 1.981t/s]
:(\ear\nhouse unich rodu((\on amazonaws Ummed\adu 143247..« LDN\ int 45404
2099/2216 [1 21<60:56, 2.081t/s]
[1:12:22<00:17, 5.781t/s]
2138/2216 [1:12:23<00:07, 10.301t/s]
2166/2216 [1:12:24<00:03, 15.731t/s]

clearinghouse-unich-production.s3.anazonaws.con/media/doc/149509.pdf Complaint 45682
2175/2216 [1:12:25<60:02, 13.781t/s]

2177/2216 [1:12:26<60:04, 9.31it/s]

://clearinghouse-umich-production.s3.amazonaws.con/media/doc/149623.pdf Complaint 45685
edia/doc/149622.

ich-production.s3.anazonaws. com/m: r/opinios

2179/2216 [1:12:28<00:05, 6.971t/s]
2185/2216 [1:12:29<00:04, 6.831t/s]
2188/2216 [1:12:30<00:04, 5.931t/s]
2189/2216 [1:12:30<00:05, 4.841t/s]
/clearinghouse-unich-production.s3.anazonaws. con/nedia/doc/150
house-umich-production.s3.anazonaws.con/media/doc
2190/2216 [1:12:33<60:11, 2.34it/s]
2191/2216 [1:12:35<00:15, 1.661t/s]
2195/2216 [1:12:37<60:11, 1.861t/s]
2216/2216 [1:12:38<00:00, 1.97s/it]

get_summaries.py requirements. txt
generate_pdfs.py README .nd

Figure 1: Retrieving URLs from clearinghouse api

8 Next Week’s proposal

e We beleive that LLaMa had trouble understanding the insurance terminology, so Nathan
advised me to fine tune. I have a script set up, but it isn’t working because I can’t figure out
the context length of LLaMa. It says 128,000, but then I pass in that many tokens and it
throws an error.

HAAG Research Report
NLP - Sentencias / NLP - Gen Team
Week 10

Victor C. Fernandez

October 2024

1 WEEKLY PROJECT UPDATES
What progress did you make in the last week?

- Implemented a benchmark for evaluating different models when retrieving
context for the dates.

- Created graphical views comparing all models.

- Completed a basic abstract for our paper within the overleaf template.

- Created a presentation/PPT for our future call with the judge Miguel.

- Researched on creating a pipeline to orchestrate the whole process using pre-
fect.

- Researched on creating a simple Ul to load and view results using Gradio.

- Met with the NLP-Sentencias team on Monday 21st to align on our goals and
distribute our tasks.

- Meeting with the NLP team on October 25th for our weekly meeting.

* Meeting with Dr. Alexander and Nathan Dahlberg on October 25th to get
further insights on NLP research.

What progress are you making next?

- Researching ways to improve context retrieval for the dates.

- Implement a simple pipeline to run all processess end to end.

- Implement a simple Ul to interact with the pipeline and upload and process a
single file.

- Work on getting more content in for our paper.
Is there anything blocking you from making progress?

No blockers at this moment.

2 ABSTRACTS

1. Title: Segmentation of legal documents
-+ URL: https:/ /dl.acm.org/doi/10.1145/3594536.3595142 (requires accessing

with GaTech credentials to view actual paper)

- Abstract: The computational cost of transformer-based models has a quadratic
dependence on the length of the input sequence. This makes it challenging
to deploy these models in domains in which long documents are especially
lengthy, such as the legal domain. To address this issue, we propose a three-
stage cascading approach for long document classification. We begin by fil-
tering out likely irrelevant information with a lightweight logistic regression
model before passing the more challenging inputs to the transformer-based
model. We evaluate our approach using CUAD, a legal dataset with 510
manually-annotated, long contracts. We find that the cascading approach
reduces training time by up to 80% while improving baseline performance.
We hypothesize that the gains in performance stem from localizing the clas-
sification task of the transformer model to particularly difficult examples.

- Summary: The paper, proposes a three-stage cascading model to improve
the efficiency of transformer-based models when processing lengthy legal
documents. The pipeline begins by dividing the document into manage-
able chunks and applies a lightweight logistic regression model to filter out
irrelevant segments. Only the challenging segments are passed on to a trans-
former model, significantly reducing computational cost. Evaluations on a
legal dataset of long contracts showed that the cascading model reduced
training time by up to 80% while maintaining or improving classification
accuracy, demonstrating that this approach can optimize resources in NLP

tasks involving long texts.

- Relevance: This paper provides an efficient approach for handling lengthy
legal documents. The cascading pipeline’s use of lightweight classifiers for
filtering less critical segments could help streamline the processing of senten-
cias, especially as the project focuses on optimizing NLP tools to tackle data
extraction efficiently. This is particularly advantageous given the long-form
nature of judicial decisions and their tendency to include substantial non-

relevant content, mirroring the filtering challenges addressed in the paper.

By incorporating this cascading method, our project could reduce processing
time while focusing computational resources on critical information extrac-
tion tasks, such as pinpointing case dates, ultimately supporting efforts to

identify causes of judicial delays and contribute to policy recommendations.

3 SCRIPTS AND CODE BLOCKS

All scripts have been uploaded to the HAAG NLP Repo. Outputs files, processed
sentencias and any other document that may contain sensitive information is

located in the private NLP-Sentencias Repo.

The following code contains the logic and functions I have been working on this

week.

1. Created a function to combine all results from all dates into a single file here.

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor
https://github.gatech.edu/calexander97/sentencias
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction_benchmark/4_group_outputs.py

def combine_outputs_per_file_and_model(output_folder):

for filename os. listdir (output_folder):
file_path os.path.join(output_folder, filename)
if os.path.isdir(file_path):

for model os. listdir(file_path):
model_path os.path.join(file_path, model)
if os.path.isdir(model_path):
dates_outputs []
[]

metrics_outputs

output_files sorted([f for f
os. listdir(model_path) if
f.endswith('.txt')])

for output_file output_files:
if output_file.endswith('_combined.txt'):

continue

output_file_path
os.path.join(model_path, output_file)

with open(output_file_path, 'r',

encoding='utf-8') as f:

content f.read()

sections content.strip().split('\n\n')

if len(sections) 2:

model_output_text
sections[0] .strip()

execution_details_json

sections[-1].strip()

model_output_text

re.sub(r'A” " (?2:json)?\sx', '',

model_output_text)
model_output_text

re.sub(r'\sx>>>$', '',

model_output_text)

try:
model_output
json.loads (model_output_text)
except json.JSONDecodeError as e:
print(f"Error decoding model
output in file
{output_file_path}: {e}")

continue

try:
date model_output.get("date",
")
date_event
model_output.get("date event",
")
except Exception as e:
print(f"Error extracting date and
date event in file
{output_file_path}: {e}")
date A

date_event

try:
execution_details_full json loaj
ds (execution_details_json)

execution_details

execution_details_full get('ej

xecution_details',
execution_details_full)
except json.JSONDecodeError as e:
print(f"Error decoding execution
details in file
{output_file_path}: {e}")

execution_details {}

dates_outputs.append({
"date": date,

"date event": date_event

i)

metrics_outputs.append(execution_deta,

ils)

else:

print(f"Unexpected format in file
{output_file_pathl}")

continue

dates_output_file os.path.join(model_path,
f'"{filename}_{model}.json™)

with open(dates_output_file, 'w',
encoding='utf-8') as f:
json.dump (dates_outputs, f,

ensure_ascii=False, indent=2)

metrics_output_file os.path.join(model_path,
f'"{filename}_{model}_metrics.json")
with open(metrics_output_file, 'w',
encoding='utf-8') as f:
json.dump (metrics_outputs, f,
ensure_ascii=False, indent=2)

print("Combined output files created.")

Code 1—Code for combining all models outputs

2. Code for validating the results obtained from the models and generate corre-

sponding scores for benchmark here.

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction_benchmark/5_validate_models.py

def validate_model_outputs(models_output_folder,

validation_set_folder, results_file):

model_hyperparam_metrics {}

for document_name os. listdir(models_output_folder):

log_in_color (f"Processing document: {document_name}",
"green")

document_path os.path.join(models_output_folder,
document_name)

if os.path.isdir(document_path):

continue

validation_set_file os.path.join(validation_set_folder,
f"{document_name}_validation.json")
if os.path.isfile(validation_set_file):
print(f"Validation set for '{document_name}' not
found.")

continue

with open(validation_set_file, 'r', encoding-'utf-8') as
f:

validation_set json.load(f)

for model_name os. listdir (document_path):

log_in_color(f"Processing model: {model_namel}",
"blue")

model_path os.path.join(document_path, model_name)

if os.path.isdir(model_path):

continue

model_output_file os.path.join(model_path,
f"{document_name}_{model_name}.json")
if os.path.isfile(model_output_file):
print(f"Model output file '{model_output_file}'
not found.")

continue

with open(model_output_file, 'r', encoding-'utf-8')
as f:

model_outputs json. load(f)

metrics_file os.path.join(model_path,
f"{document_name}_{model_name}_metrics.json")
if os.path.isfile(metrics_file):
with open(metrics_file, 'r', encoding='utf-8') as
f:
execution_metrics json.load(f)
else:

execution_metrics []

correct
incorrect 0]

used_model_1indices set()

for val_date_obj validation_set:
val_date
normalize_str(val_date_obj.get('date'))

val_event normalize_str(val_date_obj.get('date

event'))

match_found False

for +didx, model_output enumerate (model_outputs):

log_in_color (f"Processing model output index:
{idx}", "magenta")
if ddx used_model_1indices:

continue

mod_date model_output.get('date', '')

mod_event model_output.get('date event',

ll)

if isinstance(mod_date, str):
mod_date str(mod_date)

if isinstance(mod_event, str):
mod_event str(mod_event)

mod_date normalize_str(mod_date)

mod_event normalize_str(mod_event)

if val_date mod_date:
used_model_-indices.add(idx)

match_found True

if val_event mod_event:

correct

else:

if 'otros' val_event. lower ()
'otros' mod_event. lower () :
correct 1

else:

incorrect

match_found:

incorrect

false_positives len(model_outputs)
len(used_model_1indices)
total_validation_dates len(validation_set)

total_model_dates len(model_outputs)

precision correct (correct false_positives) if

(correct false_positives) 0 else O
recall correct total_validation_dates if
total_validation_dates O else 0
fl_score (2 precision recall) (precision
recall) if (precision recall) 0 else 0
accuracy correct total_validation_dates if

total_validation_dates 0 else O

if execution_metrics:
hyperparameters

execution_metrics[0].get('hyperparameters',

B

total_processing_time
sum([em.get('processing_time', 0.0) for em
execution_metrics])

execution_count len(execution_metrics)

else:

hyperparameters {}

total_processing_time

execution_count 0]

print(f"No execution metrics found for model

{model_name} on document {document_namel}'")

10

hyperparameters_tuple
tuple(sorted(hyperparameters.items()))

key (model_name, hyperparameters_tuple)

if key model_hyperparam_metrics:

model_hyperparam_metrics[key] {
"model_name': model_name,
"hyperparameters': hyperparameters,

"documents': set(),

"total_correct': 0,
"total_incorrect': 0,
'"total_false_positives': 0,
'"total_validation_dates': 0,
'"total_model_dates': 0,
'sum_precision': 0.0,
"sum_recall': 0.0,
"'sum_f1l_score': 0.0,
'sum_accuracy': 0.0,
'"total_processing_time': 0.0,

'execution_count': 0O,

metrics model_hyperparam_metrics[key]

metrics['documents'].add(document_name)

11

metrics['total_correct'] correct
metrics['total_dincorrect'] incorrect
metrics['total_false_positives'] false_positives
metrics['total_validation_dates']
total_validation_dates
metrics['total_model_dates'] total_model_dates
metrics['sum_precision'] precision
metrics['sum_recall'] recall
metrics['sum_fl_score'] fl_score

metrics['sum_accuracy'] accuracy

metrics['total_processing_time']
total_processing_time

metrics['execution_count'] execution_count

final_results [1

for key, metrdics model_hyperparam_metrics.items():

n len(metrics['documents'])

average_precision metrics['sum_precision'] n if n
else 0

average_recall metrics['sum_recall'] n if n 0 else
0

average_f1l_score metrics['sum_fl_score'] n if n

else 0

average_accuracy metrics['sum_accuracy'] n if n

else 0

average_processing_time
metrics['total_processing_time']
metrics['execution_count'] if

metrics['execution_count'] O else O

result_entry {
"model_name': metrics['model_name'],
"hyperparameters': metrics['hyperparameters'],
'"documents_evaluated': list(metrics['documents']),
'"total_correct': metrics['total_correct'],
"total_dincorrect': metrics['total_incorrect'],
'total_false_positives':
metrics['total_false_positives'],
'total_validation_dates':
metrics['total_validation_dates'],
'"total_model_dates': metrics['total_model_dates'],
'average_precision': average_precision,
'average_recall': average_recall,
'average_f1l_score': average_f1l_score,
'average_accuracy': average_accuracy,
'"total_processing_time':
metrics['total_processing_time'],
'average_processing_time_per_execution':

average_processing_time,

final_results.append(result_entry)

with open(results_file, 'w', encoding='utf-8') as f:

print(f"Results written to '{results_file}'")

Code 2—Code for validating the models output

3. Updated clusters for classifying dates here.

13

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction_benchmark/clusters.json

"options": [

"fecha de presentacion de demanda",

"fecha de notificacion de demanda",

"fecha de audiencia",

"fecha de fallo reservado",
"fecha de lectura de sentencia",
"tiempo desde la independencia",
"tiempo desde la restauracion",

"otros: "

Code 3—Clusters used for classifying the dates in the legal docu-

ments

4. In terms of the models, the benchmark was executed comparing the following
models:
- "llama3.2"
- "llamas.1"
* "nemotron-mini"
- "gemmaz2"
- "mistral-nemo"
- "qwen2"
- "deepseek-coder-v2"
© "phiz”
- "mixtral"
- "mistral-small"
- "gemmaz:27b"
- "nemotron”
- "llama3s.1:70b"
- "qwenz2.5:72b"

14

4 DOCUMENTATION

Similar to what was indicated in past reports, the pipeline/flow we’re currently
following is the one below, where we first extract and clean the documents.
Afterwards, a process takes care of diving the clean documents into smaller
pieces that can be then passed as input to a new layer where a Bert based model
in Spanish, that has been fine tuned to better identify dates over legal documents
for the Dominican Republic, is used to retrieve the dates from the corpus. Once
these dates have been identified, they will be passed on to an additional model
that will then retrieve the context of the date to identify what it is representing.
Finally, all dates will be grouped and included in one file, representing the output

of all the pieces of the original document being put together.

The following diagram represents this flow:

Original Legal

Documents

Text Extraction

Cleaning and

Preprocessing

Document

Splitting

BERT-hased
Date Extraction

Model 1 Model 2 Model 3
(llama3. 1) {gemmal) (gwen2)

Date Grouping
and Output

Figure 1—Full date extraction process

15

https://huggingface.co/MMG/xlm-roberta-large-ner-spanish

This week, my focus has been on the second to last step, comparing the outputs
of the different models on the task of retrieving the context of each date and
comparing those results to some manually extracted dates and contexts. The

process for each has been as follows:
Date context extraction

- Input template generated in txt format to feed the model and retrieve the date

context. This template contains placeholders to fill in:

- Content of the piece of text extracted from the original file where a date is
contained (slightly updated this one to obtain different results).

- Options/clusters template containing the categories by which to classify the
different dates retrieved.

The output of the model will be a single text file containing a JSON object with

the input date, a JSON object with the model output and a JSON object con-

taining configuration details for the executed model such as hyperparameters

used, model’s name and execution time.

5 SCRIPT VALIDATION

The model was queried over a set of 5 files generating 10 outputs for each of
the dates contained in the files. Additionally, performance metrics were obtained

from each of the models execution, such as execution time.
Each model was triggered with the following hyperparameters:

+ Temperature = 0.0000001,

- Top_k =5,
- Top_p=o05
- Seed = 42

Here is a brief explanation of these hyperparameters:

- Temperature: A very low temperature (0.0000001) ensures that the outputs will
be highly predictable. This is useful when we are looking for consistency and
want results to be stable over time.

- Top-k: This limits the choices to only the top 5 probable words. This ensures
that the model generates meaningful outputs without straying into highly

unlikely predictions. It balances between randomness and relevance.

16

- Top-p: Combined with top-k, this gives fine control over the diversity of model
output. A top_p value of 0.5 means the model will only consider words that
make up 50% of the total probability distribution, ensuring more relevant re-
sults.

- Seed: Setting the seed makes the experiments reproducible, helpful for research
purposes. With the same inputs and hyperparameters, in theory, we should get

the same outputs every time (but in practice this doesn’t always happen).

All generated files and content may be found here.

6 RESULTS VISUALIZATION

The following images provide the results compared between the different models

when retrieving the context for the date given as an input to the model.

Accuracy vs. Avg Processing Time per Execution

® gemma2
030 mixtral
phi3
qwen2
025 deepseek-coder-v2
® llama31
® llama3.1:70b
@ qwen2.572b
020 ® gemma2:27b
& @ mistral-nemo
g ® mistral-small
g 015 llama3.2
< nemaotron-mini
nemotron
010 ® mixtralmistral-small
0.05 L °
L L
0.00
0.0 25 50 75 10.0 125 15.0 17.5

Average Processing Time per Execution (seconds)

Figure 2— Accuracy vs. Processing time for each model

17

https://github.com/Human-Augment-Analytics/NLP-Gen/tree/main/victor/date_context_benchmark/charts

Total Processing Time per Model
gemmaz2
mixtral
phi3
qwen2

]

I_

]
deepseek-coder-v2 l———l

]

\

]

]

llama3.1

llama3.1:70b

qwen2.5:72b

Model

gemma2:27b

mistral-nemo

mistral-small

llama3.2
nemotron-mini
mixtralmistral-small

500 750 1000 1250 1500 1750 2000
Total Processing Time (seconds)

%
=}

Figure 3—Total processing time for each model

Model Comparison - Accuracy

gemma2

mixtral

phi3

qwen2
deepseek-coder-v2
llama3.1
llama3.1:70b

qwen2.5:72b

Model

gemma2:27b
mistral-nemo
mistral-small

llama3.2

nemotron-mini

nemotron

mixtralmistral-small

0 0.05 0.10 0.15 0.20 0.25 0.30
Accuracy

0.

o

Figure 4—Accuracy comparison between models

7 PROOF OF WORK

The implemented system returns results that follow the correct structure without
issues in this area for the larger models. There are some models like Phi3 which

tend to generate gibberish content.

18

Additionally, to ensure stability in the results, each input was used 10 times to
generate an output, with the expectations that given the low temperature and the
exact same input the model would generate the exact same output. It wasn’t the
case though. Additional data preparation will have to be carried out by chunking
the text into smaller pieces with the expectation that results will be more accurate

and additionally should reduce processing times.

By looking at the results we can observe that the qwenz.5:72b model obtained the
highest accuracy, with a 0.3 result, which is not enough to guarantee the success
of the pipeline being implemented. Also, this results is fully correlated with the
time the model took for generating the response, although it did not do so in the
case of other models such as nemotron. where the difference in processing time
when compared to qwenz.5:72b is way smaller in terms of processing time than

in accuracy.

Smaller models, with less parameters, obtained clearly less accurate results when
carrying out the classification, indicating as well that this configuration does have

an impact on the results of the model for this specific task.

Below is an example of the 10 run obtained by one of the models, where we
can clearly observe the randomness of the results. For information purposes, the

hyperparameters used were the following ones, as mentioned previously:

- Temperature = 0.0000001,

- Top_k =5,
+ Top_p =o0.5
- Seed = 42

19

"date": "veinticinco (25) dias del mes de enero del
mil veintitrés (2023)",

"date event": "fecha de fallo reservado"

"date": "veinticinco (25) dias del mes de enero del
mil veintitrés (2023)",

"date event": "fecha de presentacion de demanda"

"date": "veinticinco (25) dias del mes de enero del

mil veintitrés (2023)",

"date event": "fecha de fallo reservado"

"date": "veinticinco (25) dias del mes de enero del
mil veintitrés (2023)",

"date event": "fecha de lectura de sentencia"

"date": "veinticinco (25) dias del mes de enero del
mil veintitrés (2023)",

"date event": ""

Code 4—Example output over 10 iterations with the same input

on a llama3s.1:70b model

20

"date": "veinticinco (25) dias del mes de enero del
mil veintitrés (2023)",

"date event": "fecha de fallo reservado"

"date": "veinticinco (25) dias del mes de enero del
mil veintitrés (2023)",

"date event": "fecha de presentacion de demanda"

"date": "veinticinco (25) dias del mes de enero del

mil veintitrés (2023)",

"date event": "fecha de lectura de sentencia"

"date": "veinticinco (25) dias del mes de enero del
mil veintitrés (2023)",

"date event": "fecha de fallo reservado"

"date": "veinticinco (25) dias del mes de enero del
mil veintitrés (2023)",

"date event": "fecha de fallo reservado"

Code 5—Example output over 10 iterations with the same input

on a llama3s.1:70b model

The expectation here was for the model to provide the adequate date event
for each of the provided dates. As it may be observed, for the 10 iterations,
only 2 returned the correct result: "fecha de lectura de sentencia". Given this
randomness in the results, additional actions will be take to reduce variability in
the results: text chunking, model fine-tuning, classes/clusters improval, discard

unrelated text.

21

8 NEXT WEEK’S PROPOSAL

1. Research ways to improve context retrieval for the dates.

2. Implement a simple pipeline to run all processes end to end.

3. Implement a simple Ul to interact with the pipeline and upload and process
a single file.

4. Work on getting more content in for our paper.

22

1

1.1

1.2

1.3
N/A

Week 10 | HAAG - NLP | Fall 2024

Alejandro Gomez

October 25th, 2024

Time-log

What progress did you make in the last week?

This week I continued the drive toward our publication code. The NLP-DR team produced more
raw data so I setup a pipeline to fix/clean and QA the data for training the NER model and then
converts it to JSONL to be used properly for training. Following the data preprocessing, I ran the
training script that finetunes the MMG /xlm-roberta-large-ner-spanish model from HuggingFace
for use with Spanish legalese dates. Then I ran some scripts for metrics and charts to visualize
the data and compare it to the previous iteration on the model (this will be discussed further later
in the report). Using an actual sentencia, I tested the model with this ”test dataset” and was
able to see an improvement in performance, although there is still some work to be done. I also
practiced uploading the model to HuggingFace and using the HuggingFace ecosystem libraries
(namely Pipelines) to load the model from the web and use it on the ”test dataset” successfully.
This will be helpful as we can use this model with the HuggingFace library when we are moving
into the evaluation stage of the dates. Additionally, the overleaf template where we will be
writing our puiblication is now live and the team has begun contributing toward it. We have a
rough draft for the abstract and will continue developments toward writing.

What are you planning on working on next?

We have a presentation to work on and deliver to a judge in the DR so I'll be working closely
with the group to set up the POC for this work to demo our current project and gather domain
knowledge/acceptance criteria from the judge for this tooling/ML pipeline.

Need to gather more data and train the model with more data to continue improving the NER.

I need to set a temperature parameter I believe because the model can produce slightly different
results on each run and I need it to be consistent.

I need to start refactoring the pipeline so that any parameters that can be modified, should live
in a config file and be pulled in at runtime.

Now that I understand how to deploy the model to HuggingFace and use it from HugginFace, 1
need to start building/assembling and writing documentation for it. The labelling for the model
on HugginFace also shows ”1,2,3” in the JSON file instead of "DATE” in the BIO format so I
need to look into this next.

Iterate on the abstract and assemble references and resources for the publication.

Is anything blocking you from getting work done?

S S N

2 Article Review

2.1 Abstract

NLP in the legal domain has seen increasing success with the emer- gence of Transformer-based Pre-
trained Language Models (PLMs) pre-trained on legal text. PLMs trained over European and US legal
text are available publicly; however, legal text from other domains (countries), such as India, have a
lot of distinguishing characteris- tics. With the rapidly increasing volume of Legal NLP applications
in various countries, it has become necessary to pre-train such LMs over legal text of other countries
as well. In this work, we attempt to investigate pre-training in the Indian legal domain. We re-
train (continue pre-training) two popular legal PLMs, LegalBERT and CaseLawBERT, on Indian
legal data, as well as train a model from scratch with a vocabulary based on Indian legal text. We
apply these PLMs over three benchmark legal NLP tasks — Legal Statute Identification from facts,
Semantic Segmentation of Court Judg- ment Documents, and Court Appeal Judgment Prediction —
over both Indian and non-Indian (EU, UK) datasets. We observe that our approach not only enhances
performance on the new domain (Indian texts) but also over the original domain (European and UK
texts). We also conduct explainability experiments for a qualitative comparison of all these different
PLMs doi[PMGG23]

2.2 Summary

This paper discusses the introduction of new solutions for Indian legal documents by leveraging
pretrained-LLM’s. This paper discusses how pretrained-language-models (PLM’s) are growing in pop-
ularity with a few popular one’s in the US and EU with respective corpus but a lack of representation
for other legal language such as that in Indian, and in our case, that in Latin America. This gives the
group confidence in the novelty of our problem and proposed solution. I chose the paper because it
was accepted to the current conference the NLP-DR team is targetting and it can serve as a model to
understand how to structure the pretraining and data collection approach. Our project has a heavy
index toward pretraining and training data and this paper does a good job of explaining and going
through these steps.

3 Scripts and Code Blocks
3.1 Code

sample result

snippet_of_result = [
{
"sentence": "Circunscripci n de Sato Domingo Oeste, la cual hace constar que
la joven Creismeryy, es hija de los se ores ngel Gonz lez y Lorenza Mej a
Ramos; \n C. Extracto de acta de nacimiento de fecha treinta (30) de junio del a o
dos mil veintiuno \n(2021), emitida por la Oficial a del Estado Civil de la 15ta.

n
B

"entities": [
{
"entity_group": "DATE",
"score": 0.8496034741401672,
"word": "treinta (30) de junio del a o dos mil veintiuno (2021",
"start": 191,
"end": 245
}
]
},
{
"sentence": "Circunscripci n de Sato Domingo Oeste, la cual hace constar que

la joven Emely, es hija de los se ores ngel Gonz lez y Lorenza Mej a Ramos; \n
D. Declaraci n jurada de uni n libre, de fecha dieciocho (18) de mayo del a o
dos mil veintid s (2022), instrumentado por el doctor Miguel Cabral Hern ndez,
notario p blico de los del n mero del Distrito Nacional, mediante el cual 1los

se ores ngel Gonz lez y Lorenza Mej a , declararon que se encontraban unidos

S W N =

W oW NN NN NN NN NN =
= O © ® N o O & R

sentimentalmente en pareja, mediante la figura legal de esta civil de umni n libre,
desde el 28 de diciembre del a o 2006, hasta la fecha de dicha declaraci n, y
que fruto de esa relaci n han procreado dos \n(2) hijas que responden a 1los
nombres de Crismery Gonz lez Mej a y Emely Gonz lez Mej a; \n E.",

"entities": [

{
"entity_group": "DATE",
"score": 0.8161188364028931,
"word": "dieciocho (18) de mayo del a o dos mil veintid s (2022",
"start": 190,
"end": 244

1,

{
"entity_group": "DATE",
"score": 0.8216369152069092,
"word": "28 de diciembre del a o 2006,
"start": 547,
"end": 576

}

Listing 1: result

For week 10, the model shows improvement in data. This can be seen qualitatively by observing that
the dates above are almost perfectly extracted with a much higher confidence score this time around.
You can notice there is a ”)” left off at the end of the NER for the first two items so training with
more data would be beneficial to prevent this type of error.

Word Cloud of Named Entities

-« d1Cclembre del

~ veintitrés
ano dos’|"""

mil veintidos ®

| n0v1embre

velntiuno

o octubre trece
veintidos abril

mayo

iciembre

Figure 1: word cloud

The word cloud looks healthy with this week’s finetuned model. All of the words displayed are
typical makeup of Spanish verbal dates.

Distribution of Entity Confidence Scores

Entity Type
[DATE
a_
5_
>
9]
c
]
=]
g
[44
2- I
0 . , l .

0.55 0.60 0.65 0.70 0.75
Confidence Score

Figure 2: confidence score

This week, the model is indexing toward a higher confidence in its NER. This is obviously a good
thing as long as it is confident AND correct rather than confidently incorrect. So this shows promising
results as last week’s model had very low confidence and generally bad NER with a few correct results
in between. Good progress overall, but I need to peruse the results manually as well to ensure they
are accurate and precise.

Fe o O B & nipsyuaggngtaecagosmouest-rr-hasg.rsmak o s ¥ =
ClaMLol CIReawces Cwtemstips all Goescope 8 EdDesvboard & BuzPon & ascar €)o7 oo @ outiock @ cotendar @ ovelrie 3 Comas @ MicrosatiFarvs [Courses
= Hugging Face Saarch mo tatasets, use # Midels Datasets W Spaes ® Posis 0 Docs & Soltions Preing =)
ie fun - Dikmiss this messigs
® zposmou test-ner-haag-07a Ol

B Safeienors dmorcberty
Modelcard < Filesand versions & Commwnity Semings

P main~ testnerhasgd L contritustor & History; 2 commits + o file

@ egosmou Upload folder using huggingface bub kcfsld vERFIED & minutes ago

gitattrioutes

canfig json

model safetensors @ .24 @ s
special_tokens_mag.jsan

takenizerjion < ke s
takenizes_canfig json

training_args.bin W s

Figure 3: Deploying first iteration to HuggingFace as a test run for the deployment pipeline

from huggingface_hub import HfApi
api = HfApi()
api.upload_folder (
folder_path="ner-model",
repo_id="agosmou/test -ner-haag-0",
token="insert -personal-access-token-from-huggingface",
repo_type="model",

**

docs

pip install huggingface_hub

https://huggingface.co/docs/huggingface_hub/v0.26.0/en/package_reference/hf_api#
huggingface_hub.HfApi.upload_folder

Listing 2: HF Deployment Code

H*

Figure 4: Diff between same model locally and in the cloud

The image above compares the NER on the same dataset from the local model that was trained
and the HF model, which is just a deployed version of the locla model. The disparity in results will
require some finetuning to make the model more deterministic.

Figure 5: Diff between same model last week with less data and this week with more data

This image above shows the improvement of the model as it’s trained with more data by comparing
the output on the same dataset between the week 9 model and the week 10 model.

3.2 List of Scripts

e Data Preprocessing

— fixes and then QA the data provided by teammate

— converts data to JSONL format for use in training

e Training
— Finetune the NER model
o Testing
— Test the local model with never-before-seen dataset, i.e. an actual sentencia
— wordcloud and confidence charts based on ner results JSON from the above
e Deployment
— Upload model to HugginFace Repo
— Test the sentencia dataset with the deployed HF model
e Visualizations

— compares week 9 and week 10 models

3.3 Documentation

nate: each pipelingfdirectory can ahve its wan canfig, g
Eraining_confia.py, eval_confia.py, eke. or maybe o json

TRAINING] EVALUATION] conrzar
“optionsTr |
“fecha de presentacion de demanda®,
“fecha de notificacion de demanda”,
wpload o “fecha de sudiencias
sentencia paffdoc (1/20) “fecha de fallo reservade”,

“fecha de lectura de sentencia®,

2024 1000 pages PEF

_

| s o o e

“Otra: =

bxt Fite reprasenting
a bunch of wrong the santancio

Jjson files

o dirgctory with the tat
file split inke many kxt's

jsonl to train madel

data structurs Fram

Berbe medal

Bickionany with

vouw IWER Gates. :
saoubet JANT d

PETEMTIAL ADDITOMAL SCEIPT!
bhis is ok part of bha madal, This veould ba a separabe shep
Mayhe a regen o calling & small llasa medel to ganarate DRMMATY

NER madal

tlama viill return T oputput
for gnch dete

& J50N of aption keys from the
canfig with values far the dates

Figure 6: pipeline visualization for code structure

This is the code structure we assembled last week and included in the report for week 9, but I am
including here to discuss some minor modifications. Over the coming weeks, the team will be working
to assemble our code for submission so this flow may change slighty. This week, we decided the
config will not be JSON but instead will be Python files to allow for flexibility in documentation that

allows the team to include in-line comments in the config for better instructions to the user with
hyperparameter tuning.

Figure 7: crude pipeline visualization

Changes in this file are potential to substitute llama3.1 70B for more potent models that we are

currently benchmarking. Some models that showed promising performance this week in the team’s
benchmarking: qwen2.5 72B and nemotron.

3.4 Script Validation (optional)
N/A

3.5 Results Visualization

Evaluation Loss Comparison

0.040 —8— Week 9 Eval Loss
Week 10 Eval Loss

0.035 -

0.030 A

0.025 -

Loss

0.020 -

0.015 ~

0.010 -

0.005 ~

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epoch

Figure 8: eval loss

Prediction errors minimize as the training epochs complete which is a favorable outcome. Both models
have expected shapes for the evaluation loss over the epochs.

Evaluation F1 Score Comparison

1.00 A
Tl
0.98 -
& @ @
0.96 -
e
o 0.94 -
[v)
(V)]
—
L
0.92 -
0.90 -
0.88 - —8— Week 9 Eval F1
' —— Week 10 Eval F1
1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epoch

Figure 9: f1 score

F1 score looks better for the week 10 model following a shape closer to y=log(x) which is what I
was hoping for with more training data.

Evaluation Accuracy Comparison

1.000 -

0.998 ~

0.996 -

0.994 -

Accuracy

—&— Week 9 Eval Accuracy
0.984 1 —— Week 10 Eval Accuracy

1.0 1.5 2.0 2.5 3.0 35 4.0
Epoch

Figure 10: eval accuracy

The accuracy of the model increases generally over the epochs for both models which is a good
signal.

10

- Training Loss Comparison
.35

Week 9 Train Loss

—— Week 10 Train Loss
0.30 -

0254

0.20 4

Train Loss

0.15 5

0.10 -

0.05 -

0.00 -

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epoch

Figure 11: loss

Training loss trends downward and stabilizes in the week 9 model but in week 10 it spikes up
toward epoch 4. I will have to see how I can model the behavior in week 9.

3.6 Results Visualization Summary

There were some oddities that surfaced due to the analysis of these visualizations. I retrained the week
9 model with week 9 data but the shape of the graphs looks slightly different. The week 10 training
had epochs 1,2 and 4, but skipped number 3. This is very unusual because the model is performing
better but it seems like there was a bug in the training steps. Additionally, the graphs look mostly
OK with some strange behavior such as the training loss for week 10 where it decreases and isntead
of flattening out, it shoots up.

3.7 Proof of Work
Scripts in GitHub Repo

4 Next Week’s Proposal

e (See first section for full list. Brief summary below)
e Work on presentation for DR judge

e Improve model for POC during presentation and for publication

Contribute to publication writing content

Update current documentation, e.g. NLP website.

11

References

[PMGG23] Shounak Paul, Arpan Mandal, Pawan Goyal, and Saptarshi Ghosh. Pre-trained language
models for the legal domain: A case study on indian law. In Proceedings of the Nineteenth
International Conference on Artificial Intelligence and Law, ICAIL 23, page 187-196, New
York, NY, USA, 2023. Association for Computing Machinery.

12

HAAG NLP Sentencias — Week 10 Report
NLP-Gen Team

Karol Gutierrez

October 25, 2024

1 Weekly Project Update

1.1 What progress did you make in the last week?

e Scripts to process data from large PDF file into cleaned split data by court case.

e Generate 800+ more training data files, each containing around 10 dates, using Azure Open Al
Studio.

e Updated model with more data.

e Updating OneNote with video recordings and meeting notes

e Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.
e Continuous meetings with Dr. Alexander, Nathan and team to discuss progress on project and

publication options, as well as internal meetings with team to sync on next steps.

1.2 What are you planning on working on next?

e Add filter for consistency of language in output text (there is mix of Spanish and English in
training data).

e Clusterize the context from the training data.
e Improve fine tuning of model.
e Continue fulfilling my role as Meet Manager/Documentor by working on the tasks expected for
my position (gather notes from meetings and prepare recordings).
1.3 Is anything blocking you from getting work done?
No.

2 Literature Review

Paper: LexNLP: Natural language processing and information extraction for legal and regulatory texts
[aKD18].

2.1 Abstract

LexNLP is an open source Python package focused on natural language processing and machine learn-
ing for legal and regulatory text. The package includes functionality to (i) segment documents, (ii)
identify key text such as titles and section headings, (iii) extract over eighteen types of structured
information like distances and dates, (iv) extract named entities such as companies and geopolitical
entities, (v) transform text into features for model training, and (vi) build unsupervised and supervised

models such as word embedding or tagging models. LexNLP includes pre-trained models based on
thousands of unit tests drawn from real documents available from the SEC EDGAR database as well
as various judicial and regulatory proceedings. LexNLP is designed for use in both academic research
and industrial applications, and is distributed at https://github.com/LexPredict/lexpredict-lexnlp.
Keywords: natural language processing, legal, regulatory, machine learning, segmentation, extraction,
open source, Python

2.2 Summary

The paper presents LexNLP as a robust toolkit that facilitates the application of NLP techniques in
legal contexts. It offers features for parsing legal documents, extracting key entities (such as parties
and dates), and performing text classification tasks. The authors conduct experiments to demonstrate
LexNLP’s effectiveness, comparing its performance against existing tools and benchmarks in the legal
NLP space.

e Data Handling: LexNLP effectively processes a wide range of legal documents, including con-
tracts, court opinions, and statutes, enabling users to extract meaningful insights from unstruc-
tured text.

e Entity Recognition: The toolkit incorporates advanced entity recognition algorithms that accu-
rately identify relevant legal entities, significantly improving the extraction process compared to
traditional methods.

e Text Classification: LexNLP provides built-in functionalities for classifying legal texts, allowing
users to categorize documents based on predefined legal categories, enhancing organization and
retrieval.

e Practical Applications: The toolkit is designed to assist legal practitioners, researchers, and
developers in building applications that leverage legal data, contributing to advancements in
legal technology and improving access to legal information.

2.3 Relevance

The paper is directly relevant to our Sentencias project, as LexNLP provides essential tools for pro-
cessing and analyzing legal text, which is crucial for extracting procedural history from court decisions.
We can use similar approach tailored to the Spanish language.

3 Scripts and code blocks

The code is in the private repository repository. The progress for this week is in ./karol/week10/.

3.1 Code developed

The following items were developed this week. The full workflow of the code is shown in Figure 1.

e [created new script to retrieve the sentencias parts from the original large PDF document from
the Supreme court, this script splits the file into smaller ones for each sentencias, code seen in
Figure 2

e Script that calls Azure Studio AI to use GPT-40 API to get the dates and context from each
sentencia, updated script and prompt in in Figure 3

e Script that validates the integrity of such data.
e Updated code to create HuggingFace dataset in Figure ?77.
e Use BERT Spanish tokenizer with HuggingFace trainer to produce a trained model in Figure 7?7

e Plot results.

https://github.gatech.edu/calexander97/sentencias

Supreme Court
Document

e

Azure Al Studio API:
gpt-d4o

JSON training data

|

Filtered and consistent
data

bert-base-spanish-w | _ Hugging Face)
wm-uncased transformer trainer Trzined model

result plots

Figure 1: Code logic workflow to process data and train model.

4 Documentation

The documentation is present in the README.md file in the repository. Refer to the repository to
get the most updated instructions on how to run the code. For this week, the useful readme is in
./karol/readme.md.

5 Script Validation

Figure 4 shows the updated validation process for the new generated data.

6 Results Visualization

For this week, the results are related to the generation of training data, some of the folder content can
be seen in Figure 5.

7 Proof of Work

Figures 6 and Figure 7 show the final output of the data generation process, it was observed that
sometimes the context was generated in English and sometimes in Spanish, this will be addressed for
the next deliverable.

8 Next Week’s Proposal

Refer to section 1.2 for details (avoid repetition).

References

[aKD18] Michael J Bommarito II au2, Daniel Martin Katz, and Eric M Detterman. Lexnlp: Natural
language processing and information extraction for legal and regulatory texts, 2018.

https://github.gatech.edu/calexander97/sentencias/

split.py weekT

reader = PdfReader(input_pdf_path)
total_pages = len(reader.pages)

sentencia_regex = re.compile({4}", re.MULTILINE)

sentencia_starts = []

sentencia_starts.append(page_num)

m sentencia_starts

.path. exists(output_folder):
makedirs(output_folder)

reader = PdfReader (input_pdf_path)
total_pages = len{reader.pages)

sentencia_starts.append(total_pages)

- i in range(len(sentencia_starts)
start_page = sentencia_starts[il
end_page = sentenci

writer = P

r page_nun in range(start_page, end_pag
writer.add_page(reader. pages [page_num])

output_pdf_name {i+ 1.p

output_pdf_path = os.path. join(output_folder, output_pdf_name}

apen (output_pdf_path, "wb") as output_pdf_file:
writer.urite(output_pdf_file)

print(: {output_pdf_name}")

input_pdf_path argul1]
output_folder .argvl2]

ntencia_starts = find_sentes {input_pdf_path)

split_sentencias(input_pdf_path, output_folder, sente

a_starts)

Figure 2: Code to split large PDF into sentencias

gpt_query.py

_file(file_path):

1 open(file_path, 'r
file. read(}

sanitize_json_string(json_

i_content e.sub{
" sanitized_centent

, json_centent)

extract_json_content(extracted_data) :

print(fu n could
print on , json_cont
rn json_content

extract_dates_from_text(text):
client

api_versio

azure_endpoin

impugnada d

completion = client.chat.conpletions. create(

messages:

prompt,

n completion. to_dict()

Figure 3: GPT Call to generate training data

python (python)

Match found for: 27 de marzo de 2024

Match found for: 11 de abril de 2022

Match found for: 6 de julio de 2023

Match found for: 14 de julio de 2023

Match found for: 11 de agosto de 2023

Match found for: 17 de enero de 2023

Match found for: 17 de enero de 2023

Match found for: 3@ de noviembre de 2020

Match found for: 12 de marzo de 2009

Match found for: 25/4/21

Verifying sentencia_539_cleaned.json against sentencia_539_cleaned.txt
Match found for: 27 de marzo de 2024

Match found for: 7 de junio de 2019

Match found for: 17 de enero de 2023

Match found for: 9 de febrero de 2018

Match found for: veintiddos (22) de febrero del afio dos mil dieciocho (2018)
Match found for: 22 de marzo de 2016

Match found for: 19 de agosto de 2015

Verifying sentencia_8@_cleaned.json against sentencia_8@_cleaned.txt
Match found for: 27 de marzo de 2024

Match found for: 8 de septiembre de 2022

Match found for: 18 de febrero del 2014

Match found for: 23 de febrero de 2015

Match found for: 28 de marzo de 2020

Match found for: 24 de marzo de 2023

Match found for: 9 de noviembre de 2022

Match found for: 7 de diciembre de 2022

Match found for: 17 de enero de 2023

Verifying sentencia_395_cleaned.json against sentencia_395_cleaned.txt
Match found for: 27 de marzo de 2024

Match found for: 9 de agosto de 2023

Match found for: 24 de enero de 2024

Match found for: 6 de marzo de 2024

Match found for: 29 de julio de 2022

Match found for: 13 de octubre de 2022

Match found for: 18 de febrero de 2020

Match found for: 13 de mayo de 2022

Match found for: 27 de septiembre de 2023

Match found for: 7 de noviembre de 2023

Total consistencies: 4438
Total inconsistencies: 0
Chaag-nlp) » weekl1@ main) x python json_integrity.pyl

Figure 4: Proof of work for integrity testing

v WEEK10

> sentencias_marzo_pdf

> tmp_trainer

> training_data

v verified_json_marzo

{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}

sentencia_b59_cleaned.json
sentencia_61_cleaned.json
sentencia_62_cleaned.json
sentencia_63_cleaned.json
sentencia_64_cleaned.json
sentencia_66_cleaned.json
sentencia_67_cleaned.json
sentencia_68_cleaned.json
sentencia_69_cleaned.json
sentencia_71_cleaned.json
sentencia_72_cleaned.json
sentencia_73_cleaned.json
sentencia_74_cleaned.json
sentencia_75_cleaned.json
sentencia_76_cleaned.json
sentencia_77_cleaned.json
sentencia_78_cleaned.json
sentencia_80_cleaned.json
sentencia_82_cleaned.json
sentencia_83_cleaned.json
sentencia_85_cleaned.json

sentencia_86_cleaned.json

sentencia_87_cleaned.json

dates_marzo
sentencia_59_cleaned json

sentencia_61_cleaned.json

cleaned jso

leaned json

]
) aned s

EXPLORER

/ WEEK10
v dates_febrero
{} sentencia_48_cleaned.json
{} sentencia_49_cleaned.json
sentencia_50_cleaned.json
sentencia_51_cleaned.json
sentencia_53_cleaned.json
sentencia_64_cleaned.json
sentencia_55_cleaned.json
sentencia_56_cleaned.json
sentencia_68_cleaned.json
sentencia_59_cleaned.json
sentencia_61_cleaned.json
sentencia_62_cleaned.json
sentencia_63_cleaned.json
sentencia_64_cleaned.json
sentencia_66_cleaned.json
sentencia_67_cleaned.json
sentencia_68_cleaned.json
sentencia_71_cleaned json
sentencia_72_cleaned.json
sentencia_73_cleaned.json
sentencia_74_cleaned.json
sentencia_77_cleaned.j
sentencia_78_cleaned.json
sentencia_80_cleaned.json
sentencia_82_cleaned.json
sentencia_83_cleaned.json
sentencia_85_cleaned.json
sentencia_86_cleaned.json
sentencia_87_cleaned.json
sentencia_89_cleaned.json
sentencia_90_cleaned.json
sentencia_92_cleaned.json
sentencia_93_cleaned.json
sentencia_95_cleaned.json
sentencia_96_cleaned.json
sentencia_99_cleaned.json
sentencia_100_cleaned.json
sentencia_101_cleaned.json
sentencia_103_cleaned json
sentencia_104_cleaned.json
sentencia_105_cleaned.json
sentencia_106_cleaned.json
sentencia_109_cleaned.json
sentencia_110_cleaned.json
sentencia_111_cleaned.json
sentencia_113_cleaned.json
sentencia_115_cleaned json
sentencia_116_cleaned.json
sentencia_118_cleaned json
sentencia_119_cleaned.json

context®

context”

standard_date”

120,

3144

context”

standard_da
original_date"
indes

{} sentencia_56_cleaned.json X

eaned.json

“standard_date" 24/02/29",
“original_date": “29 de febrero de 2024",
"index

“original_date": 10 de agosto de 2022",
[

"standard_date": "2017.
“original_date": "13 de septiembre del afio 2017",
"index": |

1803,

1836

“context": "Civil judgme the Court of First Instance of the Judicial District

“"standard_date": "2021/12/14",
"original_date": "14 de diciembre de 2021",
"index": [

2483,

2506

"context" ourt ruling that remit

"standard_date": "2022/10/14",
"original_date" ubre de 2022",
"index": |

489,

510

“context": "Filing of appeal for

“standard_date": "2022/11/10",
"original_date": "10 de no

memorandum"

"standard_date"
“original_date"
"index":

694,

710

"context": “"Case file transfer from the General Secretariat to the Secretariat of the First Chamber"

Figure 7: Proof of generation of dataset

0.1

1.
2.
3.

Week 10 Research Report

Thomas Orth (NLP Summarization / NLP Gen Team)
October 2024

What did you work on this week?
Concluded Anthropic tests

Tested TogetherAl, no real advantage over Anthropic for use
Attended All-hands meeting
Looked into commercial finetuning

Sent interview team the set of commercial summaries

What are you planning on working on next?

. Start summarizing settlements once the data is provided

Check Anthropic workbench to see if it can improve prompting

Coordinate with subteams as needed

Is anything blocking you from getting work done?

. I’ll need the Settlement documents from our OCR team + our interview

team needs to reach out to the law students so that we can know what
kind of relevant info to extract from settlement documents.

Abstracts

Title: Little Giants: Exploring the Potential of Small LLMs as Evaluation
Metrics in Summarization in the Eval4NLP 2023 Shared Task. Conference
/ Venue: ACL 2024, Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers). Link:
https://aclanthology.org/2024.acl-long.51/

Abstract: Automated evaluation is crucial for streamlining text summa-
rization benchmarking and model development, given the costly and time-
consuming nature of human evaluation. Traditional methods like ROUGE

2

do not correlate well with human judgment, while recently proposed LLM-
based metrics provide only summary-level assessment using Likert-scale
scores. This limits deeper model analysis, e.g., we can only assign one
hallucination score at the summary level, while at the sentence level, we
can count sentences containing hallucinations. To remedy those limita-
tions, we propose FineSurE, a fine-grained evaluator specifically tailored
for the summarization task using large language models (LLMs). It also
employs completeness and conciseness criteria, in addition to faithfulness,
enabling multi-dimensional assessment. We compare various open-source
and proprietary LLMs as backbones for FineSurE. In addition, we con-
duct extensive benchmarking of FineSurE against SOTA methods includ-
ing NLI-, QA-, and LLM-based methods, showing improved performance
especially on the completeness and conciseness dimensions. The code is
available at https://github.com/DISL-Lab/FineSurE.

Summary: This paper proposes a better LLM judge approach for sum-
marization. They showed they could do finer grain judging than previous
methods. It also finds GPT4o-mini to provide the best overall results as
the backend to the code.

Relevance: As we investigate LLM-as-a-judge approach to evaluating our
outputs, this research could prove useful.

Relevant Info

Summary Chain of Thought (CoT) is a technique to prompt LLMs for
information to provide context for summarization. I took a domain centric
approach in this experiment to extract entities the Clearinghouse is looking
for specifically.

Llama 3.2 is a popular LLM given its performance
Ollama is a way to serve LLMs locally
Langchain is a popular library for interacting with LLMs

Anthropic is a company that produces the Claude family of models that
compete with GPT-4.

Together Al provides open source models through managed infrastructure
like ChatGPT

The two best models in terms of accuracy and cost tradeoff is Claude 3.5
Sonnet and Claude 3 Haiku

Scripts

. All scripts uploaded to https://github.com/Human-Augment- Analytics/NLP-

Gen

Scripts were run with the following file for testing: https://gatech.box
.com/s/g3heprllvzamualgwdkhz5k2r34ocgut

Thomas-Orth/togetherai/domain_specific_scot_chunked.py

e Brief Description: Run a domain specific version of Summary Chain-
of-thought (CoT) on complaints with TogetherAI models, speficially
a Llama model..

e Status: Tested by running the pipeline to completion without issue

e Important Code Blocks:
(a) First block: Read in CSV file, choose document

(b) Second block: Run through prompts, chunking documents, save
summaries

(¢) Third Block: Evaluate via manual inspection

e Screenshot of code: No screenshots provided due to the code being
largely the same as last week, just with a different LLM backing it

4. Flow Diagram:

5.

Ll

Start script . Eoa | End Script

Figure 1: Flow diagram

Running scripts:

(a) Download the scripts, the csv from the box link and llm.requirements.txt
(b) Run: python -m pip install -r llm.requirements.txt

(¢) Sign up for an TogetherAl account, generate an API Key, and set
"TOGETHER_API.LKEY” in your environment.

(d) Run: python [chosen python script]

Documentation

Download CSV file, with two columns: Document and Summary
Update scripts to point to CSV file
Run scripts to output generated summaries

Manually evaluate summary

https://gatech.box.com/s/g3heprllvzamua0gwdkhz5k2r34ocgwt
https://gatech.box.com/s/g3heprllvzamua0gwdkhz5k2r34ocgwt
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/Thomas-Orth/togetherai/domain_specific_scot_chunked.py

5 Results

5.1 Haiku vs Sonnet
5.1.1 Haiku Summary for Macer Case

This was a class action lawsuit filed on November 18, 1987, in the United States
District Court for the District of Maryland. The plaintiffs, which included in-
carcerated individuals at the Talbot County Detention Center (TCDC) and
their family members/visitors, were represented by the ACLU National Prison
Project and the ACLU of Maryland. The defendants were officials responsible
for the operation and oversight of the TCDC, including the Jail Administrator,
County Manager, and members of the Talbot County Council. The plaintiffs al-
leged that the conditions at the TCDC, which was described as an antiquated,
overcrowded, and dilapidated facility, violated the First, Sixth, Eighth, and
Fourteenth Amendments of the U.S. Constitution. Specifically, they claimed
that the conditions amounted to cruel and unusual punishment for sentenced
prisoners and impermissible punitive conditions for pre-trial detainees, as well
as a denial of the right to visitation, the right to maintain familial relations,
and access to the courts. The plaintiffs sought a declaratory judgment that the
defendants’ actions were unconstitutional, a permanent injunction to prevent
the defendants from engaging in the unlawful practices, the retention of juris-
diction by the court until the order was carried out, and reasonable costs and
attorneys’ fees.

5.1.2 Sonnet Summary for Macer Case

In a class action lawsuit filed on November 18, 1987, prisoners and their families
challenged the conditions at the Talbot County Detention Center in Maryland.
The case, brought before the United States District Court for the District of
Maryland, highlighted severe overcrowding and poor living conditions at the fa-
cility. The plaintiffs, represented by the American Civil Liberties Union (ACLU)
National Prison Project and ACLU Maryland, alleged various constitutional
violations against county officials, including the Jail Administrator, County
Manager, and members of the Talbot County Council. The lawsuit claimed
violations of the First, Sixth, Eighth, and Fourteenth Amendments to the U.S.
Constitution, as well as claims under 42 U.S.C. §1983. The plaintiffs sought
several remedies, including a declaratory judgment stating that the defendants’
policies violated their constitutional rights, a permanent injunction against un-
lawful practices, and retention of court jurisdiction until the order was carried
out. They also requested an award of reasonable costs and attorneys’ fees under
42 U.S.C. §1988, along with other just and equitable relief. The case brought
attention to significant issues within the detention center, including inadequate
medical care, poor sanitation, insufficient safety measures, and restrictions on
visitation and access to courts. These conditions not only affected the inmates
but also impacted their families and community members who interacted with
the facility.

6 Proof of work

Both Haiku and Sonnet are both powerful models from Anthropic. Through
manual verification, the facts presented seem correct based on the complaint.

6.1 Known Limitations

Its tough to say which between the two models are the best or how they stack
up compared to GPT40-mini and Gemini. Sets of summaries were sent to the
interview team for review to determine this.

