
HAAG NLP Summarization Week 12

Michael Bock

November 2024

1 Slack Questions

What did you accomplish this week?

• Used Nathan’s code, its good for a basic model but does not provide enough flexibility to do
things like K folding easily, so I think I’ll keep the parts I can and replace the rest with the
code I had 2 weeks ago

• Downloaded the entire UPenn database so that I wouldn’t have to return there to get more
data next time.

What are you planning on working on next?

• Adding K Folding and class weighting to the training in the hopes that this will produce a
model that works well given the class imbalance.

What is blocking you from progressing?

• None

2 Abstract

Foundation models, now powering most of the exciting applications in deep learning, are almost uni-
versally based on the Transformer architecture and its core attention module. Many subquadratic-
time architectures such as linear attention, gated convolution and recurrent models, and structured
state space models (SSMs) have been developed to address Transformers’ computational ineffi-
ciency on long sequences, but they have not performed as well as attention on important modalities
such as language. We identify that a key weakness of such models is their inability to perform
content-based reasoning, and make several improvements. First, simply letting the SSM parame-
ters be functions of the input addresses their weakness with discrete modalities, allowing the model
to selectively propagate or forget information along the sequence length dimension depending on
the current token. Second, even though this change prevents the use of efficient convolutions, we
design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs
into a simplified end-to-end neural network architecture without attention or even MLP blocks
(Mamba). Mamba enjoys fast inference (5× higher throughput than Transformers) and linear scal-
ing in sequence length, and its performance improves on real data up to million-length sequences.

1

As a general sequence model backbone, Mamba achieves state-of-the-art performance across sev-
eral modalities such as language, audio, and genomics. On language modeling, our Mamba-3B
model outperforms Transformers of the same size and matches Transformers twice its size, both in
pretraining and downstream evaluation.

2.1 Brief Analysis

Last I remember, Mamba fell out fashion at the beginning of this year (at least where I work) as
people learned about new architectures like KANs. Mamba proposes switching out transformers for
a structured state space model. Structured state sapce models are a model that combines CNNs
and RNNs. Mamba introduces the ability to select data similar to an attention mechanism, but the
Mamba attention mechanism scales linearly with input size, while attention scales quadratically,
so in theory structured state space models like Mamba could be larger given the same hardware.
They also improve the CNN and RNN layers to be faster by computing the model recurrently. This
avoids increased IO accesses for a GPU, which are very slow.

3 Scripts and Code Blocks

hf training.py

1 import os

2 import ast

3 import pandas as pd

4 from labels import DNO_ISSUES

5 from datasets import Dataset

6 from transformers import AutoTokenizer

7 from peft import prepare_model_for_kbit_training , AutoPeftModel

8 from peft import LoraConfig , get_peft_model

9 import datetime

10 import os

11 from transformers import AutoTokenizer

12 from transformers import AutoModelForSequenceClassification , AutoModel

13 from transformers import TrainingArguments , Trainer , BitsAndBytesConfig

14 import numpy as np

15 import evaluate

16 from sklearn.metrics import precision_recall_fscore_support

17 from sklearn.model_selection import StratifiedKFold

18

19 model_name = "meta -llama/Llama -3.2-1B"

20 batch_size = 8

21 df = pd.read_csv(’dno_labels.csv’).dropna ()

22 df[’labels ’] = [[x[issue_name] for issue_name in DNO_ISSUES] for _, x in df.iterrows

()]

23

24 dataset = Dataset.from_pandas(df)#.train_test_split(test_size =0.2)

25

26 tokenizer = AutoTokenizer.from_pretrained(model_name , token = os.environ[’HF_TOKEN ’

])

27 #tokenizer = AutoTokenizer.from_pretrained (" FacebookAI/xlm -roberta -base")

28 #tokenizer.add_special_tokens ({’pad_token ’: ’[PAD]’})

29 tokenizer.pad_token = tokenizer.eos_token

30

2

31 max_seq_length = tokenizer.model_max_length # or model.config.

max_position_embeddings

32 print(f"Model’s maximum sequence length: {max_seq_length}")

33

34 def tokenize_function(examples):

35 examples[’Text’] = [e.replace(’\n’, ’’) for e in examples["Text"]]

36 return tokenizer(examples[’Text’], padding="max_length", max_length=

max_seq_length //10, truncation=True , return_tensors=’pt’)

37

38 tokenized_dataset = dataset.map(tokenize_function , batched=True)

39 tokenized_dataset = tokenized_dataset.remove_columns (["Text"])

40 tokenized_dataset = tokenized_dataset.remove_columns (["Name"])

41 tokenized_dataset.set_format("torch")

42

43 quantization_config = dict(load_in_4bit=True , bnb_4bit_use_double_quant=True ,

bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="bfloat16")

44

45 base_model = AutoModelForSequenceClassification.from_pretrained(model_name ,

num_labels=len(DNO_ISSUES), problem_type="multi_label_classification",

quantization_config=quantization_config , device_map ={"": 0})

46

47 base_model = prepare_model_for_kbit_training(base_model)

48

49 lora_config = LoraConfig(r=8, lora_alpha =32, target_modules="all -linear",

lora_dropout =0.01, task_type="SEQ_CLS" ,)

50

51 model = get_peft_model(base_model , lora_config)

52 model.config.pad_token_id = tokenizer.pad_token_id

53

54 def numpy_sigmoid(x):

55 return 1 / (1 + np.exp(-x))

56

57 def compute_metrics(eval_pred):

58 logits , labels = eval_pred

59 preds = (numpy_sigmoid(logits) >= 0.5).astype(int)

60 x = precision_recall_fscore_support(preds , labels , average=’macro ’)

61 metrics = dict(precision=x[0], recall=x[1], f1=x[2])

62 x = precision_recall_fscore_support(preds , labels)

63 for i, label_name in enumerate(DNO_ISSUES):

64 metrics[f’{label_name}__precision ’] = x[0][i]

65 metrics[f’{label_name}__recall ’] = x[1][i]

66 metrics[f’{label_name}__f1’] = x[2][i]

67 return metrics

68

69 now = datetime.datetime.now()

70 logdir = now.strftime(’/home/hice1/mbock9/scratch/runs/tensorboard /%Y%m%d_%H%M%S’)

71 savedir = now.strftime(’/home/hice1/mbock9/scratch/runs/checkpoints /%Y%m%d_%H%M%S’)

72 skf = StratifiedKFold(n_splits=k)

73

74 #training_args = TrainingArguments(

75 # output_dir=savedir ,

76 # num_train_epochs =1,

77 # per_device_train_batch_size=batch_size ,

78 # per_device_eval_batch_size=batch_size ,

79 # gradient_accumulation_steps =1,

80 # learning_rate =3e-4,

81 # warmup_ratio =0.03,

82 # save_steps =0.1,

3

83 # eval_steps =0.1,

84 # eval_strategy=’steps ’,

85 # save_total_limit = 2,

86 # load_best_model_at_end = True ,

87 # report_to=’tensorboard ’,

88 # logging_dir=logdir ,

89 # logging_steps =2,

90 # overwrite_output_dir=True ,

91 #)

92

93 #labels = tokenized_dataset[’labels ’]

94 #for fold , (train_idx , val_idx) in enumerate(skf.split(np.zeros(len(labels)), labels

)):

95 # print(f"\ nFold {fold + 1}/{k}")

96 #

97 # # Create train and validation datasets for this fold

98 # train_dataset = dataset.select(train_idx)

99 # val_dataset = dataset.select(val_idx)

100 # trainer = Trainer(model=model , args=training_args , train_dataset=train_dataset ,

eval_dataset=val_dataset , compute_metrics=compute_metrics ,)

101 #

102 # trainer.train ()

get dataset.py

1 import mysql.connector

2 import pandas as pd

3 import json

4 import numpy as np

5 from tqdm import tqdm

6 import sys

7 sys.path.append(’../../ ’)

8 from summarizers.ocr import extract_text_from_pdf

9 import os

10 import pypdf

11

12 dno = mysql.connector.connect(

13 host="127.0.0.1",

14 user="report",

15 password=os.environ[’UPENN_PASSWORD ’],

16 port =3307,

17 database=’sla2_prod ’

18)

19

20 cursor = dno.cursor ()

21

22 cursor.execute("select * from taxonomy_term_data where vid =43;")

23 terms = cursor.fetchall ()

24 term_dict = {}

25 for x in terms:

26 term_dict[x[0]] = x[2]

27 json.dump(term_dict , open("terms.json", ’w’))

28

29 cursor.execute("select etp.entity_id event_nid , fc.field_case_target_id case_nid , (

select group_concat(substr(fm.uri ,11) order by d.delta separator ’\n ’) from

field_data_field_documents d, file_managed fm where d.entity_type=’node’ and d.

entity_id=etp.entity_id and fm.fid=d.field_documents_fid) docs from

field_data_field_event_type etp inner join field_data_field_case fc on fc.

entity_type=’node’ and fc.entity_id=etp.entity_id;")

4

30

31 myresult = cursor.fetchall ()

32 issues_columns = np.zeros ((len([x for x in myresult if x[-1] is not None and os.path

.exists(os.path.join(’pdfs_answers ’, os.path.split(x[-1])[-1]))]) - 1, len(terms

)))

33 case_names = []

34 case_text = []

35 case_num = 0

36 for i, x in enumerate(tqdm(myresult)):

37 try:

38 if x[-1] is not None and os.path.exists(os.path.join(’pdfs_answers ’, os.path

.split(x[-1])[-1])):

39 cursor.execute(f"select field_d_o_issues_tid from

field_data_field_d_o_issues where entity_id ={x[0]};")

40 issues_in_case = cursor.fetchall ()

41 if len(issues_in_case) > 0:

42 case_text.append(extract_text_from_pdf(os.path.join(’pdfs_answers ’,

os.path.split(x[-1])[-1])))

43 print(x)

44 print(issues_in_case)

45 for issue in issues_in_case:

46 issues_columns[case_num , list(term_dict.keys()).index(issue [0])]

= int(1)

47 case_num += 1

48 case_names.append(x[-1])

49 else:

50 if x[-1] is not None:

51 print(os.path.join(’pdfs_answer ’, os.path.split(x[-1])[-1]), ’ dne’)

52 except:# pypdf.errors.PdfStreamError:

53 pass

54

55 issues_columns = issues_columns [:case_num , :]

56 df_dict = {}

57 for tid in term_dict.keys():

58 df_dict[term_dict[tid]] = issues_columns [:, list(term_dict.keys()).index(tid)]

59 print(len(df_dict[term_dict[tid]]))

60 df_dict[’Name’] = case_names

61 df_dict[’Text’] = case_text

62 print(len(case_text))

63 print(len(case_names))

64

65 pd.DataFrame.from_dict(df_dict).to_csv(’dno_labels.csv’, index = False)

4 Documentation

This does the exact same thing as the old model, except it uses huggingface now. Huggingface’s
documentation on K Folding takes you to a 404 page, but there are many forum posts about K
folding with huggingface. But all of those either prevent me from collecting metrics during training
or prevent me from getting the metrics to aggregate across multiple folds. So the best way to
proceed is to get rid of the huggingface trainer and use a normal training loop. I have a training
loop from 2 weeks ago that I know works, and collects a confusion matrix that I can probably adapt
to work for K Folding and class weighting.

The dataset script is also the same as before, except instead of fetching only complaints I got
data for every type of legal document. The labels can be different for every legal document in a

5

case so I have an example for every document in the UPenn database; the model will inference
separately on each document as opposed to inferencing on all of them concanated.

5 Script Validation(Optional)

CSV in Figure 1.

6 Results Visualization

Figure 1: Shows my csv with the new labels in it

6

Figure 2: Downloaded PDFs

7

Figure 3: New Class Counts

8

Figure 4: Positive Rate Per Class, better class balance but class weighting is still needed.

9

7 Proof of work

Figure 1 and Figure 2 show the new dataset. Figure 3 and Figure 4 show the balances of the new
dataset.

8 Next Week’s proposal

• Add K Folding and class weighting to the training in the hopes that this will produce a model
that works well given the class imbalance.

10

HAAG Research Report
NLP - Sentencias / NLP - Gen Team

Week 12
Víctor C. Fernández

November 2024

1 WEEKLY PROJECT UPDATES

What progress did you make in the last week?

• Adapted model querying by reducing the input text to a window of 2000

characters around the identified date.
• Fixed issue with access to PACE for running the adapted implementation for

the models.
• Worked on the presentation/PPT for our future call with the judge Miguel.
• Worked on a pipeline to orchestrate the whole process using prefect.

What progress are you making next?

• Keep working on improving context retrieval for the dates.
• Have a presentation with Judge Miguel on Friday November 15th.
• Finalize implementation of a simple pipeline to run all processes end to end.
• Work on a simple UI to interact with the pipeline and upload and process a

single file.
• Keep working on getting more content in for our paper.

Is there anything blocking you from making progress?

No, no blockers right now.

1

2 ABSTRACTS

1. Title: Structural text segmentation of legal documents
• URL: https://dl.acm.org/doi/10.1145/3462757.3466085 (may require access-

ing with GaTech credentials to view actual paper)

• Abstract: The growing complexity of legal cases has lead to an increasing in-

terest in legal information retrieval systems that can effectively satisfy user-

specific information needs. However, such downstream systems typically

require documents to be properly formatted and segmented, which is often

done with relatively simple pre-processing steps, disregarding topical coher-

ence of segments. Systems generally rely on representations of individual

sentences or paragraphs, which may lack crucial context, or document-level

representations, which are too long for meaningful search results. To ad-

dress this issue, we propose a segmentation system that can predict topical

coherence of sequential text segments spanning several paragraphs, effec-

tively segmenting a document and providing a more balanced representa-

tion for downstream applications. We build our model on top of popular

transformer networks and formulate structural text segmentation as topical

change detection, by performing a series of independent classifications that

allow for efficient fine-tuning on task-specific data. We crawl a novel dataset

consisting of roughly 74,000 online Terms-of-Service documents, including

hierarchical topic annotations, which we use for training. Results show that

our proposed system significantly outperforms baselines, and adapts well to

structural peculiarities of legal documents. We release both data and trained

models to the research community for future work.

• Summary: The paper presents a novel approach for predicting argument

structures in legal decisions from the Court of Justice of the European Union

(CJEU) regarding fiscal state aid. The authors focus on identifying relation-

ships between propositions—such as support, rebuttal, and undercut rela-

tions—in judicial documents. They introduce a unique annotation scheme

and apply it to an existing dataset, adding layers that classify types of ar-

gumentative links between premises and conclusions. Using this enriched

dataset, they conduct experiments to assess different NLP models’ perfor-

mance in predicting argumentative links, ultimately finding that an ensem-

2

ble of residual networks yields the best results. The study contributes to

computational legal argumentation, a field that seeks to enhance access to

legal reasoning by automating the extraction and understanding of complex

argument structures.

• Relevance:This paper demonstrates methods for parsing and identifying

complex relationships in legal text. The annotation approach for linking

premises and conclusions in CJEU cases provides a structured method that

could inform our project’s extraction framework, especially in identifying

the sequence of dates and events relevant to judicial delays. The study’s fo-

cus on overcoming the challenges posed by complex legal arguments aligns

with our need to parse the often intricate and implicit timelines in Domini-

can civil cases.

3 SCRIPTS AND CODE BLOCKS

All scripts have been uploaded to the HAAG NLP Repo. Outputs files, processed

sentencias and any other document that may contain sensitive information is

located in the private NLP-Sentencias Repo.

For this week I’m maintaining the same changes from last week. Additionally

was able to execute this code in PACE after fixing the issue that was preventing

me from progressing in this area.

1. Function to combine all results from all dates into a single file here.

3

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor
https://github.gatech.edu/calexander97/sentencias
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/query_model_main_v2.py

def extract_context_around_date(text, date,
window_size=1000):↪→

text_lower = text.lower()
date_lower = date.strip()
start = 0
start_position = text.find(date_lower, start)
if start_position == -1:

print(f"Date '{date}' not found in the text.")
else:

start_index = max(start_position - window_size, 0)
end_index = min(start_position + len(date_lower) +

window_size, len(text))↪→

context = text[start_index:end_index]
return context

Code 1—Function to extract smaller date window of 2000 charac-

ters

4

def generate_output(ollama_models: list, query_template:
str, input_folder: str, dates_folder: str,
clusters_file: str, output_folder: str, repetitions:
int = 1, delete_models_after_query: bool = False,
model_hyperparameters: dict = {}):

↪→

↪→

↪→

↪→

Instantiate the OllamaModelProcessor
for model in ollama_models:

Log the model being processed:
log_in_color(f"Processing model: {model}", "green")
Step 1: Instantiate the OllamaModelProcessor
processor = OllamaModelProcessor(model,

**model_hyperparameters)↪→

Step 2: Get the output options from the clusters.json
file contained in the options key↪→

options_file = clusters_file
with open(options_file, 'r', encoding='utf-8') as f:

options_content = json.load(f)
Now set the options to be the value of the options key
options = json.dumps(options_content["options"],

ensure_ascii=False)↪→

for filename in os.listdir(input_folder):
if filename.endswith(".txt"): # Process only txt files

Log the file being processed:
log_in_color(f"Processing file: {filename}",

"blue")↪→

Remove the extension from the filename
filename_name = os.path.splitext(filename)[0]
We append locate the output folder under a

folder with the file name first and then a
folder with the model name

↪→

↪→

file_output_folder = os.path.join(output_folder,
filename_name, model)↪→

Create the output folder if it doesn't exist
os.makedirs(file_output_folder, exist_ok=True)

5

Read the content of the document
document_path = os.path.join(input_folder,

filename)↪→

with open(document_path, 'r', encoding='utf-8')
as f:↪→

document_content = f.read()
Now we query the model replacing the last place

holder with each date independently↪→

Read the dates JSON file with same name as the
document↪→

dates_file = os.path.join(dates_folder,
f"{filename_name}.json")↪→

with open(dates_file, 'r', encoding='utf-8') as
f:↪→

date_objects = json.load(f)

for i, date_object in enumerate(date_objects):
date_for_context = date_object["date"]
date_context = extract_context_around_date(do ⌋

cument_content,
date_for_context)

↪→

↪→

query_without_date =
generate_query(query_template,
date_context, options)

↪→

↪→

Log the date position being processed:
log_in_color(f"Processing date: {i}",

"magenta")↪→

expected_output = json.dumps(date_object,
ensure_ascii=False)↪→

query = query_without_date.replace("{{MODEL_O ⌋

UTPUT_FORMAT}}",
expected_output)

↪→

↪→

6

For each query, we generate <repetitions>
outputs to ensure output consistency↪→

for repetition in range(repetitions):
Log the repetition being processed:
log_in_color(f"Processing repetition:

{repetition + 1}", "yellow")↪→

output = processor.query_model(query)
output_path =

os.path.join(file_output_folder,
f"{filename_name}_{i}_{repetition +
1}.txt")

↪→

↪→

↪→

with open(output_path, 'w',
encoding='utf-8') as f:↪→

First write a line with the date
object passed to the model↪→

f.write(expected_output + "\n\n")
f.write(output)

Log the model being deleted:
log_in_color(f"Deleting model: {model}", "red")
Delete the ollama model to free up space
if delete_models_after_query:

processor._delete_model()

Code 2—Updated function to use smaller date text window for

retrieving the context

4 DOCUMENTATION

Similar to what was indicated in past reports, the pipeline/flow we’re currently

following is the one below, where we first extract and clean the documents.

Afterwards, a process takes care of diving the clean documents into smaller

pieces that can be then passed as input to a new layer where a Bert based model

in Spanish, that has been fine tuned to better identify dates over legal documents

for the Dominican Republic, is used to retrieve the dates from the corpus. Once

these dates have been identified, they will be passed on to an additional model

7

https://huggingface.co/MMG/xlm-roberta-large-ner-spanish

that will then retrieve the context of the date to identify what it is representing.

Finally, all dates will be grouped and included in one file, representing the output

of all the pieces of the original document being put together.

The following diagram represents this flow:

Figure 1—Full date extraction process

This week, my focus has been on the second to last step, with the goal of im-

proving the models results given the low accuracy obtained when performing

the benchmark. For the updates, I focused on the Llama models, running the

changes mainly with Llama 3.1, Llama 3.2 and Llama 3.1 70b.

Date context extraction

• Input template generated in txt format to feed the model and retrieve the date

context. This template contains placeholders to fill in:
• Date retrieved by model in previous steps, copied exactly from the original

8

text document.
• 2000 characters window (1000 before and 1000 after the date) from the origi-

nal text where the date is contained.
• Options/clusters template containing the categories by which to classify the

different dates retrieved.

The output of the model will be a single text file containing a JSON object with

the input date, a JSON object with the model output and a JSON object con-

taining configuration details for the executed model such as hyperparameters

used, model’s name and execution time.

5 SCRIPT VALIDATION

The intention is to query the model over a set of 5 files generating 10 outputs

for each of the dates contained in the files. Obtaining additionally, performance

metrics from the execution.

Results when benchmarking the updated logic with the 3 mentioned models

were the following:

[
{

"model_name": "llama3.2",
"hyperparameters": {

"temperature": 1e-13,
"top_k": 5,
"top_p": 0.5,
"seed": 42

},

9

"documents_evaluated": [
"Demanda en designacion de administrador

judicial-0164-2023",↪→

"Demanda en entrega de documentos-0013-2023",
"Demanda en entrega de documentos 1130-2023",
"Demanda en entrega de documentos-0891-2023",
"Demanda en entrega de documentos-0441-2022"

],
"total_correct": 3,
"total_incorrect": 43,
"total_false_positives": 417,
"total_validation_dates": 46,
"total_model_dates": 450,
"average_precision": 0.007076305220883534,
"average_recall": 0.0654040404040404,
"average_f1_score": 0.01277070679899386,
"average_accuracy": 0.0654040404040404,
"total_processing_time": 185.08245015144348,
"average_processing_time_per_execution": 0.4112943336698744

},
{

"model_name": "llama3.1",
"hyperparameters": {

"temperature": 1e-13,
"top_k": 5,
"top_p": 0.5,
"seed": 42

},
"documents_evaluated": [

"Demanda en designacion de administrador
judicial-0164-2023",↪→

"Demanda en entrega de documentos-0013-2023",
"Demanda en entrega de documentos 1130-2023",
"Demanda en entrega de documentos-0891-2023",
"Demanda en entrega de documentos-0441-2022"

],

10

"total_correct": 6,
"total_incorrect": 40,
"total_false_positives": 412,
"total_validation_dates": 46,
"total_model_dates": 457,
"average_precision": 0.014300206946056233,
"average_recall": 0.1304040404040404,
"average_f1_score": 0.025773626855414684,
"average_accuracy": 0.1304040404040404,
"total_processing_time": 248.18897771835327,
"average_processing_time_per_execution": 0.5430831022283441

},
{

"model_name": "llama3.1:70b",
"hyperparameters": {

"temperature": 1e-13,
"top_k": 5,
"top_p": 0.5,
"seed": 42

},
"documents_evaluated": [

"Demanda en designacion de administrador
judicial-0164-2023",↪→

"Demanda en entrega de documentos-0013-2023",
"Demanda en entrega de documentos 1130-2023",
"Demanda en entrega de documentos-0891-2023",
"Demanda en entrega de documentos-0441-2022"

],
"total_correct": 5,
"total_incorrect": 41,
"total_false_positives": 405,
"total_validation_dates": 46,
"total_model_dates": 449,
"average_precision": 0.012924926099808729,
"average_recall": 0.1154040404040404,
"average_f1_score": 0.023246053340694295,
"average_accuracy": 0.1154040404040404,
"total_processing_time": 1253.9444787502289,
"average_processing_time_per_execution": 2.7927493958802425

}
]

Code 3—Benchmark results for Llama 3.1, Llama 3.1 70b and

Llama 3.2

11

Execution would be carried out with the following hyperparameters:

• Temperature = 0.0000000000001,
• Top_k = 5,
• Top_p = 0.5
• Seed = 42

Here is a brief explanation of these hyperparameters:

• Temperature: A very low temperature (0.0000001) ensures that the outputs will

be highly predictable. This is useful when we are looking for consistency and

want results to be stable over time.
• Top-k: This limits the choices to only the top 5 probable words. This ensures

that the model generates meaningful outputs without straying into highly

unlikely predictions. It balances between randomness and relevance.
• Top-p: Combined with top-k, this gives fine control over the diversity of model

output. A top_p value of 0.5 means the model will only consider words that

make up 50% of the total probability distribution, ensuring more relevant re-

sults.
• Seed: Setting the seed makes the experiments reproducible, helpful for research

purposes. With the same inputs and hyperparameters, in theory, we should get

the same outputs every time (but in practice this doesn’t always happen).

6 RESULTS VISUALIZATION

The following images provide the results compared between the different models

when retrieving the context for the date given as an input to the model.

12

Figure 2—Accuracy vs. Processing time for each model

Figure 3—Total processing time for each model

13

Figure 4—Accuracy comparison between models

7 PROOF OF WORK

The implemented function now uses a smaller piece of context to retrieve the

class related to the date. This has improved the model’s accuracy, although

performance is still similar.

Below is an example of a date and context retrieved by the updated code to be

used for verifying the model’s new accuracy. Similarly to what was performed

on the previous week, to ensure stability in the results, each input will be used

10 times to generate an output.

'seis (06) días del mes de enero del año dos mil
veintitrés (2023)'↪→

Code 4—Date to be classified

14

\nPRESIDENCIA DE LA CÁMARA CIVIL Y COMERCIAL DEL JUZGADO
DE PRIMERA INSTANCIA DEL DISTRITO NACIONAL \n
Ordenanza civil núm. 123-4567-ABCD-8901 Número único
de caso (NUC) 1234-0158080 EN NOMBRE DE LA REPÚBLICA
\n Ordenanza civil núm. 504-2023-SORD-0013 Número
único de caso (NUC) 1234-0158080 En la ciudad de Santo
Domingo de Guzmán, Distrito Nacional, capital de la
República Dominicana, a los seis (06) días del mes de
enero del año dos mil veintitrés (2023); años ciento
setenta y nueve (179) de la Independencia y ciento
sesenta (160) de la Restauración. \n \nPresidencia de
la Cámara Civil y Comercial del Juzgado de Primera
Instancia del Distrito Nacional, localizada en el
primer piso del Palacio de Justicia del Centro de los
Héroes de Constanza, Maimón y Estero Hondo, en el
Distrito Nacional, República Dominicana, presidida por
XXXXXXXXXX, quien dicta esta ordenanza en sus
atribuciones de juez presidente de los referimientos y
en audiencia pública constituida por la secretaria
XXXXXXXX. \nXXXXXXXX, y el alguacil de estrados de
turno. \n \nCon motivo de la demanda en referimiento
sobre producción forzosa y entrega inmediata de
certificado de matrícula interpuesta por la señora
XXXXXXXX, dominicana, mayor de edad, titular de la
cédula de identidad y electoral núm. 123-45678-1, con
su domicilio en la calle XXXXXX, núm. 1, torre XXXXXX,
apartamento núm. 1, urbanización XXXX, XXXX

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Code 5—Window for retrieving date class

8 NEXT WEEK’S PROPOSAL

1. Keep working on improving context retrieval for the dates.

2. Have a presentation with Judge Miguel on Friday November 15th.

3. Finalize implementation of a simple pipeline to run all processes end to end.

15

4. Work on a simple UI to interact with the pipeline and upload and process a

single file.

5. Keep working on getting more content in for our paper.

16

Week 12 | HAAG - NLP | Fall 2024

Alejandro Gomez

November 8th, 2024

1 Time-log

1.1 What progress did you make in the last week?

• This week’s focus was mostly on identifying and mitigating a bug, which was ultimately a success-
ful endeavor with the help of the group’s consultant, Nathan Dahlberg. There was a tokenization
limit that I had overseen and then Nathan helped with a chunking function that chunks the train-
ing and validation sets, but also drops chunks if a date is cut off. It will also not train on blank
data without chunks.

We also began some work on a presentation for a judge in the Dominican republic judicial system
where we will share our progress and gather further intel on helpful methods we can implement.

1.2 What are you planning on working on next?

• Given this new revelation, I’ll be adding this to the large refactor I’m working on for the full
ML pipeline (i.e. the chunking). This effort is part of an epic to prepare our code for conference
submission but also to modularize the code so that when we create proof of concept this upcoming
week, then we can tweak hyperparamters easily using sliders on gradio or streamlit.

• It would also be good to get the remaining data prepared by the team. More data is always nice.

• The refactoring also includes preparing documentation for the public deployment of the NER
model, so this should feature full documentation with examples on how to use the model.

• Continuing: The labelling for the model on HugginFace also shows ”1,2,3” in the JSON file
instead of ”DATE” in the BIO format so I need to look into this next.

• We will be presenting to the judge on the 15th so we should be wrapped up with coding and
only writing the paper through the end of the term.

1.3 Is anything blocking you from getting work done?

N/A

2 Article Review

2.1 Abstract

Legal syllogism is a form of deductive reasoning commonly used by legal professionals to analyze cases.
In this paper, we propose legal syllogism prompting (LoT), a simple prompting method to teach large
language models (LLMs) for legal judgment prediction. LoT teaches only that in the legal syllogism
the major premise is law, the minor premise is the fact, and the conclusion is judgment. Then the
models can produce a syllogism reasoning of the case and give the judgment without any learning,
fine-tuning, or examples. On CAIL2018, a Chinese criminal case dataset, we performed zero-shot
judgment prediction experiments with GPT-3 models. Our results show that LLMs with LoT achieve
better performance than the baseline and chain of thought prompting, the state-of-art prompting

1

method on diverse reasoning tasks. LoT enables the model to concentrate on the key information
relevant to the judgment and to correctly understand the legal meaning of acts, as compared to other
methods. Our method enables LLMs to predict judgment along with law articles and justification,
which significantly enhances the explainability of models. doi[JY23]

2.2 Summary

This is an interesting paper and serves as a model for our writing. The topic is a bit different but it’s
adjacent to what we are moving toward in the future with regards to predictions in the legal space.
Currently we want to extract dates and then we want to grab the context from the dates. Thereafter
we can look into making predictions. The only caution I would have is prediction in judgement since
machine learning models are essentially bias predictors, but nevertheless it’s helpful to understand
where these efforts are in the industry.

3 Scripts and Code Blocks

3.1 Code

1 import pandas as pd

2

3

4 def make_it_chonky(examples , max_length =128, max_empty_example_ratio =0.2):

5 examples = [{’text’: examples[’text’][i], ’entities ’: examples[’entities ’][i]} for i

in range(len(examples[’text’]))]

6

7 all_chunks = []

8 for example in examples:

9 inputs = tokenizer(example[’text’], return_offsets_mapping=True ,

add_special_tokens=False)

10

11 input_ids , offset_mapping = inputs[’input_ids ’], inputs[’offset_mapping ’]

12 entities = example[’entities ’]

13

14 # Important that we use these offsets moving forward instead of trying to decode

chunk input_ids ,

15 # since leading spaces will be removed by the tokenizer

16 chunk_offset_mapping = [offset_mapping[i:i+max_length] for i in range(0, len(

offset_mapping), max_length)]

17 chunk_offset_mapping = [(x[0][0] , x[-1][-1]) for x in chunk_offset_mapping]

18 chunk_texts = [example[’text’][x[0]:x[1]] for x in chunk_offset_mapping]

19

20 chunks_spans = []

21 for chunk_offset in chunk_offset_mapping:

22 chunks_spans.append ([])

23 while len(entities) and chunk_offset [1] > entities [0][’end’]:

24 entity = entities.pop (0)

25 entity[’start ’] -= chunk_offset [0]

26 entity[’end’] -= chunk_offset [0]

27 chunks_spans [-1]. append(entity)

28 chunks = [{

29 ’text’: chunk_texts[i],

30 ’entities ’: chunks_spans[i],

31 } for i in range(len(chunk_texts))]

32 chunks = pd.DataFrame(chunks)

33

34 # drop any chunks that cut off the beginnings of dates

35 chunks = chunks[chunks[’entities ’].apply(lambda x: not any(y[’start ’] < 0 for y in

x))]

36

37 # limit how many chunks with no dates that we allow

38 if max_empty_example_ratio is not None:

39 chunks[’has_entity ’] = chunks[’entities ’].apply(len) != 0

40 non_empty_chunks = chunks[chunks[’has_entity ’]]

41 empty_chunks = chunks [~ chunks[’has_entity ’]]

42 max_empty_examples = int(max_empty_example_ratio * len(non_empty_chunks))

43 if len(empty_chunks) > max_empty_examples:

2

https://dl.acm.org/doi/10.1145/3594536.3595170

44 empty_chunks = empty_chunks.sample(max_empty_examples)

45 chunks = pd.concat ([non_empty_chunks , empty_chunks])

46 chunks = chunks.sample(frac =1).reset_index(drop=True)

47

48 all_chunks.append(chunks)

49

50 all_chunks = pd.concat(all_chunks)

51

52 if 0: # print for debug purposes

53 for row in all_chunks.to_dict(’records ’):

54 print(row[’text’])

55 for entity in row[’entities ’]:

56 ent_text = row[’text’][entity[’start ’]: entity[’end’]]. strip ()

57 print(’*’, row[’text’][entity[’start’]: entity[’end’]])

58 if not ent_text:

59 print(entity)

60 input()

61 print()

62 return {’text’: all_chunks[’text’]. tolist (), ’entities ’: all_chunks[’entities ’].

tolist ()}

Listing 1: chunking

This is the chunking script that will chunk the training and validation sets and remove the superflous
data as well. Special thanks to the team and Dr. Alexander and Nathan Dahlberg for helping solve
this bug.

Figure 1: confidence score

Given this new refactor, the confidence score looks still looks good. The model is confident in its
output but it is now both accurate AND precise.

3.2 List of Scripts

• Full NER pipeline Scaffolding (wip)

– Note the new inclusion of the chunking function in the current training file for the NER
model

– This is the entry point for the refactored pipeline but I need to add the chunking to one
one the modules.

– Once the refactor is complete, these are the configs we hope to be able to modify with sliders
on the Gradio UI

3

https://github.gatech.edu/calexander97/sentencias/blob/main/alejandro/12_week/3_train.py
https://github.gatech.edu/calexander97/sentencias/blob/main/alejandro/12_week/3_train.py
https://github.gatech.edu/calexander97/sentencias/blob/main/nlp/finetuning/main.py
https://github.gatech.edu/calexander97/sentencias/blob/main/nlp/finetuning/main.py
https://github.gatech.edu/calexander97/sentencias/blob/main/nlp/finetuning/modules/configurations/config.py
https://github.gatech.edu/calexander97/sentencias/blob/main/nlp/finetuning/modules/configurations/config.py

3.3 Documentation

Figure 2: pipeline visualization for code structure

This is the updated flow given the current standing of the NER model and the upcoming refactor. It
shows the current scaffolding for the configs we willbe modifying liberally and shows the NER pipeline
from creation to deployment. It also displays the expected intput ”txt” and output ”json”. This will
need to be documented on the publicly deployed cloud repo on Hugging Face so that other researchers
can continue to build on this knowledge base.

3.4 Script Validation (optional)

N/A

4

3.5 Results Visualization

Figure 3: eval loss

Figure 4: f1 score

5

Figure 5: eval accuracy

3.6 Results Visualization Summary

The above graphs have shown massive improvement! The epochs are stable now and the progression
of accuracy shows a steady increase! I now feel more confident to play with early exiting if needed so
that the further epochs may have negligible results.

3.7 Proof of Work

Scripts in GitHub Repo

4 Next Week’s Proposal

• (See first section for full list. Brief summary below)

• Present to DR judge

• Set up Proof of Concept for DR judge

• Wrap up coding and shift to publication writing

• Update current documentation, e.g. NLP website.

References

[JY23] Cong Jiang and Xiaolei Yang. Legal syllogism prompting: Teaching large language models for
legal judgment prediction. In Proceedings of the Nineteenth International Conference on Arti-
ficial Intelligence and Law, ICAIL ’23, page 417–421, New York, NY, USA, 2023. Association
for Computing Machinery.

6

https://github.gatech.edu/calexander97/sentencias/tree/main/alejandro/12_week

HAAG NLP Sentencias — Week 12 Report

NLP-Gen Team

Karol Gutierrez

November 8, 2024

1 Weekly Project Update

1.1 What progress did you make in the last week?

• Improved clustering model by using Hugging Face transformer and text semantic similarity.

• Evaluate performance with test set.

• Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.

• Continuous meetings with Dr. Alexander, Nathan and team to discuss progress on project and
publication options, as well as internal meetings with team to sync on next steps.

1.2 What are you planning on working on next?

• continue with iterations of code for context analysis.

• Work on paper with team.

• Work on slides to present to Dr. Miguel, as well as video if necessary.

• Sync on Friday with Dr. Miguel and team to get feedback on the categories to use in our analysis
as well as current performance.

• Continue fulfilling my role as Meet Manager/Documentor by working on the tasks expected for
my position (gather notes from meetings and prepare recordings).

1.3 Is anything blocking you from getting work done?

No.

2 Literature Review

Paper: Extracting Business Process Models Using Natural Language Processing (NLP) Techniques
[SV17].

2.1 Abstract

This Doctoral Consortium paper discusses how NLP can be applied in the domain of BPM in order to
automatically generate business process models from existing documentation within the organization.
The main idea is that from the syntactic and grammatical structure of a sentence, the components of
a business process model can be derived (i.e. activities, resources, tasks, patterns). The result would
be a business process model depicted using BPMN - a dedicated business process modeling technique

1

2.2 Summary

The authors address the challenge of converting written descriptions of business processes into formal
models that can be used for analysis and optimization. Their approach involves several key steps:

• Text Preprocessing: Cleaning and preparing the text, including sentence splitting and tok-
enization.

• Part-of-Speech Tagging: Identifying the grammatical role of each word (e.g., noun, verb,
adjective) to understand the structure of sentences.

• Dependency Parsing: Analyzing the grammatical relationships between words to determine
who is performing what action.

• Entity Extraction: Identifying key elements such as activities (actions), actors (people or
systems), and objects involved in the process.

• Model Generation: Mapping the extracted information into a formal business process model
using notations like BPMN (Business Process Model and Notation).

By using NLP techniques, the system can automatically generate a visual representation of the
business process that reflects the steps described in the text. The authors demonstrate their method
with examples and show that it can effectively produce accurate process models from natural language
descriptions.

2.3 Relevance

This paper is relevant to our Sentencias project because it shows how certain NLP techniques can
be used to extract structured text from unstructured text. In the paper, the authors show how to
extract business model process just from the text descriptions, we aim to extract procedural content
from the sentencias. Both projects deal with sequences of actions/events, both of them sometimes
use especialized terminology and complex sentence structures. The method from this paper can be
adapted to ours, thus helping in automating the extraction process and add value to the legal field.

3 Scripts and code blocks

The code is in the private repository repository. The progress for this week is in ./karol/week12/.

3.1 Code developed

The following items were developed this week. The full workflow of the code is shown in Figure 1.

• Script to use Hugging Face transformer to evaluate semantic similarity of context and then split
it into five buckets, Figure ??. The method used is cosine similarity.

• Code to show compare results with test set in Fig ??. This script generates the plots shown in
this report.

4 Documentation

The documentation is present in the README.md file in the repository.
For this week, the only added library is: pip install sentence-transformers.

5 Script Validation

Figure 4 shows the generated contexts from the sentencias in Spanish. This document was used to
validate the results and provide performance numbers.

2

https://github.gatech.edu/calexander97/sentencias
https://github.gatech.edu/calexander97/sentencias/

Figure 1: Code logic workflow to process data.

6 Results Visualization

I took a subset of the dates and manually labeled the categories, then compared the performance of
my classifier with respect to this set. The results can be seen in Figure 5. The results are better than
random by a reasonable margin but still it’s not a reliable classifier.

Accuracy: 0.45 Precision: 0.49 Recall: 0.45 F1 Score: 0.42

7 Proof of Work

Figures 6 and Figure 7 show the final distribution of the data and samples of the classification during
runtime, thus proving the work.

8 Next Week’s Proposal

Refer to section 1.2 for details (avoid repetition).

References

[SV17] Konstantinos Sintoris and Kostas Vergidis. Extracting business process models using natural
language processing (nlp) techniques. In 2017 IEEE 19th Conference on Business Informatics
(CBI), volume 01, pages 135–139, 2017.

3

Figure 2: Clustering of categories for context

4

Figure 3: Test results and plotting

5

Figure 4: Sentencias used for validation of results

6

Figure 5: Comparison of results with test data

Figure 6: Distribution of categories in available data

7

Figure 7: Code working and showing the classified contexts

8

Week 12 Report
Thuan Nguyen – Clearinghouse Summarization project

Friday, November 8, 2024

Summary
What progress did you make in the last week?

• Developed a proof-of-concept for generating structured, question-based summaries using
a large language model (LLM) for various document types.

• Tailored the question list dynamically based on the specific document type (e.g., court
opinions, orders).

• Implemented functionality to generate direct links to relevant sections of documents for
easier navigation.

• The code for this experiment is still being worked on, so I will upload to GitHub when it’s
complete.

What are you planning on working on next?

• Yesterday, the team provided the CSV dataset of the orders/opinions. I’ll test my model on a
bunch of orders to see how good the summaries are.

Is anything blocking you from getting work done?

• Nothing at the moment.

Abstract
INTERPRETABILITY IN THE WILD: A CIRCUIT FOR INDIRECT OBJECT IDENTIFICATION IN GPT-2
SMALL

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris & Jacob Steinhardt

+ The research investigates how the GPT-2 small model performs indirect object identification (IOI)
using 26 attention heads, structured into 7 classes, to explain the mechanism of this natural
language task.

+ A systematic approach called "path patching" was employed to trace components back from
model outputs, complemented by embedding space projections and activation patching for better
understanding.

+ The findings highlight the complexity of mechanistic interpretability, revealing instances of
redundant behavior in heads and the unexpected utilization of known structures, complicating the
search for complete mechanisms.

+ Three criteria—faithfulness, completeness, and minimality—were proposed to validate the
identified circuit, demonstrating significant improvements yet highlighting gaps in achieving full
understanding.

Work done this week – further details

 Developed a proof-of-concept for generating structured, question-based summaries using a
large language model (LLM) for various document types.

 Tailored the question list dynamically based on the specific document type (e.g., court opinions,
orders).

 Implemented functionality to generate direct links to relevant sections of documents for easier
navigation.

The code for this experiment is still being worked on, so I will upload to GitHub when it’s complete.

Scripts - Documentation - Script Validation - Results
Visualization - Proof of Work
For further details, please refer to my scripts posted on GitHub or the information above.

Next week's proposal
• Yesterday, the team provided the CSV dataset of the orders/opinions. I’ll test my model on a

bunch of orders to see how good the summaries are.

Week 12 Research Report
Thomas Orth (NLP Summarization / NLP Gen Team)

November 2024

0.1 What did you work on this week?
1. Reviewed feedback from Interview team, seems like Gemini might be the

best contender based on the grad school experiments

2. Adjusted workbench prompts based on feedback from law students to
extract more settlement information

3. Started collecting training material for next year’s VIP students

4. Reviewed how LLMs do citations in practice to see if there’s any sort of
standard. Seems like there isn’t.

5. Scheduled meeting with Jasmine from clearinghouse to discuss possible
integration as summarization work matures

6. I just got the settlement dataset so I am working through the different
types of settlements to craft my prompt better

0.2 What are you planning on working on next?
1. Meeting next week with Jasmine

2. Review more of the different settlements to improve prompts

3. Continue working with interview team to determine best model and work-
flow.

0.3 Is anything blocking you from getting work done?
1. No.

1 Abstracts
• Title: Incorporating Domain Knowledge for Extractive Summarization of

Legal Case Documents. Conference / Venue: ICAIL ’21: Proceedings
of the Eighteenth International Conference on Artificial Intelligence and
Law. Link: https://dl.acm.org/doi/10.1145/3462757.3466092

1

• Automatic summarization of legal case documents is an important and
practical challenge. Apart from many domain-independent text summa-
rization algorithms that can be used for this purpose, several algorithms
have been developed specifically for summarizing legal case documents.
However, most of the existing algorithms do not systematically incorpo-
rate domain knowledge that specifies what information should ideally be
present in a legal case document summary. To address this gap, we propose
an unsupervised summarization algorithm DELSumm which is designed
to systematically incorporate guidelines from legal experts into an opti-
mization setup. We conduct detailed experiments over case documents
from the Indian Supreme Court. The experiments show that our pro-
posed unsupervised method outperforms several strong baselines in terms
of ROUGE scores, including both general summarization algorithms and
legal-specific ones. In fact, though our proposed algorithm is unsuper-
vised, it outperforms several supervised summarization models that are
trained over thousands of document-summary pairs.

• Summary: This paper proposes an unsupervised method of summariza-
tion for legal documents that takes into account legal expert feedback.
However, this seems to be geared towards specific court type documents
instead of a general process. They also compute ROUGE scores as their
metrics. However, do not take into account expert reviews. However,
based on the information presented they have outperformed many meth-
ods present

• Relevance: They do a similar method to how we do summarization by
providing context from legal experts. Depending on how hard it is to
incorporate new legal guidelines based on the clearinghouse instead of the
legal feedback/guidelines used by the

2 Relevant Info
• Summary Chain of Thought (CoT) is a technique to prompt LLMs for

information to provide context for summarization. I took a domain centric
approach in this experiment to extract entities the Clearinghouse is looking
for specifically.

• Llama 3.2 is a popular LLM given its performance

• Ollama is a way to serve LLMs locally

• Langchain is a popular library for interacting with LLMs

• Anthropic is a company that produces the Claude family of models that
compete with GPT-4.

• The two best models in terms of accuracy and cost tradeoff is Claude 3.5
Sonnet and Claude 3 Haiku

2

3 Scripts
No scripts as focus was primarily on prompt optimization this week. I wasn’t
able to translate it to code yet due to still testing and having to deal with
move-in stuff for my new apartment.

4 Documentation
1. After making an Anthropic account and obtaining credits, go to https://console.anthropic.com/workbench

2. On the UI, you will see something like this:

Figure 1: Workbench UI

3. Click "Generate Prompt" to get the following popup:

3

Figure 2: Generate Prompt

4. Enter a basic prompt of the task you are trying to accomplish and work-
bench will expand it to give you a better starting point.

5 Results
5.1 Prompts
Below are the prompts that were refined based on feedback from law students
and workbench. First prompt will extract key details. The second will take that
information to make a summary.

First Prompt
You are a law student tasked with extracting key information from a chunk

of a settlement agreement. Your goal is to identify and summarize specific
elements of the agreement. Here is the settlement chunk you will analyze:

<settlement_chunk>
SETTLEMENT_CHUNK
</settlement_chunk>

Please extract the following information from the settlement chunk:

1. Actions to be Taken by Defendants: Describe who has agreed to do what.
Be very detailed in providing this information.

4

2. Damages (Money): Identify who is paying for what, including attorney fees.
For the money to be paid to plaintiffs, do not name the plaintiffs and report the
total sum to be paid to plaintiffs
3. Implementation and Enforcement: Note if there’s a court-appointed "moni-
tor" or other oversight.
4. Duration: How long the settlement is in effect.
5. Conditional Agreements: Mention any conditions for the settlement (e.g.,
"will only agree IF ...").
6. Policy Adoptions: Note any agreement to adopt policies and provide any
relevant details about those policies. Do not omit important information and
describe in detail.
7. The date of the settlement: This is typically the document’s filing date, the
date the document is dated, or the date of execution

For each piece of information you extract, include a citation of the text from
the settlement chunk that supports your conclusion. Use the following format:

<citation>(Exact quote from the text)</citation>
If any of the requested information is not present in the settlement chunk,

state "Not Specified" for that item.

If any acronyms are present and their definitions are defined, please spell
out the acronym the first time its used.

After extracting the information, provide a brief summary of your findings.

Important: Do not extract or include the following types of information:
- Introductory and Boilerplate Information
- Reporting Information (how parties must report progress)
- Notice for Class Actions (how parties must give notice to consumers for class
action suits)
- Giving Up Claims or Admitting Fault (it’s a given that settling parties must
give up claims)

Present your findings in the following format:
<extracted_information>

1. Actions to be Taken by Defendants:
(Your summary)
(Citation if applicable)

2. Damages (Money):
(Your summary)
(Citation if applicable)

3. Implementation and Enforcement:
(Your summary)
(Citation if applicable)

5

4. Duration:
(Your summary)
(Citation if applicable)

5. Conditional Agreements:
(Your summary)
(Citation if applicable)

6. Policy Adoptions:
(Your summary)
(Citation if applicable)

7. Date of the settlement:
(Your info)
(Citation if applicable)
</extracted_information>

<summary>
(Your brief summary of the key points found in the settlement chunk)
</summary>

View from workbench:

Figure 3: Workbench for Prompt 1

Second Prompt:
You are a law student skilled at distilling extracted information and partial

summaries into informative summaries. You will be provided with a set of

6

extracted information and a partial summary about a legal settlement. Your
task is to create a concise, one-paragraph summary of the settlement.

Here is the extracted information and partial summary:
<extracted_info_and_summary>

EXTRACTED_INFO_AND_SUMMARY
</extracted_info_and_summary>

Using the provided information, create a summary of the settlement follow-
ing these guidelines:

1. Begin with a sentence describing when the settlement was reached, in-
cluding the specific date.
2. Include information on the following aspects, if available:
- Actions to be Taken by Defendants
- Damages (Money)
- Implementation and Enforcement
- Duration
- Conditional Agreements
- Policy Adoptions
3. Keep the summary to one paragraph. 4. If any information provides a cita-
tion, do not use that information in your summary.
5. Do not omit any of the actions or policy adoptions noted.
5. Write the summary in past tense.

Carefully review the extracted information and partial summary to ensure
you capture all relevant details. Focus on presenting the most important aspects
of the settlement in a clear and concise manner.

Please provide your summary within <summary> tags. Do not include any
additional commentary or explanations outside of the summary itself.

Example generate summary:
<summary> A settlement was reached on November 21, 1996, establishing

comprehensive requirements for Chicago Public Schools (CPS) and the Illinois
State Board of Education regarding homeless students’ education. The agree-
ment required CPS to provide immediate enrollment for homeless students, offer
transportation assistance including CTA tokens and alternative transportation
options, implement dispute resolution processes, provide staff training, coordi-
nate with other agencies serving homeless students, and offer tutoring services.
The settlement mandated the adoption of several key policies, including the
Policy on Education of Homeless Children and Youth, along with specific poli-
cies covering enrollment requirements, non-discrimination, transportation, and
dispute resolution procedures. While no direct monetary damages were speci-
fied in the settlement beyond attorney’s fees (to be negotiated), the agreement
established reporting requirements through the 1998-99 school year. The Court
retained jurisdiction for enforcement purposes, allowing class members to file
motions to enforce the terms of the agreement. </summary>

7

6 Proof of work
The prompts were generated using Anthropic Workbench and ran using their
LLMs, so the results are relatively reliable.

6.1 Known Limitations
With the new dataset I was given, there are different types of settlement such
as Consent Decrees which need I believe need to be mentioned in the output
summary. So I will be adding that to the prompt.

8

