
HAAG NLP Summarization Week 12

Michael Bock

November 2024

1 Slack Questions

What did you accomplish this week?

• Finished LLaMa training pipeline by carefully selecting validation set and using class weight-
ing to correct for class imbalance

• Used TFIDF to improve classification results

• Identified documents that failed to OCR

• Identified empty documents

What are you planning on working on next?

• Get TFIDF working in PyTorch so I can use class weighting on it.

• Start on end of semester report that we will be giving to UPenn.

• Train on new data provided by OCR team

• If there is time, explore RNNs and seq2seq models again.

What is blocking you from progressing?

• None

2 Abstract

With the rapid growth of Text sentiment analysis, the demand for automatic classification of elec-
tronic documents has increased by leaps and bound. The paradigm of text classification or text
mining has been the subject of many research works in recent time. In this paper we propose a
technique for text sentiment classification using term frequency- inverse document frequency (TF-
IDF) along with Next Word Negation (NWN). We have also compared the performances of binary
bag of words model, TF-IDF model and TF-IDF with ‘next word negation’ (TF-IDF-NWN) model
for text classification. Our proposed model is then applied on three different text mining algorithms
and we found the Linear Support vector machine (LSVM) is the most appropriate to work with
our proposed model. The achieved results show significant increase in accuracy compared to earlier
methods.

1

2.1 Brief Analysis

Term Frequency Inverse Document Frequency (TFIDF) is a way to turn a document into a fixed
length vector. It counts the number of times words appear in the document and weights rare words
more heavily than common words. I was having trouble with LLaMa’s size so I used TFIDF as
features for a model and got good results. The fact that TFIDF goes from a full document to a fixed
length feature vector reminds me a lot of sequence to sequence and I wonder if a tiny model could
map onto a fixed length feture vector that is small enough for us to inference on. Dr. Alexander
also had the idea of chunking, which is kind of similar to this TFIDF/seq2seq idea.

3 Scripts and Code Blocks

hf training.py

1 import os

2 import ast

3 import pandas as pd

4 from labels import DNO_ISSUES

5 from datasets import Dataset

6 from transformers import AutoTokenizer

7 from peft import prepare_model_for_kbit_training , AutoPeftModel

8 from peft import LoraConfig , get_peft_model

9 import datetime

10 import os

11 from transformers import AutoTokenizer

12 from transformers import AutoModelForSequenceClassification , AutoModel

13 from transformers import TrainingArguments , Trainer , BitsAndBytesConfig

14 import numpy as np

15 import evaluate

16 from sklearn.metrics import precision_recall_fscore_support

17 from sklearn.model_selection import StratifiedKFold

18 from torch.utils.data import DataLoader

19 from torch import nn

20 import torch

21 from sklearn.utils.class_weight import compute_class_weight

22 from accelerate import Accelerator

23

24 accelerator = Accelerator ()

25 device = accelerator.device

26

27 #device = torch.device ("cuda" if torch.cuda.is_available () else "cpu")

28

29 model_name = "meta -llama/Llama -3.2-1B"

30 tokenizer = AutoTokenizer.from_pretrained(model_name , token = os.environ[’HF_TOKEN ’

])

31 batch_size = 2

32 df = pd.read_csv(’dno_labels.csv’).dropna ()

33

34 df[’labels ’] = [[x[issue_name] for issue_name in DNO_ISSUES] for _, x in df.iterrows

()]

35

36 class_weights = {}

37 pos_weighting = []

38 for issue in DNO_ISSUES:

39 if issue != ’Cyber ’:

2

40 class_weights[issue] = compute_class_weight(class_weight="balanced", classes

=np.array ([0, 1]), y=df[issue])

41 pos_weighting.append(class_weights[issue][1]/ class_weights[issue][0])

42 else:

43 pos_weighting.append (0.0)

44

45 pos_weighting = torch.tensor(pos_weighting).to(device)

46

47 samples = {issue: sum(np.array(df[issue])) for issue in DNO_ISSUES}

48 samples = dict(sorted(samples.items(), key=lambda item: item[1], reverse=False))

49

50 train_dataset = {issue: [] for issue in df.columns}

51 val_dataset = {issue: [] for issue in df.columns}

52 for issue in samples:

53 this_issue = df[df[issue] == 1.0]#.iloc[:int(len(df[df[issue] == 1.0]) * 0.2)])

54 this_issue_train = this_issue.iloc[:int(len(this_issue) * 0.8)]

55 this_issue_val = this_issue.iloc[int(len(this_issue) * 0.8):]

56

57 for column in this_issue_train.columns:

58 train_dataset[column]. extend(this_issue_train[column])

59

60 for column in this_issue_val.columns:

61 val_dataset[column]. extend(this_issue_val[column])

62

63 df = df[df[issue] != 1.0]

64

65 df_train = pd.DataFrame(train_dataset)

66 df_val = pd.DataFrame(val_dataset)

67

68 train_dataset = Dataset.from_pandas(df_train)#.train_test_split(test_size =0.2)

69 val_dataset = Dataset.from_pandas(df_val)

70

71 #tokenizer = AutoTokenizer.from_pretrained (" FacebookAI/xlm -roberta -base")

72 #tokenizer.add_special_tokens ({’pad_token ’: ’[PAD]’})

73 tokenizer.pad_token = tokenizer.eos_token

74

75 max_seq_length = tokenizer.model_max_length # or model.config.

max_position_embeddings

76 print(f"Model’s maximum sequence length: {max_seq_length}")

77

78 def tokenize_function(examples):

79 examples[’Text’] = [e.replace(’\n’, ’’) for e in examples["Text"]]

80 return tokenizer(examples[’Text’], padding="max_length", max_length=

max_seq_length //4, truncation=True , return_tensors=’pt’)

81

82 train_tokenized_dataset = train_dataset.map(tokenize_function , batched=True)

83 train_tokenized_dataset = train_tokenized_dataset.remove_columns (["Text"])

84 train_tokenized_dataset = train_tokenized_dataset.remove_columns (["Name"])

85 train_tokenized_dataset.set_format("torch")

86 train_tokenized_dataset = train_tokenized_dataset.filter(lambda example: len(example

[’input_ids ’]) > 1000)#.select(range (100))

87

88 val_tokenized_dataset = val_dataset.map(tokenize_function , batched=True)

89 val_tokenized_dataset = val_tokenized_dataset.remove_columns (["Text"])

90 val_tokenized_dataset = val_tokenized_dataset.remove_columns (["Name"])

91 val_tokenized_dataset.set_format("torch")

92 val_tokenized_dataset = val_tokenized_dataset.filter(lambda example: len(example[’

input_ids ’]) > 1000)#.select(range (100))

3

93

94 print(’Filtered Train: ’, len(train_tokenized_dataset))

95 print(’Filtered Val: ’, len(val_tokenized_dataset))

96

97 quantization_config = dict(load_in_4bit=True , bnb_4bit_use_double_quant=True ,

bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="bfloat16")

98 #quantization_config=quantization_config

99 base_model = AutoModelForSequenceClassification.from_pretrained(model_name ,

num_labels=len(DNO_ISSUES), problem_type="multi_label_classification",

torch_dtype = torch.bfloat16 , attn_implementation = "flash_attention_2",

device_map ={"": torch.cuda.current_device ()})

100

101 base_model = prepare_model_for_kbit_training(base_model)

102

103 lora_config = LoraConfig(r=8, lora_alpha =32, target_modules="all -linear",

lora_dropout =0.01, task_type="SEQ_CLS" ,)

104

105 model = get_peft_model(base_model , lora_config)

106 model.config.pad_token_id = tokenizer.pad_token_id

107

108 def numpy_sigmoid(x):

109 return 1 / (1 + np.exp(-x))

110

111 def compute_metrics(eval_pred):

112 logits , labels = eval_pred

113 preds = (numpy_sigmoid(logits) >= 0.5).astype(int)

114 x = precision_recall_fscore_support(preds , labels , average=’macro ’)

115 metrics = dict(precision=x[0], recall=x[1], f1=x[2])

116 x = precision_recall_fscore_support(preds , labels)

117 for i, label_name in enumerate(DNO_ISSUES):

118 metrics[f’{label_name}__f1’] = x[2][i]

119 print(logits , labels)

120 losses = nn.BCEWithLogitsLoss(pos_weight = pos_weighting)(torch.tensor(logits).

to(device), torch.tensor(labels).to(device))

121 metrics[’loss’] = losses

122 return metrics

123

124 now = datetime.datetime.now()

125 logdir = now.strftime(’/home/hice1/mbock9/scratch/runs_hf/tensorboard /%Y%m%d_%H%M%S’

)

126 savedir = now.strftime(’/home/hice1/mbock9/scratch/runs_hf/checkpoints /%Y%m%d_%H%M%S

’)

127

128 #eval_steps =1.0,

129 training_args = TrainingArguments(

130 output_dir=savedir ,

131 num_train_epochs =1,

132 per_device_train_batch_size=batch_size ,

133 per_device_eval_batch_size=batch_size ,

134 gradient_accumulation_steps =1,

135 learning_rate =3e-4,

136 warmup_ratio =0.03,

137 save_strategy=’steps’,

138 eval_strategy=’steps’,

139 save_total_limit = 2,

140 load_best_model_at_end = True ,

141 report_to=’tensorboard ’,

142 logging_dir=logdir ,

4

143 logging_strategy = ’steps’,

144 overwrite_output_dir=True ,

145 ddp_find_unused_parameters = False ,

146 dataloader_num_workers = 4,

147 fp16 = True ,

148 optim = ’adafactor ’

149)

150

151 class ClassWeightedTrainer(Trainer):

152 def compute_loss(self , model , inputs , return_outputs = False):

153 labels = inputs.pop("labels")

154 outputs = model (** inputs)

155 logits = outputs.get("logits")

156 losses = nn.BCEWithLogitsLoss(pos_weight = pos_weighting)(logits.to(device),

labels.to(device))

157 return (losses , outputs) if return_outputs else losses

158

159 #train_dataloader = DataLoader(train_tokenized_dataset , shuffle=True , batch_size =8)

160 #eval_dataloader = DataLoader(val_tokenized_dataset , batch_size =8)

161

162 #model , training_dataloader , val_dataloader = accelerator.prepare(model ,

training_dataloader , val_dataloader)

163 model.gradient_checkpointing_enable(gradient_checkpointing_kwargs ={"use_reentrant":

False})

164 trainer = accelerator.prepare(ClassWeightedTrainer(model=model , args=training_args ,

train_dataset=train_tokenized_dataset , eval_dataset=val_tokenized_dataset ,

compute_metrics=compute_metrics ,))

165 trainer.train ()

tfidf training.py

1 import os

2 import ast

3 import pandas as pd

4 from labels import DNO_ISSUES

5 from datasets import Dataset

6 from transformers import AutoTokenizer

7 from peft import prepare_model_for_kbit_training , AutoPeftModel

8 from peft import LoraConfig , get_peft_model

9 import datetime

10 import os

11 from transformers import AutoTokenizer

12 from transformers import AutoModelForSequenceClassification , AutoModel

13 from transformers import TrainingArguments , Trainer , BitsAndBytesConfig

14 import numpy as np

15 import evaluate

16 from sklearn.metrics import precision_recall_fscore_support

17 from sklearn.model_selection import StratifiedKFold

18 from torch.utils.data import Dataset , DataLoader

19 from torch import nn

20 from torch import optim

21 import torch

22 from sklearn.utils.class_weight import compute_class_weight

23 from accelerate import Accelerator

24 from sklearn.feature_extraction.text import TfidfVectorizer

25 from transformers import PreTrainedModel , PretrainedConfig

26 from tqdm import tqdm

27

28 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

5

29

30 df = pd.read_csv(’dno_labels.csv’).dropna ()

31

32 df[’labels ’] = [[x[issue_name] for issue_name in DNO_ISSUES] for _, x in df.iterrows

()]

33

34 df[’word_count ’] = df[’Text’]. apply(lambda x: len(x))

35 df = df[df[’word_count ’] >= 2000]

36

37 df = df.drop(columns =[’word_count ’])

38

39 class_weights = {}

40 pos_weighting = []

41 for issue in DNO_ISSUES:

42 if issue != ’Cyber ’:

43 class_weights[issue] = compute_class_weight(class_weight="balanced", classes

=np.array ([0, 1]), y=df[issue])

44 pos_weighting.append(class_weights[issue][1]/ class_weights[issue][0])

45 else:

46 pos_weighting.append (0.0)

47

48 pos_weighting = torch.tensor(pos_weighting).to(device)

49

50 samples = {issue: sum(np.array(df[issue])) for issue in DNO_ISSUES}

51 samples = dict(sorted(samples.items(), key=lambda item: item[1], reverse=False))

52

53 train_dataset = {issue: [] for issue in df.columns}

54 val_dataset = {issue: [] for issue in df.columns}

55 for issue in samples:

56 this_issue = df[df[issue] == 1.0]#.iloc[:int(len(df[df[issue] == 1.0]) * 0.2)])

57 this_issue_train = this_issue.iloc[:int(len(this_issue) * 0.8)]

58 this_issue_val = this_issue.iloc[int(len(this_issue) * 0.8):]

59

60 for column in this_issue_train.columns:

61 train_dataset[column]. extend(this_issue_train[column])

62

63 for column in this_issue_val.columns:

64 val_dataset[column]. extend(this_issue_val[column])

65

66 df = df[df[issue] != 1.0]

67

68 df_train = pd.DataFrame(train_dataset)

69 df_val = pd.DataFrame(val_dataset)

70

71 vectorizer = TfidfVectorizer(sublinear_tf=True , max_df =0.5, min_df=5, stop_words="

english")

72 X_train = vectorizer.fit_transform(df_train[’Text’]).toarray ().astype(np.float32)

73 X_val = vectorizer.transform(df_val[’Text’]).toarray ().astype(np.float32)

74

75 class TfIdf(Dataset):

76 def __init__(self , train = True):

77 if train:

78 self.df = df_train

79 self.X = X_train

80 else:

81 self.df = df_val

82 self.X = X_val

83

6

84 def __len__(self):

85 return len(self.df)

86

87 def __getitem__(self , idx):

88 return self.X[idx], torch.tensor(self.df[’labels ’][idx])

89

90 #base_model = AutoModelForSequenceClassification.from_pretrained(model_name ,

num_labels=len(DNO_ISSUES), problem_type =" multi_label_classification",

device_map ={"": torch.cuda.current_device ()})

91 class MLP(nn.Module):

92 def __init__(self , input_size , hidden_size , output_size , num_hidden_layers):

93 super(MLP , self).__init__ ()

94

95 layers = []

96 # Input layer

97 layers.append(nn.Linear(input_size , hidden_size)) # First hidden layer

98

99 # Hidden layers

100 for _ in range(num_hidden_layers - 1):

101 layers.append(nn.ReLU()) # Activation function

102 layers.append(nn.Linear(hidden_size , hidden_size)) # Next hidden layer

103

104 layers.append(nn.ReLU()) # Activation function for last hidden layer

105 layers.append(nn.Linear(hidden_size , output_size)) # Output layer

106 layers.append(nn.Sigmoid ()) # Softmax activation for multi -class

classification

107

108 # Create the model using nn.Sequential

109 self.model = nn.Sequential (* layers)

110 def forward(self , x):

111 return self.model(x)

112

113 train_ds = TfIdf(train = True)

114 val_ds = TfIdf(train = True)

115

116 input_size = X_val.shape [1] # Number of features (words)

117 hidden_size = 128 # Arbitrary hidden layer size

118 output_size = 51 # Number of labels

119

120 model = MLP(input_size , hidden_size , output_size , 3)

121

122 # Binary Cross -Entropy loss for multi -label classification

123 criterion = nn.BCELoss ()

124 optimizer = optim.Adam(model.parameters (), lr =0.001)

125

126 batch_size = 16

127 train_loader = DataLoader(train_ds , batch_size=batch_size , shuffle=True)

128 val_loader = DataLoader(val_ds , batch_size=batch_size , shuffle=True)

129 epochs = 5

130 for epoch in range(epochs):

131 model.train ()

132 running_loss = 0.0

133 for inputs , labels in tqdm(train_loader , total = len(train_loader)):

134

135 outputs = model(inputs)

136

137 loss = criterion(outputs , labels)

138

7

139 optimizer.zero_grad ()

140 loss.backward ()

141 optimizer.step()

142

143 running_loss += loss.item()

144

145 print(f"Epoch [{ epoch +1}/{ epochs}], Loss: {running_loss/len(train_loader)}")

tfidf notebook, which results are taken from

1 import pandas as pd

2 from sklearn.feature_extraction.text import TfidfVectorizer

3 from sklearn.linear_model import RidgeClassifier

4 from sklearn.neural_network import MLPClassifier

5 import matplotlib.pyplot as plt

6 from labels import DNO_ISSUES

7 from sklearn.metrics import RocCurveDisplay

8 import numpy as np

9 from sklearn.metrics import f1_score

10 from sklearn.metrics import roc_curve , roc_auc_score

11 df = pd.read_csv(’./ dno_labels.csv’).dropna(how = ’any’)

12

13 df = pd.read_csv("dno_labels.csv", sep=",").dropna ()

14 samples = {issue: sum(np.array(df[issue])) for issue in DNO_ISSUES}

15 samples = dict(sorted(samples.items(), key=lambda item: item[1], reverse=False))

16 print(samples)

17 train_dataset = {issue: [] for issue in df.columns}

18 val_dataset = {issue: [] for issue in df.columns}

19 #train_df

20 for issue in samples:

21 #print(df[df[issue] == 1.0]. iloc[:int(len(df[df[issue] == 1.0]) * 0.2)])

22 this_issue = df[df[issue] == 1.0]#.iloc[:int(len(df[df[issue] == 1.0]) * 0.2)])

23 this_issue_train = this_issue.iloc[:int(len(this_issue) * 0.8)]

24 this_issue_val = this_issue.iloc[int(len(this_issue) * 0.8):]

25

26 for column in this_issue_train.columns:

27 train_dataset[column]. extend(this_issue_train[column])

28

29 for column in this_issue_val.columns:

30 val_dataset[column]. extend(this_issue_val[column])

31

32 df = df[df[issue] != 1.0]

33 #print(df.iloc [:])

34

35 df_train = pd.DataFrame(train_dataset)

36 df_val = pd.DataFrame(val_dataset)

37 vectorizer = TfidfVectorizer(

38 sublinear_tf=True , max_df =0.5, min_df=5, stop_words="english"

39)

40

41 X_train = vectorizer.fit_transform(df_train[’Text’])

42 X_val = vectorizer.transform(df_val[’Text’])

43

44 from tqdm import tqdm

45

46 plt.figure ()

47 f1_scores = {}

48 for issue in tqdm(DNO_ISSUES):

49 clf = MLPClassifier ()

8

50 if issue != ’Cyber ’:

51 clf.fit(X_train , df_train[issue])

52

53 pred = clf.predict(X_val)

54 f1_scores[issue] = f1_score(df_val[issue], pred)

55

56 prob = clf.predict_proba(X_val)[:, 1]

57 fpr , tpr , thresholds = roc_curve(df_val[issue], prob)

58

59 # Calculate AUC

60 auc = roc_auc_score(df_val[issue], prob)

61

62 # Plot ROC curve

63

64 plt.plot(fpr , tpr , label=f’ROC Curve {issue} (AUC = {auc:.2f})’)

65 plt.plot([0, 1], [0, 1], ’k--’) # Diagonal line

66 plt.xlabel(’False Positive Rate’)

67 plt.ylabel(’True Positive Rate’)

68 plt.title(’ROC Curve ’)

69 plt.legend(loc=’center left’, bbox_to_anchor =(1, 0.5))

70 plt.show()

how I fixed the problem with the green line where some classes had no validation data

1 df = pd.read_csv("dno_labels.csv", sep=",").dropna ()

2 samples = {issue: sum(np.array(df[issue])) for issue in DNO_ISSUES}

3 samples = dict(sorted(samples.items(), key=lambda item: item[1], reverse=False))

4 print(samples)

5 train_dataset = {issue: [] for issue in df.columns}

6 val_dataset = {issue: [] for issue in df.columns}

7 #train_df

8 for issue in samples:

9 #print(df[df[issue] == 1.0]. iloc[:int(len(df[df[issue] == 1.0]) * 0.2)])

10 this_issue = df[df[issue] == 1.0]#.iloc[:int(len(df[df[issue] == 1.0]) * 0.2)])

11 this_issue_train = this_issue.iloc[:int(len(this_issue) * 0.8)]

12 this_issue_val = this_issue.iloc[int(len(this_issue) * 0.8):]

13

14 for column in this_issue_train.columns:

15 train_dataset[column]. extend(this_issue_train[column])

16

17 for column in this_issue_val.columns:

18 val_dataset[column]. extend(this_issue_val[column])

19

20 df = df[df[issue] != 1.0]

21 #print(df.iloc [:])

22

23 df_train = pd.DataFrame(train_dataset)

24 df_val = pd.DataFrame(val_dataset)

4 Documentation

Two things have happened. First, in the LLaMa trainer I corrected the class imbalance problems I
was having last week. K Folding wasn’t the solution there, instead I very carefully put the dataset
together by going through the dataset class by class and adding 20% of each class to the validation
set, and the rest to the training set. This resulted in a train/val split of 80/20.

9

I trained a model using sklearn’s TFIDF function, which produced a shorter fixed length feature
vector for me to use. I then trained separate sklearn MLP Classifiers for each class and recorded
their validation performance. I did this because when I tried using LLaMa, it took 11 hours per
epoch, which was more than the 8 hour time limit on PACE. The 11 hour runtime limited my
ability to experiment and was slowing progress too much, so we moved away from LLaMa because
TFIDF ran faster.

5 Script Validation(Optional)

N/A, quicker script

6 Results Visualization

Issue Name TDIDF F1 Score LLaMa F1 Score
Bodily injury 0.285 0.0
Didn’t settle when should have 0.129 0.0
Fraud/criminal/illegal conduct 0.2041 0.0625
Restitution/ disgorgement is not ”Loss” 0.478 0.0
Settlement amount unreasonable 0.0 NaN
What is a ”Claim”? 0.434 0.0
”Insured” v ”Insured” 0.488 0.0
Failed to get insurer consent 0.269 0.0
Other ”Loss” issues 0.348 0.0
Other issues arising from insurer settlement conduct 0.127 0.0
Property damage 0.129 0.0
What is a ”Securities Claim”? 0.456 0.0
Libel or slander 0.0 0.0
Other issues arising from PH settlement conduct 0.0 0.0
Unjust enrichment (profits not entitled) 0.487 0.0
What is a ”Related Claim” / ”Interrelated Wrongful Act”? 0.548 0.0606
Employment practices 0.0 0.0
Prior claim / notice 0.352 0.0
What counts as ”Loss”? 0.630 0.1667
Prior acts 0.1875 0.0
Professional services 0.583 0.0
Who is an ”Insured”? 0.388 0.0
Fiduciary liability 0.0 NaN
Prior or pending litigation / proceeding 0.2 0.0
Wrongful act not in capacity as a director or officer of the insured 0.326 0.0
Cyber 0 NaN
Late notice or reporting issue 0.480 0.0588
Prior knowledge 0.2 0.0
Bump up 0.815 0.0
Retro date issue 0.167 0.0

10

Misrepresentation/Rescission 0.356 0.0
Regulatory 0.571 NaN
Insolvency 0.222 NaN
Market segmentation exclusion issues 0.552 0.0
Contract 0.439 0.0
Exclusion issues 0.745 0.4545
Antitrust/restraint of trade/unfair business practice 0.0 0.0
Severability 0.0 0.0
Insurer refused to pay defense 0.620 0.6900
Privacy/IP 0.0 0.0
Laser exclusion 0.16 0.0
PH failed to cooperate 0.319 0.0
PH settlement conduct 0.213 0.0
What counts as ”Final Adjudication” 0.174 0.0
Insurer settlement conduct 0.128 0.0
Other exclusion issues 0.454 0.0
Other insurance 0.510 0.0
Allocation 0.468 0.0
Arbitration 0.0 0.0
Bad faith 0.658 0.2857
Other Coverage Issues 0.508 0.0

Table 1: TFIDF F1 vs LLaMa F1

11

Figure 1: ROC Curves from TFIDF Model

12

Figure 2: F1 Scores and Positive Rate

13

Figure 3: Eval F1 Rising overtime

Figure 4: Runtime Too Long, this run was only out to around half an epoch, which is why it says
6 hours.

Figure 5: Eval loss goes down, model learns

14

7 Proof of work

I think the TFIDF results and the LLaMa results are reasonable. The Eval F1 should go up during
training as more examples are seen by LLaMa so I’m not surprised by these. We haven’t been using
LLaMa lately because of its long runtime. The long runtime comes from not having a large batch
size due to long texts and from the number of parameters LLaMa has.

I want to argue that TFIDF with a MLP on the back of it is a good enough classifier on DNO
issues that this technique or techniques like it (seq2seq) should be pursued for the rest of the DNO
project over techniques like LLaMa and Longformer. At the core of my argument is Figure 1. The
point is that black dashed line is the result of randomly guessing; it’s a random chance line. AUC
stands for area under curve, which measures the integral of each ROC curve in the plot and is in
the legend. The random chance line has an AUC of 0.5. So if you have an AUC that is more than
0.5, it means the classifier is better than randomly guessing. An AUC below 0.5 means that the
model is worse than randomly guessing. All of the AUC scores - even for classes that have F1 scores
of 0 in Table 1 have an AUC greater than 0.5, meaning that the classifier is at least better than
randomly guessing for all of them. Additionally, at every point, almost all of the classes’ ROC curve
is above the random chance line. Some undergraduate students are looking into why certain issues
like Severability are parts below the random chance line and we think it might have something to
do with OCR failing. We are working to get a new dataset with more OCR’d cases and we are also
trying to remove cases which only have cover pages.

8 Next Week’s proposal

• Get TFIDF working in PyTorch so I can use class weighting on it.

• Start on end of semester report that we will be giving to UPenn.

• Train on new data provided by OCR team

• If there is time, explore RNNs and seq2seq models again.

15

HAAG Research Report
NLP - Sentencias / NLP - Gen Team

Week 13
Víctor C. Fernández

November 2024

1 WEEKLY PROJECT UPDATES

What progress did you make in the last week?

• Looked into prompt engineering to improve the Llama model’s performance
• Completed presentation for call with Judge Miguel updating our project’s cur-

rent status
• Worked on a pipeline to orchestrate the whole process using prefect.

What progress are you making next?

• Filling in a preliminary version for the project’s paper.
• Complete full implementation of a simple pipeline to run all processes end to

end.
• Document and upload all code to the Sentencias private folder.

Is there anything blocking you from making progress?

No, no blockers right now.

1

2 ABSTRACTS

1. Title: Process mining-enabled jurimetrics: analysis of a Brazilian court’s judi-

cial performance in the business law processing
• URL: https://dl.acm.org/doi/10.1145/3462757.3466137 (may require access-

ing with GaTech credentials to view actual paper)

• Abstract: Improving judicial performance has become increasingly relevant

to guarantee access to justice for all, worldwide. In this context, technology-

enabled tools to support lawsuit processing emerge as powerful allies to

enhance the justice efficiency. Using electronic lawsuit management systems

within the courts of justice is a widespread practice, which also leverages

production of big data within judicial operation. Some jurimetrics tech-

niques have arisen to evaluate efficiency based on statistical analysis and

data mining of data produced by judicial information systems. In this sense,

the process mining area offers an innovative approach to analyze judicial

data from a process-oriented perspective. This paper presents the applica-

tion of process mining in a event log derived from a dataset containing

business lawsuits from the Court of Justice of the State of Sao Paulo, Brazil

- the largest court in the world - in order to analyze judicial performance.

Although the results show these lawsuits have an ad hoc sequence flow, pro-

cess mining analysis have allowed to identify most frequent activities and

process bottlenecks, providing insights into the root causes of inefficiencies.

• Summary: The paper explores the application of process mining to evaluate

judicial performance in business law cases within the Court of Justice of

São Paulo, Brazil. The study leverages process mining techniques to analyze

an event log of over 4,700 cases and 266,000 events, identifying procedural

bottlenecks and inefficiencies in the judicial process. Key findings include

prolonged case durations and specific delays caused by resource constraints

and procedural complexities. By employing a process-oriented approach,

the study provides actionable insights into the root causes of inefficiencies

and proposes potential areas for automation and performance improvement.

• Relevance:This paper focuses on extracting dates and other critical proce-

dural information from Dominican judicial decisions (sentencias) to analyze

2

court congestion. The application of process mining in this study demon-

strates how procedural event logs can uncover bottlenecks and delays in

judicial workflows. These techniques could be adapted to identify temporal

patterns in the sentencias dataset, enabling a deeper understanding of de-

lays caused by specific procedural steps. Furthermore, the process mining

approach aligns with our goal of structuring judicial data to inform policy

recommendations aimed at improving case resolution efficiency in the Do-

minican Republic.

3 SCRIPTS AND CODE BLOCKS

All scripts have been uploaded to the HAAG NLP Repo. Outputs files, processed

sentencias and any other document that may contain sensitive information is

located in the private NLP-Sentencias Repo.

For this week I’ve been aiming for multiple ways of querying the model to re-

trieve the right information only by modifying the prompt and how it is validated

afterwards. All the code was executed within PACE given it required a larger

memory and GPU for running the Llama 3.1 70B model.

1. Multiple prompts used for querying the model here.

3

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor
https://github.gatech.edu/calexander97/sentencias
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/prompt_engineering

Analiza el siguiente texto:

{{DOCUMENT_CONTENT}}

Por favor, según la información en el texto, sustituye
"TO_BE_FILLED_IN" con la opción adecuada que represente lo que
indica la fecha y devuelve solo un JSON.

↪→

↪→

Utilizando solo las siguientes opciones para la respuesta:

Opciones:
{{OPTIONS}}

Importante: Incluye solo el JSON en la respuesta.

Estos son los datos a rellenar:
{{MODEL_OUTPUT_FORMAT}}

Code 1—Prompt version 1

4

Analiza el siguiente texto y, según la información proporcionada,
sustituye "TO_BE_FILLED_IN" con la opción adecuada que
represente lo que indica la fecha. Devuelve solo un JSON.

↪→

↪→

Ejemplos:

Texto: "El 10 de mayo de 2023 se presentó la demanda en el
juzgado."↪→

Opciones: ["fecha de presentación de demanda", ...]
Datos a rellenar:
{

"date": "10 de mayo de 2023",
"event": "TO_BE_FILLED_IN"

}
Respuesta esperada:
{

"date": "10 de mayo de 2023",
"event": "fecha de presentacion de demanda"

}

Tu turno:

Texto: "{{DOCUMENT_CONTENT}}"
Opciones:
{{OPTIONS}}
Datos a rellenar:
{{MODEL_OUTPUT_FORMAT}}

Importante: Incluye solo el JSON en la respuesta.

Code 2—Prompt version 2

5

Analiza el siguiente texto y, según la información proporcionada,
sustituye "TO_BE_FILLED_IN" con la opción adecuada que
represente lo que indica la fecha. Devuelve solo un JSON.

↪→

↪→

Ejemplos:

Texto: "El 10 de mayo de 2023 se presentó la demanda en el
juzgado."↪→

Fecha: "10 de mayo de 2023"
Opciones: ["opción ba", "opción rrr", ...]
Datos a rellenar:

{"date event": "TO_BE_FILLED_IN"}

Respuesta esperada:
{"date event": "opción ba"}

Tu turno:

Texto: "{{DOCUMENT_CONTENT}}"
Opciones: {{OPTIONS}}
Fecha: "{{DATE}}"
Datos a rellenar:
{{MODEL_OUTPUT_FORMAT}}

Importante: Incluye solo el la opción correcta en la respuesta
en formato JSON.↪→

Code 3—Prompt version 3

4 DOCUMENTATION

The pipeline/flow we’re currently following is the one below, where we first

extract and clean the documents. Afterwards, a process takes care of diving

the clean documents into smaller pieces that can be then passed as input to a

new layer where a Bert based model in Spanish, that has been fine tuned to

6

https://huggingface.co/MMG/xlm-roberta-large-ner-spanish

better identify dates over legal documents for the Dominican Republic, is used

to retrieve the dates from the corpus. Once these dates have been identified, they

will be passed on to an additional model that will then retrieve the context of

the date to identify what it is representing. Finally, all dates will be grouped

and included in one file, representing the output of all the pieces of the original

document being put together.

The following diagram represents this flow:

Figure 1—Full date extraction process

This week, my focus has been on the second to last step, with the goal of im-

proving the models results given the low accuracy obtained when performing

the benchmark. For the updates, I focused on the Llama models, running the

changes mainly with Llama 3.1, Llama 3.2 and Llama 3.1 70b.

Date context extraction

7

• Input template generated in txt format to feed the model and retrieve the date

context. This template contains placeholders to fill in:
• Date retrieved by model in previous steps, copied exactly from the original

text document.
• 2000 characters window (1000 before and 1000 after the date) from the origi-

nal text where the date is contained.
• Options/clusters template containing the categories by which to classify the

different dates retrieved.

The output of the model will be a single text file containing a JSON object with

the input date, a JSON object with the model output and a JSON object con-

taining configuration details for the executed model such as hyperparameters

used, model’s name and execution time.

Also generated an alternative format where the model only outputs the event

related to the date without the original date to compare if this would return

better results.

5 SCRIPT VALIDATION

The model was queried over a set of 5 files generating 10 outputs for each of the

dates contained in the files. Obtaining additionally, performance metrics from

the execution.

Results when benchmarking the updated logic with the 3 mentioned models

were the following in the last run:

[
{

"model_name": "llama3.2",
"hyperparameters": {

"temperature": 1e-13,
"top_k": 5,
"top_p": 0.5,
"seed": 42

},

8

"documents_evaluated": [
"Demanda en designacion de administrador judicial-0164-2023"

],
"total_correct": 1,
"total_incorrect": 7,
"total_false_positives": 72,
"total_validation_dates": 8,
"total_model_dates": 80,
"average_precision": 0.0136986301369863,
"average_recall": 0.125,
"average_f1_score": 0.024691358024691357,
"average_accuracy": 0.125,
"total_processing_time": 24.869086265563965,
"average_processing_time_per_execution": 0.3108635783195496

},
{

"model_name": "llama3.1",
"hyperparameters": {

"temperature": 1e-13,
"top_k": 5,
"top_p": 0.5,
"seed": 42

},
"documents_evaluated": [

"Demanda en designacion de administrador judicial-0164-2023"
],

9

"total_correct": 0,
"total_incorrect": 8,
"total_false_positives": 0,
"total_validation_dates": 8,
"total_model_dates": 2,
"average_precision": 0.0,
"average_recall": 0.0,
"average_f1_score": 0.0,
"average_accuracy": 0.0,
"total_processing_time": 0.6077580451965332,
"average_processing_time_per_execution": 0.3038790225982666

},
{

"model_name": "llama3.1:70b",
"hyperparameters": {

"temperature": 1e-13,
"top_k": 5,
"top_p": 0.5,
"seed": 42

},
"documents_evaluated": [

"Demanda en designacion de administrador judicial-0164-2023"
],
"total_correct": 2,
"total_incorrect": 6,
"total_false_positives": 59,
"total_validation_dates": 8,
"total_model_dates": 67,
"average_precision": 0.03278688524590164,
"average_recall": 0.25,
"average_f1_score": 0.05797101449275363,
"average_accuracy": 0.25,
"total_processing_time": 87.11048579216003,
"average_processing_time_per_execution": 1.3001565043605976

}
]

Code 4—Benchmark results for Llama 3.1, Llama 3.1 70b and

Llama 3.2

10

Execution would be carried out with the following hyperparameters:

• Temperature = 0.0000000000001,
• Top_k = 5,
• Top_p = 0.5
• Seed = 42

Here is a brief explanation of these hyperparameters:

• Temperature: A very low temperature (0.0000001) ensures that the outputs will

be highly predictable. This is useful when we are looking for consistency and

want results to be stable over time.
• Top-k: This limits the choices to only the top 5 probable words. This ensures

that the model generates meaningful outputs without straying into highly

unlikely predictions. It balances between randomness and relevance.
• Top-p: Combined with top-k, this gives fine control over the diversity of model

output. A top_p value of 0.5 means the model will only consider words that

make up 50% of the total probability distribution, ensuring more relevant re-

sults.
• Seed: Setting the seed makes the experiments reproducible, helpful for research

purposes. With the same inputs and hyperparameters, in theory, we should get

the same outputs every time (but in practice this doesn’t always happen).

6 RESULTS VISUALIZATION

The following images provide the results compared between the different models

when retrieving the context for the date given as an input to the model on the

last run.

11

Figure 2—Accuracy vs. Processing time for each model

Figure 3—Total processing time for each model

12

Figure 4—Accuracy comparison between models

7 PROOF OF WORK

Having the implemented function now a smaller piece of context to retrieve the

class related to the date. This has improved the model’s accuracy, Additionally,

by modifying the prompt and the way the response was assessed, the Llama3.1

70b model is now able to achieve nearly 25% accuracy, which is approximately

twice than before. Still, this isn’t enough and will continue tweaking the prompt

to obtain better results.

Below is an example of a date and context retrieved by the updated code to be

used for verifying the model’s new accuracy. Similarly to what was performed

on the previous week, to ensure stability in the results, each input will be used

10 times to generate an output.

'seis (06) días del mes de enero del año dos mil
veintitrés (2023)'↪→

Code 5—Date to be classified

13

\nPRESIDENCIA DE LA CÁMARA CIVIL Y COMERCIAL DEL JUZGADO
DE PRIMERA INSTANCIA DEL DISTRITO NACIONAL \n
Ordenanza civil núm. 123-4567-ABCD-8901 Número único
de caso (NUC) 1234-0158080 EN NOMBRE DE LA REPÚBLICA
\n Ordenanza civil núm. 504-2023-SORD-0013 Número
único de caso (NUC) 1234-0158080 En la ciudad de Santo
Domingo de Guzmán, Distrito Nacional, capital de la
República Dominicana, a los seis (06) días del mes de
enero del año dos mil veintitrés (2023); años ciento
setenta y nueve (179) de la Independencia y ciento
sesenta (160) de la Restauración. \n \nPresidencia de
la Cámara Civil y Comercial del Juzgado de Primera
Instancia del Distrito Nacional, localizada en el
primer piso del Palacio de Justicia del Centro de los
Héroes de Constanza, Maimón y Estero Hondo, en el
Distrito Nacional, República Dominicana, presidida por
XXXXXXXXXX, quien dicta esta ordenanza en sus
atribuciones de juez presidente de los referimientos y
en audiencia pública constituida por la secretaria
XXXXXXXX. \nXXXXXXXX, y el alguacil de estrados de
turno. \n \nCon motivo de la demanda en referimiento
sobre producción forzosa y entrega inmediata de
certificado de matrícula interpuesta por la señora
XXXXXXXX, dominicana, mayor de edad, titular de la
cédula de identidad y electoral núm. 123-45678-1, con
su domicilio en la calle XXXXXX, núm. 1, torre XXXXXX,
apartamento núm. 1, urbanización XXXX, XXXX

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Code 6—Window for retrieving date class

8 NEXT WEEK’S PROPOSAL

1. Filling in a preliminary version for the project’s paper.

2. Complete full implementation of a simple pipeline to run all processes end to

end.

14

3. Document and upload all code to the Sentencias private folder.

15

Week 13 | HAAG - NLP | Fall 2024

Alejandro Gomez

November 15th, 2024

1 Time-log

1.1 What progress did you make in the last week?

• This week was a pretty big effort - It was a ton effort to try to get everything wrapped up to
be able to present to the stakeholders toady. I finished the large refactor of the NER pipeline
that is intended to be submitted with our publication. This refactor is more modular and has
configurations that can be tweaked in a config.py file for ease of use. Given this refactor and
the previous help from Nathan, I was ready to deploy this NER model publicly to HuggingFace,
so I shipped this. Additionally, I used HuggingFace Spaces leveraging the streamlit library to
develop a proof of concept for the use of the NER model. There is a GUI that allows a user to
submit a sentencia as a PDF or docx file and it will process the file and return the recognized
named entities, i.e. the extracted dates. Lastly, I presented with the team to the judge from the
Dominican Republic where we demonstrated our PoC and gathered further information on next
steps for the contextual NER and how our developoments could best serve the judicial systems
in all of Latin America.

1.2 What are you planning on working on next?

• I need to write up the documentation for the deployed NER model on HuggingFace, i.e. how to
use it, expected behavior, etc.

• I need to do some deep QA and last minute adjustments on our deployed NER model on hug-
gingface

• Major shift in focus to writing the paper with the team.

1.3 Is anything blocking you from getting work done?

N/A

2 Article Review

2.1 Abstract

Improving judicial performance has become increasingly relevant to guarantee access to justice for
all, worldwide. In this context, technology-enabled tools to support lawsuit processing emerge as
powerful allies to enhance the justice efficiency. Using electronic lawsuit management systems within
the courts of justice is a wide- spread practice, which also leverages production of big data within
judicial operation. Some jurimetrics techniques have arisen to eval- uate efficiency based on statistical
analysis and data mining of data produced by judicial information systems. In this sense, the pro- cess
mining area offers an innovative approach to analyze judicial data from a process-oriented perspective.
This paper presents the application of process mining in a event log derived from a dataset containing
business lawsuits from the Court of Justice of the State of Sao Paulo, Brazil – the largest court in the
world – in order to analyze judicial performance. Although the results show these law- suits have an
ad hoc sequence flow, process mining analysis have allowed to identify most frequent activities and
process bottlenecks, providing insights into the root causes of inefficiencies doi[UNF+21]

1

https://doi.org/10.1145/3462757.3466137

2.2 Summary

This paper was shared to me by my teammate because of its similarity to our ongoing work. They’re
focusing on visualizing court cases in order to identify specific bottenecks; pretty much the same goal
that we have at long term. Our goal being: extract dates and context, and use that information to
develop visualizations and tools that will provide us information with bottlenecks. The researchers
in this case mainly leveraged jurimetrics (statistical methods) while we will be focusing on NLP AI
models for assistance so we will have distinctive approaches to pursue similar goals.

3 Scripts and Code Blocks

3.1 Code

1 import json

2

3 import streamlit as st

4

5 from core.ner_pipeline import FileProcessor , NerProcessor

6

7 # TODO: add typehints

8

9 st.set_page_config(

10 page_title="NER DEMO",

11 page_icon=":computer:",

12 layout="centered",

13 initial_sidebar_state="auto",

14)

15

16 st.title(":robot_face: NER Demo :judge:")

17 st.subheader(" :date: Date Extraction for _Sentencias_ from DR :flag -do: ")

18

19 html_temp = """

20 <div style=" background -color :{}; padding :1px">

21

22 </div >

23 """

24

25 with st.sidebar:

26 st.markdown("""

27 # How to use:

28 Upload a ‘pdf ‘ or ‘docx ‘ file and wait for the model to output JSON identifying

the dates in your Spanish legal documents. This will be available for download.

29 """)

30 st.markdown(html_temp.format("rgba(55, 53, 47, 0.16)"),unsafe_allow_html=True)

31 st.markdown("""

32 Made by [HAAG x GT](https :// sites.gatech.edu/human -augmented -analytics -group/)

33 """)

34

35 uploaded_file = st.file_uploader(

36 "Choose a PDF or DOCX file to extract text , clean it, and perform Named Entity

Recognition (NER) for date extraction",

37 type=["pdf", "docx"],

38 accept_multiple_files=False ,

39)

40

41

42 if uploaded_file is not None:

43 st.write(f"** Uploaded File :** {uploaded_file.name}")

44

45 file_extension = uploaded_file.name.split(".")[-1]. lower()

46 raw_text = ""

47

48 try:

49 with st.spinner("Extracting text ..."):

50 if file_extension == "pdf":

51 raw_text = FileProcessor.extract_text_from_pdf(uploaded_file.read())

52 elif file_extension in ["doc", "docx"]:

53 raw_text = FileProcessor.extract_text_from_docx(uploaded_file.read())

2

54 else:

55 st.error("Unsupported file type!")

56 except Exception as e:

57 st.error(f"Error extracting text: {e}")

58

59 if raw_text:

60 st.subheader("Extracted Text")

61 st.text_area("Raw Extracted Text", raw_text , height =300)

62

63 try:

64 with st.spinner("Cleaning text ..."):

65 cleaned_text = FileProcessor.clean_document(raw_text)

66 except Exception as e:

67 st.error(f"Error cleaning text: {e}")

68 cleaned_text = ""

69

70 if cleaned_text:

71 st.subheader("Cleaned Text")

72 st.text_area("Cleaned Text", cleaned_text , height =300)

73

74 try:

75 with st.spinner("Performing NER..."):

76 ner_processor = NerProcessor ()

77 ner_output = ner_processor.process_text(cleaned_text)

78 ner_json = json.loads(ner_output)

79

80 st.subheader("NER Output (JSON)")

81 st.json(ner_json , expanded=True)

82

83 # Download buttons

84 jsonl_str = json.dumps(ner_json , ensure_ascii=False)

85 st.download_button(

86 label="Download NER Output as JSON",

87 data=jsonl_str ,

88 file_name="ner_output.json",

89 mime="application/json",

90)

91

92 except Exception as e:

93 st.error(f"Error during NER processing: {e}")

94 else:

95 st.warning("Cleaning process resulted in empty text.")

96 else:

97 st.warning("No text extracted from the uploaded file.")

Listing 1: app.py on HuggingFace Spaces using streamlit

This is the main entrypoint for the NER demo shown during the demonstration in the presentation
today. Streamlit’s library provides helpful tools to abstract GUI design, keeping the code focused on
the logic. If you follow the links later in the report you can also see the modules used to preprocess
the uploaded file to prepare it for the NER model.

3.2 List of Scripts

• Full NER pipeline

– The live demo for the NER model with links to the source code, too

– The NER model deployed on HuggingFace, used in the NER demo

– The tentative conference submission for the NER model. This is the refactoring I’ve been
working on that finetunes the model and eventually deploys to HuggingFace

3

https://huggingface.co/spaces/agomez302/ner-demo
https://huggingface.co/agomez302/nlp-dr-ner/tree/main
https://github.gatech.edu/calexander97/sentencias/tree/main/nlp/finetuning
https://github.gatech.edu/calexander97/sentencias/tree/main/nlp/finetuning

3.3 Documentation

Figure 1: pipeline visualization for code structure

Part of completing the documentation for the NER model is diagrams that showcase the process at
high level. I honed on keeping the pipeline isolated to finetuning, so I moved the data preprocessing
to it’s own directory, i.e. its own pipeline. I will make the edits to this chart, but there is not much
variation. I simply encapsulated the pipeline differently. The config worked out just as planned and
pictured - beautifully.

3.4 Script Validation (optional)

N/A

4

3.5 Results Visualization

Figure 2: presentation

This is a screenshot of the NLP-DR teams intro slides for our presentation to Magistrado Miguel Angel.

5

Figure 3: Image 1 of 2 of the NER demo

Figure 4: Image 2 of 2 of the NER demo

The two above images show the NER model demo where the user can upload a document and can
retrieve JSON with the relevant information.

3.6 Results Visualization Summary

The demo, i.e the proof of concept is huge milestone. It showcased to our stakeholders a tangible view
into our team’s development and expected results for their use in the future. It also provided us a
platform to build off as we navigate into part 2 of this project, that being the contextual NER.

3.7 Proof of Work

Scripts in GitHub Repo

6

https://github.gatech.edu/calexander97/sentencias/tree/main/alejandro/13_week

4 Next Week’s Proposal

• (See first section for full list. Brief summary below)

• Documentation for NER model including diagrams

• Make larger contributions toward the publication

• QA NER model further

• Update current documentation, e.g. NLP website.

References

[UNF+21] Adriana Jacoto Unger, José Francisco dos Santos Neto, Marcelo Fantinato, Sarajane Mar-
ques Peres, Julio Trecenti, and Renata Hirota. Process mining-enabled jurimetrics: analysis
of a brazilian court’s judicial performance in the business law processing. In Proceedings
of the Eighteenth International Conference on Artificial Intelligence and Law, ICAIL ’21,
page 240–244, New York, NY, USA, 2021. Association for Computing Machinery.

7

HAAG NLP Sentencias — Week 13 Report

NLP-Gen Team

Karol Gutierrez

November 15, 2024

1 Weekly Project Update

1.1 What progress did you make in the last week?

• Improved clustering model by adding more data.

• Prepare for call with Sentencias specialists on Friday 11/15.

• Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.

• Continuous meetings with Dr. Alexander, Nathan and team to discuss progress on project and
publication options, as well as internal meetings with team to sync on next steps.

1.2 What are you planning on working on next?

• Use feedback from call to improve clustering model.

• Work on paper with team.

• Continue fulfilling my role as Meet Manager/Documentor by working on the tasks expected for
my position (gather notes from meetings and prepare recordings).

1.3 Is anything blocking you from getting work done?

No.

2 Literature Review

Paper: FlairNLP at SemEval-2023 Task 6b: Extraction of Legal Named Entities from Legal Texts
using Contextual String Embeddings [RE23].

2.1 Abstract

Indian court legal texts and processes are essential towards the integrity of the judicial system and
towards maintaining the social and political order of the nation. Due to the increase in number of
pending court cases, there is an urgent need to develop tools to automate many of the legal processes
with the knowledge of artificial intelligence. In this paper, we employ knowledge extraction techniques,
specially the named entity extraction of legal entities within court case judgements. We evaluate several
state of the art architectures in the realm of sequence labeling using models trained on a curated
dataset of legal texts. We observe that a Bi-LSTM model trained on Flair Embeddings achieves the
best results, and we also publish the BIO formatted dataset as part of this paper

1

2.2 Summary

The authors present an approach to extracting legal named entities from court case judgments using
FlairNLP for the SemEval-2023 Task 6b. Their method involves several key steps:

• Dataset Preparation: Curating a dataset of legal texts annotated with named entities in a
BIO format.

• Model Architecture: Using a Bi-LSTM model enhanced with Flair contextual string embed-
dings to capture deep contextual meaning.

• Evaluation: Measuring performance through standard metrics such as precision, recall, and
F1-score.

The authors demonstrate that the Bi-LSTM model with Flair embeddings achieves optimal results
in legal named entity recognition, outperforming other methods in the task.

2.3 Relevance

This paper is relevant to our Sentencias project because it’s tailored to work with a specific benchmark
(task 6b in a competition). They use NER and embeddings, which is an approach that we have
explored. Both of our projects involve working with legal documents with specialized terminology. We
can first try to replicate the results of this paper using versions of libraries and embeddings for the
Spanish language.

3 Scripts and code blocks

The code is in the private repository repository. The progress for this week is in ./karol/week13/.

3.1 Code developed

The full workflow of the code is shown in Figure 1.

• Existing script to use Hugging Face transformer to evaluate semantic similarity of context and
then split it into five buckets, Figure 2. The method used is cosine similarity.

• Code to show compare results with test set in Fig 3. This script generates the plots shown in
this report.

Figure 1: Code logic workflow to process data in Week 13.

4 Documentation

The documentation is present in the README.md file in the repository. No new dependencies were
added for this week, all the scripts can be run in Python.

2

https://github.gatech.edu/calexander97/sentencias
https://github.gatech.edu/calexander97/sentencias/

5 Script Validation

Figure 4 shows the generated contexts from the sentencias in Spanish. This document was used to
validate the results and provide performance numbers.

6 Results Visualization

I increased the subset of the dates and manually labeled the categories, then compared the performance
of my classifier with respect to this set. The results can be seen in Figure 5. The results are better than
random by a reasonable margin but still it’s not a reliable classifier, however, the accuracy decreased
slightly when adding more data, indicating that we probably need a better selection of clusters.

Accuracy: 0.42 Precision: 0.47 Recall: 0.42 F1 Score: 0.39

7 Proof of Work

Figures 7 and Figure 8 show the final distribution of the data and samples of the classification during
runtime, thus proving the work.

8 Next Week’s Proposal

Refer to section 1.2 for details (avoid repetition).

References

[RE23] Vinay N Ramesh and Rohan Eswara. Flairnlp at semeval-2023 task 6b: Extraction of legal
named entities from legal texts using contextual string embeddings, 2023.

3

Figure 2: Clustering of categories for context

4

Figure 3: More sentencias data

5

Figure 4: Sentencias used for final testing

Figure 5: Comparison of results with test data

6

Figure 6: Accuracy results

Figure 7: Distribution of categories in available updated data

7

Figure 8: Code working and showing the classified contexts with updated data

8

Week 13 Report
Thuan Nguyen – Clearinghouse Summarization project

Friday, November 15, 2024

Summary
What progress did you make in the last week?

• In my experiments with summarizing court orders using GPT-4o-mini, I compared two
approaches: (1) a structured Chain-of-Thought (CoT) method where the model answered
specific legal questions before creating a summary and (2) a more flexible, direct summary
generation approach without CoT.

• While the CoT method ensured focused, question-driven outputs, it often missed nuanced
details that fell outside the predefined questions, resulting in more generic summaries.

• In contrast, the direct summary approach provided richer, contextually relevant content,
capturing a broader range of legal nuances, which ultimately resulted in more detailed and
coherent summaries.

What are you planning on working on next?

• Study up on LangGraph on Sam Pang’s suggestions. Seems to be highly useful tool to learn
for future projects/experiments in the lab.

• Study Sam Pang’s previous LLaMA finetuning experiment. Try to extend it with synthetic data
generated by gpt-4o (for learning purpose).

Is anything blocking you from getting work done?

• Nothing at the moment.

Abstract
Towards Monosemanticity: Decomposing Language Models With Dictionary Learning

 https://transformer-circuits.pub/2023/monosemantic-features/index.html

The "Towards Monosemanticity" paper explores the concept of aligning AI model neurons to have
single, clear functions (monosemanticity) to improve interpretability and safety.

https://transformer-circuits.pub/2023/monosemantic-features/index.html

It argues that current models often have neurons that respond to multiple, unrelated concepts,
making them difficult to understand and control.

The authors propose techniques to train models to develop monosemantic neurons, aiming to
isolate specific features or concepts each neuron should represent.

This approach is seen as a step towards making AI systems more transparent and predictable,
reducing the risk of unexpected behaviors.

Work done this week – further details
Previously, in my prompt engineering experiment from last week, I asked gpt-4o-mini to generate
short details along with verbatim quotes to respond to each question.

Observations: But it turned out that this approach was too restrictive. The model had to rephrase
some ideas into short sentences. When combined, these short sentences turn into generic
summaries, where a lot of context and concrete details are lost.

This approach generates worse summaries than the simpler method, which just prompts the model
to “please summarize this” and “by the way focus on these questions.
https://3.basecamp.com/5835116/buckets/38747617/messages/8026679714#__recording_80305
61515

See my scripts for specific approaches.

https://github.com/thuann2cats/NLP-Summarization-Experiment-with-Documents-from-U-
Michigan-Civil-Rights-Litigation-
Clearinghouse/blob/main/legal_doc_summarizer_Chain_of_Thought.py

https://github.com/thuann2cats/NLP-Summarization-Experiment-with-Documents-from-U-
Michigan-Civil-Rights-Litigation-Clearinghouse/blob/main/legal_doc_summarizer.py

Scripts - Documentation - Script Validation - Results
Visualization - Proof of Work
For further details, please refer to my scripts posted on GitHub or the information above.

https://3.basecamp.com/5835116/buckets/38747617/messages/8026679714#__recording_8030561515
https://3.basecamp.com/5835116/buckets/38747617/messages/8026679714#__recording_8030561515
https://github.com/thuann2cats/NLP-Summarization-Experiment-with-Documents-from-U-Michigan-Civil-Rights-Litigation-Clearinghouse/blob/main/legal_doc_summarizer_Chain_of_Thought.py
https://github.com/thuann2cats/NLP-Summarization-Experiment-with-Documents-from-U-Michigan-Civil-Rights-Litigation-Clearinghouse/blob/main/legal_doc_summarizer_Chain_of_Thought.py
https://github.com/thuann2cats/NLP-Summarization-Experiment-with-Documents-from-U-Michigan-Civil-Rights-Litigation-Clearinghouse/blob/main/legal_doc_summarizer_Chain_of_Thought.py
https://github.com/thuann2cats/NLP-Summarization-Experiment-with-Documents-from-U-Michigan-Civil-Rights-Litigation-Clearinghouse/blob/main/legal_doc_summarizer.py
https://github.com/thuann2cats/NLP-Summarization-Experiment-with-Documents-from-U-Michigan-Civil-Rights-Litigation-Clearinghouse/blob/main/legal_doc_summarizer.py

Next week's proposal
• Study up on LangGraph on Sam Pang’s suggestions. Seems to be highly useful tool to learn

for future projects/experiments in the lab.
• Study Sam Pang’s previous LLaMA finetuning experiment. Try to extend it with synthetic data

generated by gpt-4o (for learning purpose).

Week 13 Research Report
Thomas Orth (NLP Summarization / NLP Gen Team)

November 2024

0.1 What did you work on this week?
1. Been running through different prompts to extract settlement information.

2. Adjusted the feedback from law students to extract more information that
comes up in court summaries for the settlement.

3. Worked with the interview team to review summaries and determine the
best workflow.

4. Met with the Clearinghouse technical POC for integration discussion.

5. Ran an experiment similar to Thuan’s to see if a more open-ended sum-
mary technique works better for settlements.

0.2 What are you planning on working on next?
1. Continue refining settlement summaries.

2. Work to provide data schema examples for Jasmine for integration pur-
poses.

3. Start reviewing multi-agent frameworks and landscape.

0.3 Is anything blocking you from getting work done?
1. None currently

1 Abstracts
• Title: Magentic-One: A Generalist Multi-Agent System for Solving Com-

plex Tasks. Conference / Venue: Preprint. Link: https://www.microsoft.com/en-
us/research/uploads/prod/2024/11/MagenticOne.pdf

• Abstract: Modern AI agents, driven by advances in large foundation mod-
els, promise to enhance our productivity and transform our lives by aug-
menting our knowledge and capabilities. To achieve this vision, AI agents

1

must effectively plan, perform multi-step reasoning and actions, respond
to novel observations, and recover from errors, to successfully complete
complex tasks across a wide range of scenarios. In this work, we introduce
Magentic-One, a high-performing open-source agentic system for solving
such tasks. Magentic-One uses a multi-agent architecture where a lead
agent, the Orchestrator, plans, tracks progress, and re-plans to recover
from errors. Throughout task execution, the Orchestrator also directs
other specialized agents to perform tasks as needed, such as operating a
web browser, navigating local files, or writing and executing Python code.
Our experiments show that Magentic-One achieves statistically competi-
tive performance to the state-of-the-art on three diverse and challenging
agentic benchmarks: GAIA, AssistantBench, and WebArena. Notably,
Magentic-One achieves these results without modification to core agent
capabilities or to how they collaborate, demonstrating progress towards
the vision of generalist agentic systems. Moreover, Magentic-One’s mod-
ular design allows agents to be added or removed from the team without
additional prompt tuning or training, easing development and making it
extensible to future scenarios. We provide an open-source implementa-
tion of Magentic-One, and we include AutoGenBench, a standalone tool
for agentic evaluation. AutoGenBench provides built-in controls for rep-
etition and isolation to run agentic benchmarks in a rigorous and con-
tained manner – which is important when agents’ actions have side-effects.
Magentic-One, AutoGenBench and detailed empirical performance evalu-
ations of MagenticOne, including ablations and error analysis are available
at https://aka.ms/magentic-one.

• Summary: This technical report describes a generic multi-agent system
that generalizes to different tasks. It leverages the Autogen framework
from microsoft to orchestrate agents.

• Relevance: I wanted to explore multi-agent systems next semester so this
type of work would be a useful avenue to explore.

2 Relevant Info
• Summary Chain of Thought (CoT) is a technique to prompt LLMs for

information to provide context for summarization. I took a domain centric
approach in this experiment to extract entities the Clearinghouse is looking
for specifically.

• Llama 3.2 is a popular LLM given its performance

• Ollama is a way to serve LLMs locally

• Langchain is a popular library for interacting with LLMs

• Anthropic is a company that produces the Claude family of models that
compete with GPT-4.

2

• The two best models in terms of accuracy and cost tradeoff is Claude 3.5
Sonnet and Claude 3 Haiku

3 Scripts
1. All scripts uploaded to https://github.com/Human-Augment-Analytics/NLP-

Gen

2. Scripts were run with the following file for testing: https://gatech.box
.com/s/foejfx8hly8diex99m5smldvnh7ly4by

3. Thomas-Orth/anthropic/settlements/domain_specific_scot_chunked.py

• Brief Description: Run a domain specific version of Summary Chain-
of-thought (CoT) on settlements with Anthropic models.

• Status: Tested by running the pipeline to completion without issue
• Important Code Blocks:

(a) First block: Read in CSV file, choose document
(b) Second block: Run through prompts, chunking documents, save

summaries
(c) Third Block: Evaluate via manual inspection

• Screenshot of code: No screenshots provided due to the code be-
ing largely the same as previous weeks, just with different prompts.
Prompts will be pasted at the bottom of the report.

4. Flow Diagram:

Figure 1: Flow diagram

5. Running scripts:

(a) Download the scripts, the csv from the box link and llm.requirements.txt
(b) Run: python -m pip install -r llm.requirements.txt
(c) Sign up for an Anthropic account, generate an API Key, and set

"ANTHROPIC_API_KEY" in your environment.
(d) Run: python (chosen python script)

3

https://gatech.box.com/s/foejfx8hly8diex99m5smldvnh7ly4by
https://gatech.box.com/s/foejfx8hly8diex99m5smldvnh7ly4by
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/Thomas-Orth/anthropic/settlements/domain_specific_scot_chunked.py

4 Documentation
1. Download CSV file and

2. Update scripts to point to CSV file

3. Run script to output generated summaries as CSVs

4. Manually evaluate summary

5 Results
5.1 Example Settlement Summary
Below is the example of a settlement summary from Claude Sonnet:

"On March 23, 1990, a court order was issued dismissing a case concerning
juvenile detention practices in Iowa. The case was dismissed as moot after Iowa
took steps to achieve compliance with the Juvenile Justice and Delinquency
Prevention Act (JJDPA) by submitting a plan for policy changes and reduc-
ing juvenile jailing in adult facilities. As part of the settlement, attorney fees
and costs totaling $276,163.09 were awarded, with the State Defendants being
responsible for 90% of the amount. The fees were divided among three attor-
neys: Harry Swanger received $187,407.90, Blake Parker received $59,203.04,
and John Bird received $29,552.15. The settlement marked a significant change
in Iowa’s approach to juvenile detention practices."

5.1.1 Difference from before

I changed to Sonnet because our interview team evaluated the Haiku summary
and said while it was more concise, it would omit some details.

I also am investigating if a separate extraction step is needed for settlements.
Thuan noticed for orders and opinions, that going right to summaries performed
better than doing a seperate extraction then summarize.

I haven’t included those results until I can do a more in-depth review.

5.1.2 Evaluation

The summaries currently are evaluated mainly on the infromation points I added
to the prompts. Our interview team will review the summaries to ensure factual
correctness, the data points in the prompts are done as well as compare to any
additional clearinghouse criteria.

5.2 Prompts
Below are the prompts used by the anthropic model. First prompt will extract
key details. The second will take that information to make a summary.

First prompt:

4

You are a law student tasked with extracting key information from a chunk
of a settlement agreement. Your goal is to identify and summarize specific
elements of the agreement. Here is the settlement chunk you will analyze:

<settlement_chunk>
{document}
</settlement_chunk>

Please extract the following information from the settlement chunk:

1. Actions to be Taken by Defendants: Describe who has agreed to do
what. Be very detailed in providing this information.

2. Damages (Money): Identify who is paying for what, including attorney
fees. For the money to be paid to plaintiffs, do not name the plaintiffs
and report the total sum to be paid to plaintiffs.

3. Implementation and Enforcement: Note if there’s a court-appointed
“monitor” or other oversight.

4. Duration: How long the settlement is in effect.

5. Conditional Agreements: Mention any conditions for the settlement
(e.g., “will only agree IF ...”).

6. Policy Adoptions: Note any agreement to adopt policies and provide
any relevant details about those policies. Do not omit important informa-
tion and describe in detail.

7. The Date of the Settlement: This is typically the document’s filing
date, the date the document is dated, or the date of execution.

8. The Type of Settlement: This is the type of settlement that was en-
tered by this document.

For each piece of information you extract, include a citation of the text from
the settlement chunk that supports your conclusion. Use the following format:

<citation>[Exact quote from the text]</citation>

If any of the requested information is not present in the settlement chunk,
state “Not Specified” for that item.

If any acronyms are present and their definitions are defined, please spell
out the acronym the first time it is used.

After extracting the information, provide a brief summary of your findings.
Important: Do not extract or include the following types of information:

• Introductory and Boilerplate Information

• Reporting Information (how parties must report progress)

5

• Notice for Class Actions (how parties must give notice to consumers for
class action suits)

• Giving Up Claims or Admitting Fault (it’s a given that settling parties
must give up claims)

Present your findings in the following format:

<extracted_information>
1. Actions to be Taken by Defendants:
[Your summary]
[Citation if applicable]

2. Damages (Money):
[Your summary]
[Citation if applicable]

3. Implementation and Enforcement:
[Your summary]
[Citation if applicable]

4. Duration:
[Your summary]
[Citation if applicable]

5. Conditional Agreements:
[Your summary]
[Citation if applicable]

6. Policy Adoptions:
[Your summary]
[Citation if applicable]

7. Date of the Settlement:
[Your info]
[Citation if applicable]

8. Type of Settlement:
[Your info]
[Citation if applicable]
</extracted_information>

<summary>
[Your brief summary of the key points found in the settlement chunk]
</summary>

Second Prompt:

6

You are a law student skilled at distilling sets of extracted information and
partial summaries into informative summaries. You will be provided with a set
of extracted information and a partial summary about a legal settlement. Your
task is to create a concise, one-paragraph summary of the settlement.

Here is the set of extracted information and partial summary:

<extracted_info_and_summary>
{chunks}
</extracted_info_and_summary>

Using the provided information, create a summary of the settlement follow-
ing these guidelines:

1. Begin with a sentence describing when the settlement was entered, includ-
ing the specific date and the type of settlement that was entered.

2. If the case was not dismissed in the settlement, include information on the
following aspects, if available:

• Actions to be Taken by Defendants
• Damages (Money)
• Implementation and Enforcement
• Duration
• Conditional Agreements
• Policy Adoptions

3. If the settlement was dismissed, talk about why it was dismissed and what
the outcome was.

4. Keep the summary to one paragraph.

5. If any information provides a citation, do not use that information in your
summary.

6. Do not omit any of the actions or policy adoptions noted.

7. Write the summary in past tense.

8. If for the requested information, all of the chunks say “Not Specified”, do
not include that information in the summary.

Carefully review the extracted information and partial summary to ensure
you capture all relevant details. Focus on presenting the most important aspects
of the settlement in a clear and concise manner.

Please provide your summary within the following tags:

<summary>
[Your concise one-paragraph summary here]
</summary>

7

6 Proof of work
The prompts were generated using Anthropic Workbench and ran using their
LLMs, so the results are relatively reliable.

6.1 Known Limitations
Currently this is using Claude models. According to our interview team, the
best commercial model workflow we’ve presented has been Gemini. So I need
to see if switching to that model with some prompt engineering will help with
the summary quality.

8

