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1 Abstract

Recent work pre-training Transformers with self-supervised objectives on large
text corpora has shown great success when fine-tuned on downstream NLP tasks
including text summa- rization. However, pre-training objectives tai- lored for
abstractive text summarization have not been explored. Furthermore there is
a lack of systematic evaluation across diverse do- mains. In this work, we pro-
pose pre-training large Transformer-based encoder-decoder mod- els on massive
text corpora with a new self- supervised objective. In PEGASUS, important
sentences are removed/masked from an input doc- ument and are generated
together as one output sequence from the remaining sentences, similar to an ex-
tractive summary. We evaluated our best PEGASUS model on 12 downstream
summariza- tion tasks spanning news, science, stories, instruc- tions, emails,
patents, and legislative bills. Experi- ments demonstrate it achieves state-of-the-
art per- formance on all 12 downstream datasets measured by ROUGE scores.
Our model also shows surpris- ing performance on low-resource summarization,
surpassing previous state-of-the-art results on 6 datasets with only 1000 exam-
ples. Finally we validated our results using human evaluation and show that
our model summaries achieve human performance on multiple datasets.

Link: https://arxiv.org/pdf/1912.08777

1.1 Brief Analysis

Abstractive summarizers are summarizers which creates summaries by gener-
ating novel text that summarizes one or more documents. On the other hand,
extractive summarizers directly pull sentences from a document and concate-
nate them to form a summary. Pegasus is an abstractive model that creates
natural language summaries of documents by generating novel text. But upon
further reading, this model uses Masked Language Modeling as a pretraining
task with the theory that a pretraining task closer to summarization would lead
to better results. Pegasus removes full sentences from the text and then learns
to regenerate them.

Originally I thought that if you masked out unimportant sentences it would
lead to better results by mitigating hallucinations. However, in the paper they
note that masking out more important sentences led to better results. The
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logic I had only holds if you are using the pretraining task as the final task. If
we instead think about the pretraining task as being close to summarization, I
realize that the masking combined with the regeneration acts like an extractive-
abstractive summarizer where you first mask out the important sentences you
want in the summary and then use the model to string them together into a
coherent summary. In a sense, pegasus seems a lot like an extractive-abstractive
classifier because it uses masked language modeling rather than just generating
text like a model like gpt-4 does. This makes me curious what a summary would
look like if we never did downstream abstractive summary generation and in-
stead used masked language modeling. If we were careful about which sentences
are extracted and which are masked out, could a more accurate summarizer be
created? Furhtermore, masking removes a lot of information. What if by chance
we remove something we care about? Or what if something isn’t totally impor-
tant but is more important than another part of the text? Could we use a
denoising model instead of a masking model? Pegasus points to BART, another
abstractive summarizer, as a project which involves this. Another concern I
have is that this pretraining task seems really close to Retrieval Augmented
Generation(RAG), but RAG doesn’t require us to train a model from scratch.
Is Pegasus still relevant when we can just use RAG?

In summary, Pegasus seeks to improve upon other abstractive summarizers
by introducing a pretraining task that is closer to summarization than other
language models used. It makes me wonder what would happen if we adapted
this pretraining task to be the main task. Would this achieve better benchmarks
or would human experts prefer the extractive-abstractive pretraining task to the
purely abstractive pegasus model? Pegasus is also not an LLM, could increasing
parameter counts(this was explored in a project called T5) improve results?

2 Scripts and Code Blocks

We have not been assigned subteams yet, so I worked on finding data and on
creating a client for the clearinghouse.net API.

2.1 MultiLexSum Dataset

hugging face.py:
This script downloads a dataset created by clearinghouse.net that contains

pairs of legal documents and summaries of those legal documents. I also included
some regex code that will split the document into lines and only keep lines of at
least 80 characters to filter out titles of documents, footnotes, headers, authors,
signature lines, etc.

2.2 Documentation

1.Download dataset using code provided at https://multilexsum.github.io/
2. select example from dataset using line 8.
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Figure 1: LexSum downloader and filterer

3. Run python3 hugging_face.py tee case.txt— to see and save results

2.3 ch openapi.json

Created an openapi.json for clearinghouse.net api

2.4 Results Visualization

Figure 2: Sample output from huggingface.py. Warning: Offensive Language
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2.5 Documentation

Install openapi generator cli: https://openapi-generator.tech/docs/installation/
1. openapi-generator-cli generate -i ch_openapi.json -g python will
generate the api. 2. specify your clearinghouse.net access token export CLEARINGHOUSE_API_TOKEN=<YOUR API TOKEN HERE FROM CLEARINGHOUSE.NET

3. run test.py in the api directory. It should say you have successfully authen-
ticated. Also see docs directory for api usage.

2.6 Results Visualization

Figure 3: Enter Caption

3 Next Week’s proposal

• Continue ch openapi.json so we can call more than just the test endpoint

• Receive subteam assignment and subteam meeting time

• Read on T5, BART, and/or sequence to sequence

• Once github has been set up by Dr. Alexander, provide hugging_face.py
to rest of team.
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1 ABSTRACTS

1. Title: DiffuSum: Generation Enhanced Extractive Summarization with Diffu-

sion
• URL: https://aclanthology.org/2023.findings-acl.828.pdf

• Abstract: Extractive summarization aims to form a summary by directly

extracting sentences from the source document. Existing works mostly for-

mulate it as a sequence labeling problem by making individual sentence

label predictions. This paper proposes DiffuSum, a novel paradigm for ex-

tractive summarization, by directly generating the desired summary sen-

tence representations with diffusion models and extracting sentences based

on sentence representation matching. In addition, DiffuSum jointly opti-

mizes a contrastive sentence encoder with a matching loss for sentence

representation alignment and a multi-class contrastive loss for representa-

tion diversity. Experimental results show that DiffuSum achieves the new

state-of-the-art extractive results on CNN/DailyMail with ROUGE scores

of 44.83/22.56/40.56. Experiments on the other two datasets with different

summary lengths and cross-dataset evaluation also demonstrate the effec-

tiveness of DiffuSum. The strong performance of our framework shows the

great potential of adapting generative models for extractive summarization.

• Summary: The paper provides details on DiffuSum, a method for extractive

summarization that utilizes diffusion models to generate representations of

ideal summary sentences, subsequently selecting the most fitting sentences

from the original document. The approach emphasizes the joint optimiza-

tion of sentence encoding and diffusion generation modules to ensure both

accurate representation and diversity.

• Relevance: The paper offers a way of extracting relevant information from

a document, which could help in the extraction of key information from

judges’ written decisions. The capability to generate concise and informa-

tive summaries of these decisions could significantly aid in constructing a

structured archive of court data.

2. Title: Simple Yet Powerful: An Overlooked Architecture for Nested Named
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Entity Recognition
• URL: https://aclanthology.org/2022.coling-1.184.pdf

• Abstract: Named Entity Recognition (NER) is an important task in Natural

Language Processing that aims to identify text spans belonging to prede-

fined categories. Traditional NER systems ignore nested entities, which are

entities contained in other entity mentions. Although several methods have

been proposed to address this case, most of them rely on complex task-

specific structures and ignore potentially useful baselines for the task. We

argue that this creates an overly optimistic impression of their performance.

This paper revisits the Multiple LSTM-CRF (MLC) model, a simple, over-

looked, yet powerful approach based on training independent sequence la-

beling models for each entity type. Extensive experiments with three nested

NER corpora show that, regardless of the simplicity of this model, its perfor-

mance is better or at least as well as more sophisticated methods. Further-

more, we show that the MLC architecture achieves state-of-the-art results in

the Chilean Waiting List corpus by including pre-trained language models.

In addition, we implemented an open-source library that computes task-

specific metrics for nested NER. The results suggest that metrics used in

previous work do not measure well the ability of a model to detect nested

entities, while our metrics provide new evidence on how existing approaches

handle the task.

• Summary: The paper investigates a Multiple LSTM-CRF (MLC) architec-

ture, for Nested Named Entity Recognition (NER). The MLC model trains

independent sequence labeling models for each entity type, addressing the

challenges of nested entities and multi-label entities. The paper also high-

lights the inadequacy of current evaluation metrics for nested NER and

proposes new task-specific metrics.

• Relevance: The paper focuses on Nested Named Entity Recognition, which

is directly applicable to extracting key information from legal documents.

The MLC architecture’s ability to handle nested entities and multi-label

entities could be particularly useful in identifying complex relationships

and overlapping information within judges’ written decisions.
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2 SCRIPTS AND CODE BLOCKS

All scripts will be uploaded to https://github.com/Human-Augment-Analytics/NLP-

Gen, but haven’t been able to do so yet as I don’t have access granted for pushing

code into the repo.

I’ve divided into different code blocks what is currently presented as different

blocks in the jupyter notebook:

1 # Import all necessary dependencies

2 import pypdf

3

4 import nltk

5 from nltk.tokenize import word_tokenize, sent_tokenize

6 from nltk.corpus import stopwords

7 from collections import Counter

8

9 from textblob import TextBlob

10 import spacy

11

12 from gensim.models import LdaModel

13 from gensim.corpora import Dictionary

14

15 import pandas as pd

16 import altair as alt

17 import matplotlib.pyplot as plt

18

19 from wordcloud import WordCloud

20

21 import string

22 import os

23

24 nltk.download(’punkt_tab’)

25 nltk.download(’stopwords’)

26 nltk.download(’averaged_perceptron_tagger_eng’)

Listing 1— Imports

1 def extract_text_from_pdf(pdf_path):

2 with open(pdf_path, ’rb’) as pdf_file:

3 pdf_reader = pypdf.PdfReader(pdf_file)

4 num_pages = len(pdf_reader.pages)

5 text = ""

6 for page_num in range(num_pages):

7 page = pdf_reader.pages[page_num]
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8 text += page.extract_text()

9 return text

Listing 2—Extract Text function

1 def preprocess_text(text):

2 text = text.lower()

3 text = "".join([char for char in text if char not in string.punctuation])

4 text = " ".join(text.split())

5 return text

Listing 3—Preprocess function

1 def preprocess_text_with_punctuation(text):

2 text = text.lower()

3 punctuation_to_keep = ’.?!’

4 text = "".join([char if char in punctuation_to_keep or char not in string.

punctuation else ’ ’ for char in text])

5 text = " ".join(text.split())

6 return text

Listing 4—Preprocess function keeping punctuation for later

separating sentences

1 def tokenize_text(text):

2 words = word_tokenize(text)

3 sentences = sent_tokenize(text)

4 return words, sentences

Listing 5—Tokenize function

1 def generate_word_cloud(text):

2 words = word_tokenize(text)

3 stop_words = set(stopwords.words(’spanish’))

4 filtered_words = [word for word in words if word.lower() not in stop_words]

5

6 word_counts = Counter(filtered_words)

7 wordcloud = WordCloud(width=800, height=400, background_color=’white’).

generate_from_frequencies(word_counts)

8

9 plt.figure(figsize=(10, 5))

10 plt.imshow(wordcloud, interpolation=’bilinear’)

11 plt.axis(’off’)

12

13 plt.show()

Listing 6—Generate word cloud function
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1 def combine_all_pdfs_text(pdf_folder_path):

2 # Get all pdf files in folder

3 pdf_files = [f for f in os.listdir(pdf_folder_path) if f.endswith(’.pdf’)]

4

5 all_text = ""

6 for pdf_file in pdf_files:

7 pdf_path = os.path.join(pdf_folder_path, pdf_file)

8 print("pdf_path", pdf_path)

9

10 # Extract and preprocess the text

11 text = extract_text_from_pdf(pdf_path)

12 all_text += preprocessed_text + " "

13

14 return all_text

Listing 7—Combine pdfs function

1 all_pdfs_text = combine_all_pdfs_text(’../sentencias’)

2 preprocessed_text = preprocess_text(all_pdfs_text)

3

4 # Generate and display the word cloud

5 print(f"\nWord Cloud for all pdfs:")

6 generate_word_cloud(preprocessed_text)

Listing 8—Additional processing

1 # Tokenize combined text

2 preprocessed_text_2 = preprocess_text_with_punctuation(all_pdfs_text)

3 words, _ = tokenize_text(preprocessed_text)

4 _, sentences = tokenize_text(preprocessed_text_2)

Listing 9—Retrieve preprocessed text

1 # Perform other analyses:

2 # Word Frequency

3 df_words = pd.DataFrame(Counter(words).most_common(), columns=[’Word’, ’Frequency’])

4

5 # Remove stop words

6 stop_words = set(stopwords.words(’spanish’))

7 filtered_words = [word for word in words if word not in stop_words]

8 df_words_no_stop = pd.DataFrame(Counter(filtered_words).most_common(), columns=[’Word’,

’Frequency’])

9

10 chart1 = alt.Chart(df_words_no_stop.head(20)).mark_bar().encode(

11 x=alt.X(’Word:N’, sort=’-y’),

12 y=alt.Y(’Frequency:Q’),

6



13 tooltip = [’Word’, ’Frequency’]

14 ).properties(title=’Top 20 Most Frequent Words (Excluding Stop Words)’).interactive()

15 chart1.display()

Listing 10—Retrieve word frequency in text

1 # N-grams

2 bigrams = list(nltk.bigrams(words))

3 df_bigrams = pd.DataFrame(Counter(bigrams).most_common(), columns=[’Bigram’, ’Frequency’

])

4 df_bigrams[’Bigram’] = df_bigrams[’Bigram’].astype(str)

5

6 chart2 = alt.Chart(df_bigrams.head(10)).mark_bar().encode(

7 x=alt.X(’Bigram:N’, sort=’-y’),

8 y=alt.Y(’Frequency:Q’),

9 tooltip = [’Bigram’, ’Frequency’]

10 ).properties(title=’Top 10 Most Frequent Bigrams’).interactive()

11 chart2.display()

Listing 11—Retrieve bigrams

1 trigrams = list(nltk.trigrams(words))

2 df_trigrams = pd.DataFrame(Counter(trigrams).most_common(), columns=[’Trigram’, ’

Frequency’])

3 df_trigrams[’Trigram’] = df_trigrams[’Trigram’].astype(str)

4

5

6 chart3 = alt.Chart(df_trigrams.head(10)).mark_bar().encode(

7 x=alt.X(’Trigram:N’, sort=’-y’),

8 y=alt.Y(’Frequency:Q’),

9 tooltip = [’Trigram’, ’Frequency’]

10 ).properties(title=’Top 10 Most Frequent Trigrams’).interactive()

11 chart3.display()

Listing 12—Retrieve trigrams

1 # Sentiment Analysis

2 sentiments = [TextBlob(sentence).sentiment for sentence in sentences]

3 df_sentiment = pd.DataFrame({’Sentence’: sentences, ’Polarity’: [s.polarity for s in

sentiments], ’Subjectivity’: [s.subjectivity for s in sentiments]})

4

5 chart4 = alt.Chart(df_sentiment).mark_bar().encode(

6 x=alt.X(’Polarity:Q’, bin=True),

7 y=alt.Y(’count()’, title=’Number of Sentences’),

8 tooltip = [alt.Tooltip(’Polarity:Q’, bin=True), ’count()’]

9 ).properties(title=’Distribution of Sentiment Polarity’).interactive()
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10

11 chart5 = alt.Chart(df_sentiment).mark_circle().encode(

12 x=’Polarity’,

13 y=’Subjectivity’,

14 tooltip = [’Polarity’, ’Subjectivity’]

15 ).properties(title=’Sentiment Polarity vs Subjectivity’).interactive()

16

17 print(df_sentiment)

18

19 chart4.display()

20 chart5.display()

Listing 13—Retrieve Sentiment analysis

1 # Sentence Length

2 print (sentences)

3 sentence_lengths = [len(sentence.split()) for sentence in sentences]

4 df_sentence_length = pd.DataFrame({’Sentence’: sentences, ’Length’: sentence_lengths})

5

6 print(df_sentence_length)

7

8 chart6 = alt.Chart(df_sentence_length).mark_bar().encode(

9 x=alt.X(’Length:Q’, bin=True),

10 y=alt.Y(’count()’, title=’Number of Sentences’),

11 tooltip = [alt.Tooltip(’Length:Q’, bin=True), ’count()’]

12 ).properties(title=’Distribution of Sentence Lengths’).interactive()

13 chart6.display()

Listing 14—Retrieve sentences lengths

1 # POS Tagging

2 pos_tags = nltk.pos_tag(words)

3 df_pos_tags = pd.DataFrame(Counter([tag for _, tag in pos_tags]).most_common(), columns

=[’POS Tag’, ’Frequency’])

4

5 print (df_pos_tags)

6

7 chart7 = alt.Chart(df_pos_tags).mark_bar().encode(

8 x=alt.X(’POS Tag:N’, sort=’-y’),

9 y=alt.Y(’Frequency:Q’),

10 tooltip = [’POS Tag’, ’Frequency’]

11 ).properties(title=’Frequency of POS Tags’).interactive()

12

13 chart7.display()

Listing 15—Retrieve POS tags
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1 # NER

2 nlp = spacy.load("es_core_news_md") # Load Spanish spaCy model

3 entities = []

4 labels = []

5 for sentence in sentences:

6 doc = nlp(sentence)

7 for ent in doc.ents:

8 entities.append(ent.text)

9 labels.append(ent.label_)

10 df_ner = pd.DataFrame(Counter(zip(entities, labels)).most_common(), columns=[’

Entity_Label’, ’Frequency’])

11 df_ner[[’Entity’, ’Label’]] = pd.DataFrame(df_ner[’Entity_Label’].tolist(), index=df_ner

.index)

12 df_ner = df_ner[[’Label’, ’Frequency’]]

13 df_ner = df_ner.groupby(’Label’).sum().reset_index()

14

15 entity_label_descriptions = {

16 ’LOC’: ’Locations such as geographical entities, buildings, airports, etc.’,

17 ’MISC’: ’Miscellaneous entities, not belonging to any of the other categories’,

18 ’ORG’: ’Organizations, companies, institutions, etc.’,

19 ’PER’: ’People, including names of individuals’

20 }

21

22 df_ner[’Description’] = df_ner[’Label’].map(entity_label_descriptions)

23

24 print (df_ner)

25

26 chart8 = alt.Chart(df_ner).mark_bar().encode(

27 x=alt.X(’Description:N’, sort=’-y’),

28 y=alt.Y(’Frequency:Q’),

29 tooltip = [’Description’, ’Frequency’]

30 ).properties(title=’Frequency of Entity Labels’).interactive()

31

32 chart8.display()

Listing 16—Retrieve NER

3 DOCUMENTATION

1. Data Collection and Preprocessing:
• A set of judicial decisions (sentencias) in pdf format was obtained from

Dr. Alexander, originating from the National School of the Judiciary in the

Dominican Republic.
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• Text was extracted from PDF files using the pypdf library.
• The extracted text was preprocessed, which included:

• Converting all text to lowercase.
• Removing punctuation (or keeping some specific punctuation marks for

sentence segmentation).
• Removing extra whitespace.

2. Text Analysis and Feature Extraction:
• The preprocessed text was tokenized into words and sentences using NLTKs

word_tokenize and sent_tokenize functions.
• Word clouds were generated to visualize the most frequent words in the

corpus.
• Word frequency analysis was performed, including:
• Counting the frequency of individual words.
• Removing Spanish stop words using NLTK’s stopwords.
• Identifying and visualizing the most frequent words and bigrams (two-word

sequences) and trigrams (three-word sequences).
• Sentiment analysis was conducted using TextBlob to determine the polarity

(positive/negative) and subjectivity of each sentence.
• Sentence length analysis was performed by counting the number of words

in each sentence.
• Part-of-speech (POS) tagging was performed using NLTK to identify the

grammatical roles of words in the corpus.
• Named entity recognition (NER) was performed using spacy’s Spanish lan-

guage model (es_core_news_md) to identify and categorize entities like

people, organizations, and locations.

3. Visualization and Reporting:
• The results of the analyses were visualized using Altair charts and mat-

plotlib.
• DataFrames were used to organize and manipulate the extracted data.
• Charts were generated to represent the frequency distributions of various

features (word frequency, sentiment polarity, sentence length, POS tags, en-

tity labels).
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4 SCRIPT VALIDATION(OPTIONAL)

Still awaiting on the Kickoff meeting that will be carried out on Monday 26th of

August. Until then, not certain that any of the data I’ve retrieve so far will align

with the goals of the project.

5 RESULTS VISUALIZATION

Figure 1—Word cloud

Figure 2—Top 20 most frequent words
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Figure 3—Top

10 most fre-

quent

bigrams

Figure 4—Top

10 most fre-

quent

trigrams

Figure 5—Sen-

timent polar-

ity

Figure 6—Sen-

timent po-

larity vs

subjectivity
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Figure 7—Dis-

tribution of

sentence

lengths
Figure 8—En-

tity labels fre-

quency

Figure 9—POS tags frequency
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6 PROOF OF WORK

The results obtained seem to be reliable for a first data pass. It’s important to

highlight that text preprocessing is fairly simple at this point and input text

will definitely need additional filtering to rule out tokens lacking value such as

simple nouns like the word "number" in Spanish, or similar content that may

lack meaning in terms of interpreting the content of the document. Besides that,

sentiment analysis seems neutral which makes sense given the nature of the

documents and words with the highest frequency seem to be simple nouns and

generic adjectives related to the type of document.

In general terms, a simple data ingestion mechanism was created that can now

allow for further investigation if the data source happens to be the provided pdf

documents.

Will keep investigating more in the following week based on the outcome of the

kickoff meeting with Dr. Alexander.

7 NEXT WEEK’S PROPOSAL

• Meet with Dr. Alexander for the project kick-off and gain insights on what our

goals and expectations should be on Monday.
• Join the NLP group weekly meeting on Monday.
• Gain insights on data ingestion for the NLP-Setencias documents.
• Gain knowledge on the source documents and their context information.
• Further develop data ingestion and data processing pipelines for the pdf docu-

ments.
• Look for models trained with legal Spanish language.
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HAAG NLP DR — Week 1 Report

Karol Gutierrez

August 23, 2024

1 Literature Review

Paper: Generating Wikipedia by Summarizing Long Sequences [LSP+18].

1.1 Abstract

We show that generating English Wikipedia articles can be approached as a multi- document summa-
rization of source documents. We use extractive summarization to coarsely identify salient information
and a neural abstractive model to generate the article. For the abstractive model, we introduce a
decoder-only architecture that can scalably attend to very long sequences, much longer than typical
encoder- decoder architectures used in sequence transduction. We show that this model can generate
fluent, coherent multi-sentence paragraphs and even whole Wikipedia articles. When given reference
documents, we show it can extract relevant factual information as reflected in perplexity, ROUGE
scores and human evaluations.

1.2 Summary

The text discusses a research project by Google Brain that focuses on generating English Wikipedia
articles through a multi-document summarization approach. They use extractive summarization to
identify key information and a neural abstractive model to generate the articles, introducing a decoder-
only architecture that can handle long sequences efficiently. The study demonstrates the effectiveness
of their model in extracting factual information from reference documents, as evaluated through per-
plexity, ROUGE scores, and human assessments.

2 Scripts and code blocks

All the existing code exists in the following repository.
This is a code block that calls the ‘summarizer‘ function and then print the texts and generate the

plots. It uses sample data extracted from Wikipedia articles as well as the abstract from the paper
used in the Literature Review.

The current code logic is explained in the following diagram.

3 Documentation

The documentation is also present in the README.md file in the repository.

3.1 README.md

# nlp-dr

Code snippets for NLP project

then install torch manually, such as

conda install pytorch torchvision -c pytorch

1

https://github.com/karol22/nlp-dr/
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Figure 1: Code block.

Figure 2: Code logic flow chart.

# NLP-DR: Text summarization

Sample script to summarize text using the Hugging Face ‘transformers‘ library.

The script takes text fragments, generates summaries and generate plots.

## Project Structure

- **summarization_example.py**: The main script that performs text summarization and plots.

## Setup Instructions

### Prerequisites

- **Python 3.9** or later.

- **Miniconda or Anaconda** installed on your system.

### Setup the Environment

1. Run ‘conda env create -f environment.yaml‘

2. Activate environment using ‘conda activate haag-nlp‘

3. Manually install pytorch, use reference from ‘https://pytorch.org/get-started/locally/‘.

For example: ‘conda install pytorch torchvision -c pytorch‘
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### Run the code

Use ‘python summarization_example.py‘.

4 Script Validation

It doesn’t apply at this point of the development of the project.

5 Results Visualization

After doing the setup steps, the sample code should generate the following plots and also print the
original and summarized versions of the texts.

Figure 3: Comparison of text lengths.

6 Proof of Work

These results are demonstrations of existing libraries for NLP. The only available proof of work is the
code running succesfully after doing the setup steps from the documentation.

7 Next Week’s Proposal

• Sync with Dr. Alexander and team to get more details on the requirements for the project and
general overview of tasks.

• Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.

• Further literature review of techniques that could be applied to this project.

• Work using the dataset from the project, initial tasks could be related to data extraction.

References

[LSP+18] Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,
and Noam Shazeer. Generating wikipedia by summarizing long sequences, 2018.
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Figure 4: Proof of code working.
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8 Next Steps 9

1 Completed work

• Met with new NLP members. Held meeting to go over course logistics

• Attended kickoff event held by Dr. Alexander in collaboration with her
VIP class
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• Experimented with unstructured, a python package for pulling out data
from PDFs, to see its effectiveness in OCRing

• Experimented with a pre-trained long document model for summarization
to gauge zero-shot performance

2 Abstracts

• Title: Abstractive Summarization of Dutch Court Verdicts Using Sequence-
to-sequence Models. Conference: ACL, Proceedings of the Natural Legal
Language Processing Workshop 2022.

• Abstract: With the legal sector embracing digitization, the increasing
availability of information has led to a need for systems that can auto-
matically summarize legal documents. Most existing research on legal
text summarization has so far focused on extractive models, which can
result in awkward summaries, as sentences in legal documents can be very
long and detailed. In this study, we apply two abstractive summarization
models on a Dutch legal domain dataset. The results show that existing
models transfer quite well across domains and languages: the ROUGE
scores of our experiments are comparable to state-of-the-art studies on
English news article texts. Examining one of the models showed the capa-
bility of rewriting long legal sentences to much shorter ones, using mostly
vocabulary from the source document. Human evaluation shows that for
both models hand-made summaries are still perceived as more relevant
and readable, and automatic summaries do not always capture elements
such as background, considerations and judgement. Still, generated sum-
maries are valuable if only a keyword summary or no summary at all is
present.

• Summary: This paper explores using advanced technology to automati-
cally summarize legal documents, finding that while the technology can
create shorter summaries, human-made summaries are still considered
more relevant and readable. The study shows that existing models can
work well across different languages and domains, but may not capture all
the important elements found in legal texts. Future work included expand-
ing post processing to help mitigate issues like summaries that expand on
unimportant details, and a more detailed analysis.

• Relevance: This closely matches the task of summarizing the clearinghouse
documents. Sequence-to-sequence models are staple among complex NLP
tasks. This paper helps illuminate some key ones.
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3 Relevant Info

• LED model is a proposed transformer technique from 2020 for the use in
long document tasks in NLP. The paper on it can be found here.

• Legal documents are very long, making LED a good initial model to ex-
plore

• One source of data that concerns the NLP-Summarization project is data
from the Clearinghouse as well as COVID data, but I have not explored
that website much.

• In summarization, there is abstractive and extractive summarization. Ab-
stractive is generating a summarization from scratch with keeping the
main ideas of the text in the generated summary. Extractive is taking
text from the given document to generate a document. The model I was
exploring is abstractive. Source for background

• UnstructurdIO is a library for working with different documents of an
unstructured nature such as PDFs. It leverages OSS tools to be able to
parse PDFs, Docx files etc. It was popularized by Retrieval Augmented
Generation (RAG). Source for initial code exploration

4 Scripts

1. All scripts uploaded to https://github.com/Human-Augment-Analytics/NLP-
Gen

2. Scripts were run with the following file for testing: https://clearingho
use-umich-production.s3.amazonaws.com/media/doc/1865.pdf

3. Thomas-Orth/downloader.py

• Brief Description: This is a generic download file utility to make it
easier to pull PDFs down from the clearinghouse website.

• Status: Tested via downloading of a PDF from a ClearingHouse di-
rect link (not by their API).

• Important Code Blocks:

(a) There is only 1 class in this file: Downloader. This performs the
download operation for the file.

• Screenshot of code:
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Figure 1: Script for Downloader Class

4. Thomas-Orth/download and parse pdf.py

• Brief Description: This script will take in 1) A pdf URL 2) The path
to save that PDF to and 3) The filename for the downloaded file and
then parse using UnstructuredIO. The printed and combined text is
limited to Narrative Text as the body content.

• Status: Tested against example PDF with visual confirmation of the
text appearing in the document.

• Important code blocks:

(a) First code block: Argv inputs to get the 3 parameters described
in the description

(b) Second code block: Run unstructured on the data

(c) Third code block: Combine Narrative Text and print

• Screenshot:

Figure 2: Parsing script for PDF extraction
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5. Thomas-Orth/download parse and summarize.py

• Brief Desciption: This script takes the download and parse aspects
of the Thomas-Orth/download and parse pdf.py and adds a summa-
rizer model.

• Model Chosen: This model is a pretrained LED model on legal doc-
uments that scales to 16384 input tokens.

• Status: Ran on the example data and was able to produce a summary

• Important codeblocks:

(a) First code block: Argv inputs to get the 3 parameters described
in the description

(b) Second code block: Run unstructured on the data

(c) Third code block: Combine Narrative Text and feed into sum-
marizer model. Print for inspection

• Screenshot:

Figure 3: Summarization script

6. Flow Diagram for Parse and Summarization scripts:
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Figure 4: Flow diagram

7. Running scripts:

(a) Download the script of your choice (either download parse and summarize.py
or download and parse pdf.py) and the requirements.txt

(b) Run: python -m pip install requirements.txt

(c) Run: python <chosen script> https://clearinghouse-umich-pro

duction.s3.amazonaws.com/media/doc/1865.pdf . 1865.pdf

5 Documentation

1. Download PDF(s) of interest

2. Perform OCR or Parsing on PDF and Extract Narrative Text

3. Feed extracted text into Pre-trained LED model

4. Output summary
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Figure 5: An example of a snippet from the extracted text that worked well

6 Results

6.1 OCR / Parsing Results

Figure 6: An example of a snippet of extracted text that didn’t parse well

Sample of extracted text from the PDF. Largely, the extraction performance
seems pretty well. In Figure 5, this portion is an example highlighted on how
well it went. However, some of the text got parsed weirdly such as in Figure 6.
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6.2 Summary Result

Figure 7: Summary

This is the output of the LED model pretrained on legal data in Figure 7.

7 Proof of Results

7.1 OCR

7.1.1 Documentation

These results are reasonable due to the fact OCRing is not a perfect process.
Unstructured has become popular amongst developers in the LLM space for its
ease of use. Example of a usage of it for LLMs can be found here.

It leverages the well-known OCR models for parsing such as tesseract and
PaddleOCR.

7.1.2 Oddities

So not all of the text was parsed correctly, as we saw with Figure 6. OCR isn’t
perfect so a few things that require either manual correction or guardrails to
postprocess makes sense.

7.1.3 Open Questions / Routes to take

So this was only with Narrative Text, which is a category unstructured uses to
denote main body text from what I can tell. There is also: UncategorizedText,
ListItem, and Title. I do not know yet the impact of including this text would
have on summarization. That is something to potentially look into.

7.2 Summary Model results

7.2.1 Documentation

The chosen LED model was taken from huggingface here. I chose LED because
it is good for long documents. Additionally, it was noted in this paper that
LED was pretty good on legal documents vs. Models like Pegasus. I went with
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a pretrained model that was pretrained on legal documents in order to ensure
it had proper legal knowledge for this zero-shot experiment.

7.2.2 Known Limitations

While this is good on long documents, it is limited to 16384 input tokens. I
believe it truncates the rest of the input if it gets more than that.

7.2.3 Oddities

It seemed to have gotten the legal verbage right but one oddity was the year. It
seemed to think the document was talking about 2018 when the document was
talking about a case from the 1980s. I believe this is due to the training data
used for the model pretraining. It probably was using more recent documents
and hallucinated the year. So when we get to training, we’ll want to consider
the tradeoffs of training from scratch vs. pretrained on legal text.

7.2.4 Open Questions / Routes to take

So one major thing to look at is how to overcome the limited input size of
models. Langchain mentions the practice of Map-reduce for summarizing found
here. This is a way to chunk up text, summarize the chunks and then combine.
I do not know if that works for LED or the more ”modern” LLMs but such
approaches should be considered as we go.

8 Next Steps

1. Perform extensive review of techniques, tools, and models that are used
for summarization, both generic and specific to legal documents

2. Coordinate with selected sub-team for Dr. Alexander’s VIP course and
refine further tasking with sub-team members

3. Experiment further with unstructured for the different text types and
PDFs

4. Start understanding the Clearinghouse API
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