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1 Slack Questions

What did you accomplish this week?

• Wrote documentation Clearinghouse API and created code samples for undergraduate stu-
dents

• Did an experiment with Pegasus on generate very short summaries. I did an extractive-
abstractive based approach where I first parsed the complaint bullet points from the document
and then fed only those into Pegasus. I was able to get one sentence summaries that, although
not very detailed, were factually correct. But as summaries got longer, it started repeating
the same sentence

What are you planning on working on next?

• I’ve read about RAG, I want to try getting myself a simple seq2seq baseline to play with

• I need to send out a list of papers to the undergrads, I have about 30 papers so each undergrad
will be able to review 2 or 3 of them

• Read seq2seq and Mistral papers as required by my subteam

What is blocking you from progressing?

• None

2 Abstract

Large pre-trained language models have been shown to store factual knowledge in their parameters,
and achieve state-of-the-art results when fine-tuned on down- stream NLP tasks. However, their
ability to access and precisely manipulate knowl- edge is still limited, and hence on knowledge-
intensive tasks, their performance lags behind task-specific architectures. Additionally, providing
provenance for their decisions and updating their world knowledge remain open research problems.
Pre- trained models with a differentiable access mechanism to explicit non-parametric memory
have so far been only investigated for extractive downstream tasks. We explore a general-purpose
fine-tuning recipe for retrieval-augmented generation (RAG) — models which combine pre-trained
parametric and non-parametric mem- ory for language generation. We introduce RAG models
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where the parametric memory is a pre-trained seq2seq model and the non-parametric memory is a
dense vector index of Wikipedia, accessed with a pre-trained neural retriever. We com- pare two
RAG formulations, one which conditions on the same retrieved passages across the whole generated
sequence, and another which can use different passages per token. We fine-tune and evaluate our
models on a wide range of knowledge- intensive NLP tasks and set the state of the art on three open
domain QA tasks, outperforming parametric seq2seq models and task-specific retrieve-and-extract
architectures. For language generation tasks, we find that RAG models generate more specific,
diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.

Link: https://arxiv.org/pdf/2005.11401v4

2.1 Brief Analysis

Retrieval Augmented Generation(RAG) is a technique that draws a dividing line between two types
of knowledge that a generative language model has. Parameteric knowledge is encoded into the
parameters of a neural network during training and helps to generate semantically and gramatically
correct text. Models that rely purely on parametric knowledge hallucinate and generate text that
is factually incorrect. RAG builds on memory based knowledge called non-parametric knowledge.
Non-parametric knowledge is stored outside the network in a database. RAG will encode a query
text(like a complaint text) and then that encoding is used to find the top few documents that relate
to that text. Then, the documents are appended to the initial query and this is fed into a sequence
to sequence model. To me, this is somewhat reminiscent of region proposal networks increasing
classification accuracy for object detectors. It also reminds be of extractive-abstractive approaches
like the one I experimented with in pegasus. One thing I do not fully understand with RAG is that
it claims that you don’t have to retrain if you change documents, but I think this may only be the
case with models that are equipped to run RAG. If I had a normal pretrained sequence to sequence
model, wouldn’t I need to add more inputs to accomadate the extra tokens added by RAG? Unless
we decode the retrieved documents and add them to a prompt, I think you’d need to modify the
network architecture. So far, RAG is the only NLP tool I’ve seen that claims to have higher scores
on benchmarks like ROUGE than an extractive approach.

3 Scripts and Code Blocks

I’ve edited the clearinghouse api folder to add markdown documentation and code examples of
how to use the API. The file ch openapi.yaml holds the spec used to generate the api. The file is
pretty long( 1200 lines). The general flow of the API to generate a dataset suitable for finetuning
summarization models is shown in Figure 1

3.1 Pegasus

This was a largely unsucessful experiment where I tried to run lead3 and then pegasus. It was able
to get one sentence summaries but broke after one sentence most of the time. I haven’t collected
any metrics on this yet because our validation team has not yet decided on an evaluation pipeline.
The code is shown in Figure 2 and Figure 3.
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Figure 1: API To Summary Model Flow
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Figure 2: Pegasus Extractive Abstractive Summarization
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Figure 3: Basic Lead3 extractive summarization

4 Documentation

See api documentation at https://github.com/Human-Augment-Analytics/NLP-Gen/tree/main/michael/api/clearinghouse api.
Also see documentation in https://github.com/Human-Augment-Analytics/NLP-Gen/tree/main/michael/api
that shows how to open the pickle file. To generate the api, do:

openapi-generator-cli generate -i ch\_openapi.yaml -g python -o clearinghouse\_api

5 Results Visualization

Figure 4 shows a case that has been summarized with pegasus

6 Next Week’s proposal

• Research retrieval augmented generation, NER

• Research decoder-only transformer seq2seq model(Mistral), Create a test decoder only model
with less than 7B parameters? That I think can help students understand creating seq2seq
models and can probably assist with the NER tasking

• Create seq2seq script and see if I can add metadata from cases into the model as a form of
RAG

• Send list of papers to undergraduates for review
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Figure 4: The Cleaned Text and The Summary(at the bottom) of a case from clearinhouse generated
by pegasus
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HAAG Research Report
NLP - Sentencias / NLP - Gen Team

Week 3
Víctor C. Fernández

September 2024

1 WEEKLY PROJECT UPDATES

What progress did you make in the last week?

• Have been creating code for:
• Converting pdfs to text without data loss or words transformation.
• Removing noise from the genereted text files such as headers, footers, repeti-

tive symbols over the page.
• Named Entity Recognition using SpaCy’s es_core_news_lg model, grouping

content in the document by type of information we may be able to use later

on in the process.
• Meeting with Dr. Alexander on September 6th for an update call.
• Meeting with the NLP team on September 6th for our weekly meeting.
• Created a file containing OMSCS professors to contact for seminars.
• Cold emailed multiple professors for carrying out seminars.

What progress are you making next?

• Meeting with the NLP team on September 13th on our weekly meeting.
• Look into the use of pretrained LLMs for Information Retrieval, such as BERT

or DBRX, as will most likely be what we’ll need to use for extracting more

precise information from the documents.

Is there anything blocking you from making progress?

No, nothing right now.
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2 ABSTRACTS

1. Title: IR2: Information Regularization for Information Retrieval
• URL: https://aclanthology.org/2024.lrec-main.810.pdf

• Abstract: Effective information retrieval (IR) in settings with limited train-

ing data, particularly for complex queries, remains a challenging task. This

paper introduces IR2, Information Regularization for Information Retrieval,

a technique for reducing overfitting during synthetic data generation. This

approach, representing a novel application of regularization techniques in

synthetic data creation for IR, is tested on three recent IR tasks characterized

by complex queries: DORIS-MAE, ArguAna, and WhatsThatBook. Experi-

mental results indicate that our regularization techniques not only outper-

form previous synthetic query generation methods on the tasks considered

but also reduce cost by up to 50%. Furthermore, this paper categorizes

and explores three regularization methods at different stages of the query

synthesis pipeline—input, prompt, and output—each offering varying de-

grees of performance improvement compared to models where no regu-

larization is applied. This provides a systematic approach for optimizing

synthetic data generation in data-limited, complex-query IR scenarios. All

code, prompts and synthetic data are available at https://github.com/Info-

Regularization/Information-Regularization.

• Summary: The paper introduces IR2, a technique that uses Information

Regularization to enhance the quality of synthetic data generation for In-

formation Retrieval (IR) tasks, mainly involving complex queries. It aims

at reducing overfitting during synthetic data creation by generating queries

that have conceptual overlap with the original document but differ in phras-

ing and structure. The paper explores three regularization methods applied

at different stages of the query synthesis pipeline: input document regu-

larization, instruction regularization, and output query regularization. The

experimental results demonstrate that these techniques outperform previ-

ous synthetic query generation methods on complex IR tasks and can even

reduce costs.

• Relevance: It improves information retrieval for complex queries. In the con-

2



text of the NLP-Sentencias project, the judges’ written decisions can be seen

as complex documents, and the information we need to extract could be

considered complex queries at some point. The IR2 technique could be lever-

aged to generate synthetic queries from these decisions, increasing training

data and potentially improving the performance of the NLP tools to extract

key information.

3 SCRIPTS AND CODE BLOCKS

All scripts have been uploaded to https://github.com/Human-Augment-Analytics/NLP-

Gen/blob/main/victor.

The following functions are the core parts of the script in the provided folder

that is intended for cleaning the generated txt files and extracting entities.

def extract_case_number(text):
case_number_pattern = r'Número\s+(?:único\s+)?de\s+caso\s+\
(?:\(NUC\))?\s*:?\s*(\d+-\d+)'
case_number_match = re.search(case_number_pattern, text,

re.IGNORECASE)↪→

return case_number_match.group(1) if case_number_match else
None↪→

Code 1—Extract case number from text

3



def extract_parties(doc):
persons = set()
organizations = set()
for ent in doc.ents:

if ent.label_ == "PER":
persons.add(ent.text)

elif ent.label_ == "ORG":
organizations.add(ent.text)

return {
"persons": list(persons),
"organizations": list(organizations)

}

Code 2—Extract persons and organizations

def extract_money_amounts(doc):
for ent in doc.ents:

if ent.label_ == "MONEY":
money_amounts.append(ent.text)

# Additional regex pattern for amounts that might be missed by
SpaCy↪→

money_pattern = r'\$?\d{1,3}(?:,\d{3})*(?:\.\d{2})?(?:
[a-zA-Z]+)?'↪→

regex_matches = re.findall(money_pattern, doc.text)

# Combine SpaCy results and regex matches, removing duplicates
all_amounts = list(set(money_amounts + regex_matches))
return all_amounts

Code 3—Extract money amounts / numbers
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def extract_dates_and_events(doc):
date_events = []
for sent in doc.sents:

date = None
event = []
for token in sent:

if token.ent_type_ == "DATE":
date = token.text

elif token.pos_ == "VERB":
event.append(token.text)

if date and event:
date_events.append({"date": date, "event": "

".join(event)})↪→

return date_events

Code 4—Extract money amounts / numbers

4 DOCUMENTATION

1. Data Collection and Preprocessing:
• A set of judicial decisions (sentencias) in pdf and doc format was obtained

from Dr. Alexander, originating from the National School of the Judiciary

in the Dominican Republic.
• Text was then extracted from PDF and doc files using the PyMuPDF library

into txt files.
• New text documents were then processed in order to remove headers, foot-

ers, pagination and other repetitive items in the corpus.
• New text files were generated with the cleaned up content.

2. Text Analysis and Feature Extraction:
• Named Entity Recognition was carried out to identify different parts of the

documents content using SpaCy’s Spanish large model es_core_news_lg.
• New json files were generated containing the identified entities with the

above indicated code.
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5 SCRIPT VALIDATION (OPTIONAL)

Results were manually reviewed and thought through verifying the logic of

the entities recognized within the context in the document. So far entities were

correctly identified in a large percentage, but it is still not enough to be able to

obtain the information we want for classifying the documents by time for case

completion.

6 RESULTS VISUALIZATION

Resulting documents were shared in the private project repository given the

nature of the content and the need to maintain privacy. Repository’s link is the

following (may only be accessed by members with authorization):

https://github.gatech.edu/calexander97/sentencias

7 PROOF OF WORK

The results obtained were reliable and stable, although they won’t be enought to

fully identify the context of the data we’re looking for. We can extract a list of

persons or organizations, but in order to know who is who and what role they

are playing in the document we’ll need extra processing with a different model

in the line of an LLM such as BERT. Still, the text was correctly cleared removing

unnecessary noise that does not add value to posterior processing.

Will keep moving forward during the coming week in order to enhance the

entities extraction and start generating a data pool which we may then use to

obtain insights on the differences between each case to identify what aspects

affect the cases causing delays.
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HAAG NLP Sentencias — Week 2 Report

NLP-Gen Team

Karol Gutierrez

September 6, 2024

1 Weekly Project Update

1.1 What progress did you make in the last week?

• Call with Dr. Alexander and on September 6. We introduced ourselves to a broader team of
collaborators of Dr. Alexander (Jose Torres and Laura Bastidas) and planned on the specific
attributes that we want to extract from the documents moving forward.

• Experimentation with SpaCy library for Name Entity Recognition (NER). Code regarding date
extraction from the PDF files, analysis of occurences over time.

• Literature review for use of LLMs for domain specific texts.

• Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.

• Start code work on LLM usages.

1.2 What are you planning on working on next?

• Experiment with existing LLMs during weekend.

• Further literature review on LLMs.

• Give proposal to team early next week to split work and decide on tools to use.

• Design benchmark to evaluate performance of different models.

• Work with team in a consolidated code base and split sections to retrieve (ordinance number,
case type, plaintiff, etc).

• Continue fulfilling my role as Meet Manager/Documentor by working on the tasks expected for
my position (gather notes from meetings and prepare recordings).

1.3 Is anything blocking you from getting work done?

No.

2 Literature Review

Paper: A pre-trained BERT for Korean medical natural language processing [KKL+22].
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2.1 Abstract

With advances in deep learning and natural language processing (NLP), the analysis of medical texts
is becoming increasingly important. Nonetheless, despite the importance of processing medical texts,
no research on Korean medical-specifc language models has been conducted. The Korean medical text
is highly difcult to analyze because of the agglutinative characteristics of the language, as well as the
complex terminologies in the medical domain. To solve this problem, we collected a Korean medical
corpus and used it to train the language models. In this paper, we present a Korean medical language
model based on deep learning NLP. The model was trained using the pre-training framework of BERT
for the medical context based on a state-of-the-art Korean language model. The pre-trained model
showed increased accuracies of 0.147 and 0.148 for the masked language model with next sentence
prediction. In the intrinsic evaluation, the next sentence prediction accuracy improved by 0.258,
which is a remarkable enhancement. In addition, the extrinsic evaluation of Korean medical semantic
textual similarity data showed a 0.046 increase in the Pearson correlation, and the evaluation for the
Korean medical named entity recognition showed a 0.053 increase in the F1-score.

2.2 Summary

The text discusses the development of a Korean medical language model based on BERT for natural
language processing (NLP) in the medical domain. By training the model on a Korean medical corpus,
the pre-trained model demonstrated improved accuracies in tasks such as masked language modeling
and next sentence prediction, as well as enhanced performance in semantic textual similarity and
named entity recognition evaluations specific to Korean medical text analysis. The study highlights
the importance of domain-specific language models, like KR-BERT, in addressing the complexities of
medical terminology and language characteristics for effective text processing in the healthcare domain.

2.3 Relevance

This paper is relevant for future advancements in NLP for medical applications in Korean and can
be the base for other non-English applications. It showed the importance of creating language and
domain-specific models in order to achieve higher accuracy in specialized tasks. In particular, the
applied methodology can be used in the Sentencias project, where we are handling legal texts in
Spanish.

3 Scripts and code blocks

All the existing code is in the new private repository. Since we are handling private information from
the PDF files, it was decided alongside Dr. Alexander that we should add all of our code work here
from now on.

I added scripts that use the SpaCy library to try to retrieve the dates and also get specific samples
to train a model. I also compare the results with the existing Regex implementation, and I expanded
the regex to consider more cases for date representation.

Figure 1: Updated regex

For the current submission we are experimenting with sample dates that can be trained using spaCy
in order to retrieve the dates. However, the size of the training set is still small and the performance is
not adequate. Nevertheless, it serves as a proof of concept for future development. The current code
logic is explained in Figure 4, and the visualization compares the number of dates retrieved by spaCy
vs the regex implementation.
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Figure 2: Code block

4 Documentation

The documentation is present in the README.md file in the repository. Refer to the repository to
get the most updated instructions on how to run the code.

5 Script Validation

It doesn’t apply at this point of the development of the project.

6 Results Visualization

Plots of the dates retrieved using the new methods. Figure 5. AS can be seen in Figure 4, the level of
dates found using the trained model is minimal compared to the regular expressions, however, this is
due to the minimal size of the training set.

7 Proof of Work

All the scripts work end to end from the starting PDF files to the generated plots and printing of
results. A benchmark will be included in next deliverable so we can have a measure of performance
and then determine the quality of the work.

8 Next Week’s Proposal

Refer to section 1.2 for details (avoid repetition).

References

[KKL+22] Youngtae Kim, Jihoon Kim, Jeong Min Lee, et al. A pre-trained bert for korean medical
natural language processing. Scientific Reports, 12:13847, 2022.
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Figure 3: Code logic flow chart.

Figure 4: Dates occurrences over time.

4



Figure 5: Dates occurrences over time.
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Week 3 Research Report

Thomas Orth (NLP Summarization / NLP Gen Team)

September 2024

1. Met with VIP sub teams to discuss research and new direction for tasking

2. Created initial finetuning pipeline

3. Met with Dr. Alexander to talk about compute needs for the VIP class
and short term planning

0.1 What are you planning on working on next?

1. Send Dr. Alexander forms on PACE cluster for access.

2. Clean up finetuning pipeline and pass along to VIP students to start ex-
perimenting.

3. Expand pipeline to include LongT5.

0.2 Is anything blocking you from getting work done?

1. None

1 Abstracts

• Title: LongT5: Efficient Text-To-Text Transformer for Long Sequences.
Conference: ACL, Findings of the Association for Computational Linguis-
tics: NAACL 2022

• Abstract: Recent work has shown that either (1) increasing the input
length or (2) increasing model size can improve the performance of Transformer-
based neural models. In this paper, we present LongT5, a new model that
explores the effects of scaling both the input length and model size at
the same time. Specifically, we integrate attention ideas from long-input
transformers (ETC), and adopt pre-training strategies from summariza-
tion pre-training (PEGASUS) into the scalable T5 architecture. The result
is a new attention mechanism we call Transient Global (TGlobal), which
mimics ETC’s local/global attention mechanism, but without requiring
additional side-inputs. We are able to achieve state-of-the-art results on
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several summarization and question answering tasks, as well as outper-
form the original T5 models on these tasks. We have open sourced our
architecture and training code, as well as our pre-trained model check-
points.

• Summary: This paper introduces LongT5, a new neural model that com-
bines ideas from long-input transformers and summarization pre-training
to improve performance on tasks like summarization and question answer-
ing. The model, which includes a new attention mechanism called Tran-
sient Global, achieves state-of-the-art results and surpasses the original
T5 models on these tasks.

• Relevance: The presentation of metrics may be one to follow for the sum-
marization project.

2 Relevant Info

• LED model is a proposed transformer technique from 2020 for the use in
long document tasks in NLP. The paper on it can be found here.

• Legal documents are very long, making LED a good initial model to ex-
plore

• One source of data that concerns the NLP-Summarization project is data
from the Clearinghouse as well as COVID data, but I have not explored
that website much.

3 Scripts

1. All scripts uploaded to https://github.com/Human-Augment-Analytics/NLP-
Gen

2. Scripts were run with the following file for testing: https://gatech.box
.com/s/hv70flwkm977gky004l5vz15rpgfdmir

3. Thomas-Orth/train huggingface.py

• Brief Description: This finetunes an LED model on the clearinghouse
dataset in its current state

• Status: Tested by running the pipeline to completion without issue

• Important Code Blocks:

(a) First block: Read in and set up the dataset

(b) Second block: Set up train and validation dataset to be processed
by tokenizer

(c) Third Block: Configure model and train
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• Screenshot of code:

Figure 1: First screenshot

Figure 2: Second screenshot
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Figure 3: Third screenshot

Figure 4: Fourth screenshot

4. Flow Diagram for Parse and Summarization scripts:
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Figure 5: Flow diagram

5. Running scripts:

(a) Download the script, huggingface.requirements.txt, and the csv from
the box link.

(b) Update the path variable at the top of the script to match where the
csv is stored on your laptop.

(c) Run: python -m pip install requirements.txt

(d) Run: python train huggingface.py

4 Documentation

1. Download CSV file, with two columns: Document and Summary

2. Update script to point to the CSV file

3. Train model

4. Output Model Checkpoints

5 Results

Figure 6: Output from initial training

This is the initial output of training. I need to refine the output.
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6 Proof of Results

The pipeline is based on the officially linked notebook for LED: https://co
lab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2

v?usp=sharing and a deriavation of that work for arxiv training: https:

//github.com/Bakhitovd/led-base-7168-ml. So the pipeline itself is well
thought out.

6.0.1 Known Limitations

The initial work is done with an early version of the dataset so further results
with this dataset may be sub-par to start.
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