
HAAG NLP Summarization Week 5

Michael Bock

September 2024

1 Slack Questions

What did you accomplish this week?

• Attempted to get text classification working

• Found cuda error with huggingface trainer, switched to torchtext and have tokenization and
text normalization working

• Created dataset for text classification to get text classifier working

• Tested the MLM pipeline, it works but should probably use PACE, this should be kept for
later so we can pretrain a large language model(not like an LLM more like just a transformer
with a lot of layers)

• Met with UPenn, sent them my ssh key for database access

• Briefly did some prompt engineering with Ollama and Llama3.1, it could only answer 1
question per session, after that it would be wrong.

What are you planning on working on next?

• Continue working on TorchText Training pipeline

What is blocking you from progressing?

• Must download Global Protect for PACE access, many models will be difficult to train outside
of the PACE cluster

2 Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on
difficult learning tasks. Although DNNs work well whenever large labeled training sets are available,
they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end
approach to sequence learning that makes minimal assumptions on the sequence structure. Our
method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a
vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from
the vector. Our main result is that on an English to French translation task from the WMT’14

1

dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test
set, where the LSTM’s BLEU score was penalized on out-of-vocabulary words. Additionally, the
LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system
achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000
hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is
close to the previous best result on this task. The LSTM also learned sensible phrase and sentence
representations that are sensitive to word order and are relatively invariant to the active and the
passive voice. Finally, we found that reversing the order of the words in all source sentences (but not
target sentences) improved the LSTM’s performance markedly, because doing so introduced many
short term dependencies between the source and the target sentence which made the optimization
problem easier.

Link: https://arxiv.org/abs/1409.3215

2.1 Brief Analysis

The idea of seq2seq is that some tasks require getting an input sequence of one length and outputting
a sequence of another length. They do this using an encoder. The encoder can take in a text of
whatever length you want, then it runs an LSTM on that. Then, each word gets added to a hidden
state. You don’t care about the output sequence of the encoder, which must be of the same length
as the input sequence. Instead you pass the encoder’s hidden state to a decoder, which then can
generate a sequence of any length you want. One way I interpreted this was that the encoder was
a feature extractor which mapped features in the text to a fixed dimension latent space. Then,
a decoder is like a text generation head which outputs a sequence of words using the extracted
features.

3 Scripts and Code Blocks

MLM Pipeline:
mistral datasets.py(updated):

1 import torch

2 import numpy as np

3 from torch.utils.data import Dataset

4 from tqdm import tqdm

5 from datasets import load_dataset , Dataset as HFDataset

6 import re

7 from transformers import AutoTokenizer

8 import string

9 from langdetect import detect

10 import random

11 from transformers import DataCollatorForLanguageModeling

12 import sys

13 sys.path.append(’../../ ’)

14 from summarizers.get_complaints import get_complaint_only_cases

15 from summarizers.ocr import read_doc , extract_text_from_pdf

16

17 def normalize(comment , lowercase , remove_stopwords):

18 if lowercase:

19 comment = comment.lower()

20 comment = nlp(comment)

21 lemmatized = list()

2

22 for word in comment:

23 lemma = word.lemma_.strip()

24 if lemma:

25 if not remove_stopwords or (remove_stopwords and lemma not in stops):

26 lemmatized.append(lemma)

27 return " ".join(lemmatized)

28

29 ISSUE_IDS = {

30 ’Child Welfare ’: 0,

31 ’Criminal Justice (Other)’: 1,

32 ’Disability Rights ’: 2,

33 ’Education ’: 3,

34 ’Election/Voting Rights ’: 4,

35 ’Environmental Justice ’: 5,

36 ’Equal Employment ’: 6,

37 ’Fair Housing/Lending/Insurance ’: 7,

38 ’Immigration and/or the Border ’: 8,

39 ’Indigent Defense ’: 9,

40 ’Intellectual Disability (Facility)’: 10,

41 ’Jail Conditions ’: 11,

42 ’Juvenile Institution ’: 12,

43 ’Labor Rights ’: 13,

44 ’Mental Health (Facility)’: 14,

45 ’National Security ’: 15,

46 ’Nursing Home Conditions ’: 16,

47 ’Policing ’: 17,

48 ’Presidential/Gubernatorial Authority ’: 18,

49 ’Prison Conditions ’: 19,

50 ’Public Accommodations/Contracting ’: 20,

51 ’Public Benefits/Government Services ’: 21,

52 ’Public Housing ’: 22,

53 ’Reproductive Issues ’: 23,

54 ’School Desegregation ’: 24,

55 ’Speech and Religious Freedom ’: 25

56 }

57

58 class DocumentClassificationDataset(Dataset):

59 def __init__(self , tokenizer , cases_path):

60 self.dataset = {’text’: [], ’labels ’: []}

61 print(’Retrieving complaints ’)

62 cases = get_complaint_only_cases(cases_path)

63 print(’Iterate over complaints ’)

64 self.text_len = 512

65 for entry in tqdm(cases):

66 summary = entry.summary

67 if not summary or len(summary) < 1 or not entry or not entry.

case_documents or len(entry.case_documents) < 1:

68 continue

69 doc = entry.case_documents [0]

70 document_text = read_doc(doc)

71 print(entry.case_types)

72 self.dataset[’text’]. append(document_text)

73 self.dataset[’labels ’]. append(ISSUE_IDS[entry.case_types [0]])

74

75 self.dataset = HFDataset.from_dict(self.dataset)

76 self.tokenizer = tokenizer

77

78 def __len__(self):

3

79 return len(self.dataset)

80

81 def __getitem__(self , idx):

82 """

83 Args:

84 idx (int): Index of the sample to retrieve.

85

86 Returns:

87 tuple: (data_sample , label) where data_sample is the data at index idx ,

88 and label is the corresponding label.

89 """

90 data_sample = self.dataset[idx][’text’]

91 while data_sample.isspace () or detect(data_sample) != ’en’:

92 idx += 1

93 data_sample = self.dataset[idx%len(self.dataset)][’text’]

94 return data_sample , self.dataset[idx%len(self.dataset)][’labels ’]

95

96

97 #Use this in the event of using a DataCollator

98 def prepare_corpus(self):

99

100 def tokenize(sample):

101 return self.tokenizer(sample[’text’])

102

103 tokenized_input = self.dataset.map(tokenize , batched = True , num_proc = 4,

remove_columns = [’text’, ’labels ’])

104

105 def crop(sample):

106 print(len(sample[’input_ids ’]))

107 return {’input_ids ’: sample[’input_ids ’][:4096] , ’attention_mask ’:

sample[’attention_mask ’][:4096]}

108

109 tokenized_input = tokenized_input.map(crop , batched = True , num_proc = 4)

110 print(tokenized_input)

111

112 return tokenized_input

113

114

115

116 class MistralMLMDataset(Dataset):

117 def __init__(self , tokenizer , split = ’train’, text_len = 24):

118 """

119 Args:

120 split (list or ndarray): "train" or "validation ".

121 """

122 self.dataset = load_dataset("pile -of-law/pile -of-law", "nlrb_decisions")

123 self.dataset = self.dataset[split]

124 print(self.dataset)

125 self.text_len = text_len

126 self.tokenizer = tokenizer

127

128 def __len__(self):

129 """ Returns the number of samples in the dataset."""

130 return len(self.dataset)

131

132 def __getitem__(self , idx):

133 """

134 Args:

4

135 idx (int): Index of the sample to retrieve.

136

137 Returns:

138 tuple: (data_sample , label) where data_sample is the data at index idx ,

139 and label is the corresponding label.

140 """

141 data_sample = self.dataset[idx][’text’]

142 lang = ’’

143 while data_sample.isspace () or lang != ’en’:

144 try:

145 lang = detect(data_sample)

146 idx += 1

147 data_sample = self.dataset[idx%len(self.dataset)][’text’]

148 except:

149 lang = ’’

150 #tokens = self.tokenizer(data_sample , return_tensors=’pt ’)

151 #text_index = random.randrange (0, len(data_sample) - self.text_len + 1)

152 #data_sample = data_sample[text_index: text_index + self.text_len]

153 return data_sample

154

155 #Use this in the event of using a DataCollator

156 def prepare_corpus(self):

157 #concatenated_sequences = []

158 #concatenated_masks = []

159 #for data_sample in self.dataset:

160 # data_sample = data_sample[’text ’]

161 # tokenized = self.tokenizer(data_sample)

162 # concatenated_samples.extend(tokenized[’input_ids ’])

163 # concatenated_masks.extend(tokenized[’attention_masks ’])

164

165 def tokenize(sample):

166 return self.tokenizer(sample[’text’])

167

168 tokenized_input = self.dataset.map(tokenize , batched = True , num_proc = 4,

remove_columns = [’text’, ’created_timestamp ’, ’downloaded_timestamp ’, ’url’])

169 print(tokenized_input)

170 def group_texts(samples):

171

172 examples = {k: sum(samples[k], []) for k in samples.keys()}

173 total_length = len(examples[list(examples.keys())[0]])

174

175 if total_length >= self.text_len:

176 total_length = (total_length // self.text_len) * self.text_len

177

178 return {

179 k : [t[i: i + self.text_len] for i in range(0, total_length ,

self.text_len)] for k, t in examples.items()

180 }

181

182 mlm_dataset = tokenized_input.map(group_texts , batched = True , num_proc = 4)

183

184 return mlm_dataset

185

186 # Example usage:

187 if __name__ == "__main__":

188 import numpy as np

189

190 # Create dataset

5

191 #train_dataset = MistralMLMDataset(AutoTokenizer.from_pretrained (" distilbert/

distilbert -base -uncased "))

192 train_dataset = DocumentClassificationDataset(AutoTokenizer.from_pretrained("

allenai/longformer -base -4096"), cases_path = ’../../ all_cases_clearinghouse.pkl’

)

193 #val_dataset = DocumentClassificationDataset(AutoTokenizer.from_pretrained ("

distilbert/distilbert -base -uncased "), cases_path = ’../../

all_cases_clearinghouse.pkl ’)

194

195 #data_collator = DataCollatorForLanguageModeling(tokenizer = train_dataset.

tokenizer , mlm_probability = 0.1)

196 # DataLoader for batching and shuffling

197 mlm_train = train_dataset.prepare_corpus ()

198 #mlm_val = val_dataset.prepare_corpus ()

199

200 #dataloader = torch.utils.data.DataLoader(mlm_train , batch_size =2, shuffle=False

)

201 # Iterate through the DataLoader

202 #for batch_data in dataloader:

203 # #print(batch_data)

204 # quit()

1 from transformers import AutoTokenizer , AutoModelForMaskedLM

2 from torch import nn

3 from transformers import RobertaConfig

4 from transformers import TrainingArguments , Trainer

5 from mistral_datasets import *

6

7 if __name__ == ’__main__ ’:

8 model = AutoModelForMaskedLM.from_config(RobertaConfig ())

9 model.cuda()

10 print(model)

11 # Create dataset

12 train_dataset = MistralMLMDataset(AutoTokenizer.from_pretrained("distilbert/

distilbert -base -uncased"))

13 val_dataset = MistralMLMDataset(AutoTokenizer.from_pretrained("distilbert/

distilbert -base -uncased"), split = ’validation ’)

14

15 data_collator = DataCollatorForLanguageModeling(tokenizer = train_dataset.

tokenizer , mlm_probability = 0.1)

16 # DataLoader for batching and shuffling

17 mlm_train = train_dataset.prepare_corpus ()

18 mlm_val = val_dataset.prepare_corpus ()

19

20 training_args = TrainingArguments(

21 output_dir = "runs",

22 eval_strategy = "epoch",

23 learning_rate =1e-5,

24 num_train_epochs =3,

25 weight_decay =0.01,

26 report_to=’tensorboard ’

27)

28

29 trainer = Trainer(

30 model=model ,

31 args=training_args ,

32 train_dataset=mlm_train ,

33 eval_dataset=mlm_val ,

6

34 data_collator=data_collator

35)

36 trainer.train ()

4 Documentation

For the Masked Language Modeling pre-training, we first take in a sentence and we randomly
remove some words. We record the words we removed and use those as the labels. The model must
predict which words should fill in the blanks. After this, we will need to fine tune the model on
text classification by freezing the model weights and removing the masked language modeling head.
We replace the masked language modeling head with a classification head and we keep that head
unfrozen. Then we train the new head on the text classification task.

5 Scription Validation(Optional)

The MLM takes significant time and must be run on the pace cluster. I don’t have the pace cluster
working yet, so I can’t easily record a full run yet.

6 Results Visualization

The core oddity of my results is that there is a CUDA error. I beleive this is because my gpu only
has 4 GB of RAM. I think I can fix this in a few ways. First is just using the PACE cluster, which
is a good decision, but limits my ability to experiment quickly. Second, I may need more control of
the model than hugging face provides. Huggingface doesn’t really let you make your own models;
you can only finetune existing architectures for new tasks. I believe using normal pytorch with
minimal extensions will provide me the ability to better explore techniques because it affords me
more control of the model. If we want to later, all the huggingface models are pytorch models, so
we can bring that back later if applicable.

7

Figure 1: CUDA Error with HuggingFace

7 Next Week’s proposal

• Continue working on TorchText Training pipeline. The hope here is I can have a basic model
trained by next week and I can begin showing results here. Note all of these results will be on
the clearinhouse dataset, not the covid dataset, but the same sort of fields are being identified.
UPenn has their ”Allegation” field and Clearinghouse has an ”Issue” field, for example.

8

HAAG Research Report
NLP - Sentencias / NLP - Gen Team

Week 5
Víctor C. Fernández

September 2024

1 WEEKLY PROJECT UPDATES

What progress did you make in the last week?

• Developed and implemented the OllamaModelProcessor class:
• Created functions for direct text querying, file-based querying, and bulk

querying of files in a folder.
• Implemented support for multiple Ollama models including llama3.1, gemma2,

mistral-nemo, qwen2, deepseek-coder-v2, phi3, and mixtral.
• Created a new version of the output JSON template based on Dr. Alexander’s

requirements for data retrieval.
• Generated a set of validation data to assess the accuracy and completeness of

extracted information.
• Conducted initial manual spot-checks of the extracted data against original

legal documents.
• Meeting with the NLP team on September 20th for our weekly meeting.
• Meeting with Dr. Alexander on September 20th for an update call.
• Organized the webinar events for Dr. Lindvall for the current and coming week.

What progress are you making next?

• Enhance prompt engineering techniques to improve data extraction accuracy

and completeness.
• Begin development of an automated validation system:

• Implement flexible string matching algorithms for comparing extracted data

with the validation set.
• Create a scoring system to quantify extraction accuracy for each field in the

output template.
• Start development of visualization tools:

• Select appropriate data visualization libraries based on project requirements.
• Create initial prototypes for key visualizations such as case duration time-

1

lines and jurisdiction distribution charts.
• Conduct comprehensive benchmarking of different Ollama models to identify

the most effective model(s) for our specific task.
• Meet with the NLP team on September 20th for our weekly meeting.

Is there anything blocking you from making progress?

No significant blockers at this time. However, we may need to consider compu-

tational resources for more extensive model benchmarking and potential fine-

tuning in the future. (Larger models would require more storage, RAM and

GPU)

2

2 ABSTRACTS

1. Title: Unveiling the Generalization Power of Fine-Tuned Large Language Mod-

els
• URL: https://aclanthology.org/2024.naacl-long.51.pdf

• Abstract: While Large Language Models (LLMs) have demonstrated ex-

ceptional multitasking abilities, fine-tuning these models on downstream,

domain-specific datasets is often necessary to yield superior performance on

test sets compared to their counterparts without fine-tuning. However, the

comprehensive effects of fine-tuning on the LLMs’ generalization ability are

not fully understood.This paper delves into the differences between original,

unmodified LLMs and their fine-tuned variants. Our primary investigation

centers on whether fine-tuning affects the generalization ability intrinsic to

LLMs. To elaborate on this, we conduct extensive experiments across five

distinct language tasks on various datasets.Our main findings reveal that

models fine-tuned on generation and classification tasks exhibit dissimilar

behaviors in generalizing to different domains and tasks.Intriguingly, we

observe that integrating the in-context learning strategy during fine-tuning

on generation tasks can enhance the model’s generalization ability.Through

this systematic investigation, we aim to contribute valuable insights into the

evolving landscape of fine-tuning practices for LLMs.

• Summary: The paper investigates the generalization capabilities of fine-

tuned Large Language Models (LLMs), specifically focusing on how fine-

tuning affects their ability to perform well on new, unseen data and tasks.

The study explores the differences between original, unmodified LLMs and

their fine-tuned counterparts, aiming to understand whether fine-tuning en-

hances or hinders the inherent generalization ability of these models.

• Relevance: It highlights the potential benefits and challenges of fine-tuning

LLMs for specific tasks in the legal domain. The findings suggest that while

fine-tuning can improve performance on in-domain and similar tasks, it can

also lead to negative transfer and reduced generalization on out-of-domain

and different tasks. The study also introduces a promising approach called

Fine-Tuning with In-Context Learning (FTICL), which shows potential in

3

improving the generalization ability of LLMs for generation tasks.

3 SCRIPTS AND CODE BLOCKS

All scripts have been uploaded to the HAAG NLP Repo.

The following functions are the core parts of the code I have been implementing

this week.

First part consists of a class called OllamaModelProcessor, created with the inten-

tion of simplifying the process of using multiple models for generating outputs

in order to benchmark which model generates better results out of the box. This

class contains 3 functions for different prompting methods. One for directly

querying text to the model, another one for querying using a file and the third

one for bulk querying using all the files in a folder.

The second block of code consists of the code that will be generating new in-

stances of the OllamaModelProcessor class, each of which will be using a differ-

ent model. Then, for each new instance a defined prompt template file will be

used to prompt the model, injecting the text from each file and requesting an

output based on a template defined aside. This will then generate 22 files, cor-

responding to each of the sentencias case, containing the requested information

from the files, created according to the model, along with metadata indicating

which model was used to generate that file, the time it took to generate it and

the hyperparameters used for that specific model.

4

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor

import json
import requests
import time
import os
import subprocess
from typing import Dict, Any, List

class OllamaModelProcessor:
def __init__(self, model_name: str, **kwargs):

self.model_name = model_name
self.base_url = "http://localhost:11434/api/generate"
self.kwargs = kwargs
self.colors = {

'GREEN':'\033[92m',
'BLUE': '\033[94m',
'WHITE': '\033[97m',
'RED': '\033[91m',
'YELLOW': '\033[93m',
'RESET': '\033[0m'

}

ANSI escape codes for colors
def _print_color(self, text, color = 'WHITE'):

print(f"{self.colors[color]}{text}{self.colors['RESET']} ⌋

")↪→

Code 1—OllamaModelProcessor class to instantiate models and

generate bulk outputs from Sentencias files

5

def _check_model_downloaded(self):
Check if the model is installed
check_model_command = f"ollama list | grep {self.model_name}"
result = subprocess.run(check_model_command, shell=True,

capture_output=True, text=True)↪→

if self.model_name not in result.stdout:
If the model is not installed, download it
self._print_color(f"Model {self.model_name} not found.

Downloading...", color = 'YELLOW')↪→

try:
pull_model_command = f"ollama pull {self.model_name}"
subprocess.run(pull_model_command, check=True,

shell=True)↪→

except subprocess.CalledProcessError as e:
self._print_color(f"Error running command: {e}", color

= 'RED')↪→

def _delete_model(self):
Delete the model
delete_model_command = f"ollama rm {self.model_name}"
try:

subprocess.run(delete_model_command, check=True,
shell=True)↪→

except subprocess.CalledProcessError as e:
self._print_color(f"Error running command: {e}", color =

'RED')↪→

6

def _generate_response(self, prompt: str) -> Dict[str, Any]:
start_time = time.time()
response = requests.post(self.base_url, json={

"model": self.model_name,
"prompt": prompt,
**self.kwargs

})
end_time = time.time()
processing_time = end_time - start_time

if response.status_code == 200:
response_text = ""
for line in response.text.strip().split('\n'):

try:
response_json = json.loads(line)
if 'response' in response_json:

response_text += response_json['response']
except json.JSONDecodeError:

self._print_color(text = f"Error decoding JSON:
{line}", color = 'RED')↪→

return {
"response": response_text,
"processing_time": processing_time

}
else:

raise Exception(f"Error: {response.status_code} -
{response.text}")↪→

def _save_output(self, output: str, output_path: str):
Firsth check if the output folder exists, if not, create it
output_folder = os.path.dirname(output_path)
if not os.path.exists(output_folder):

os.makedirs(output_folder)

with open(output_path, 'w', encoding='utf-8') as f:
f.write(output)

7

def _append_execution_details(self, output: str) -> str:
execution_details = {

"execution_details": {
"model_name": self.model_name,
"hyperparameters": self.kwargs,
"processing_time": output["processing_time"],
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")

}
}
return output["response"] + "\n\n" +

json.dumps(execution_details, indent=2)↪→

def query_model(self, input_text: str, output_path: str = "",
save_output: bool = False) -> str:↪→

self._check_model_downloaded()
output = self._generate_response(input_text)
final_output = self._append_execution_details(output)

if save_output and output_path:
self._save_output(final_output, output_path)

return final_output

8

def query_model_with_file(self, file_path: str,
prompt_template_path: str, input_placeholder: str,
output_format_path: str, output_placeholder: str,

↪→

↪→

output_path: str = "", save_output: bool
= False) -> str:↪→

with open(prompt_template_path, 'r', encoding='utf-8') as f:
input_text = f.read()

with open(file_path, 'r', encoding='utf-8') as f:
file_content = f.read()

with open(output_format_path, 'r', encoding='utf-8') as f:
output_format = f.read()

full_input = input_text.replace(input_placeholder,
file_content)↪→

full_input = full_input.replace(output_placeholder,
output_format)↪→

return self.query_model(full_input, output_path, save_output)

9

def query_model_bulk(self, prompt_template_path: str,
input_placeholder: str, output_format_path: str,
output_placeholder: str, folder_path: str,

↪→

↪→

output_folder: str, save_output: bool = True)
-> List[str]:↪→

for filename in os.listdir(folder_path):
if filename.endswith(".txt"):

Print the name of the file being processed
self._print_color(f"Processing file: {filename}",

color = 'GREEN')↪→

Define the path for the output file within the
folder↪→

output_path = os.path.join(output_folder,
f"output_{filename}") if save_output else ""↪→

Query the model with the file content using key
arguments↪→

self.query_model_with_file(file_path=os.path.join(fol ⌋

der_path,
filename),

↪→

↪→

prompt_template_path=prompt_template_path,
input_placeholder=input_placeholder,
output_format_path=output_format_path,
output_placeholder=output_placeholder,
output_path=output_path,
save_output=save_output)

10

from ollama_model_processor import OllamaModelProcessor
import os

def generate_output(ollama_models: list, output_folder: str,
model_hyperparameters: dict = {}):↪→

for model in ollama_models:
processor = OllamaModelProcessor(model,

**model_hyperparameters)↪→

sentencias_path = "../../sentencias_txt"

prompt_template_path =
"../../model_input_templates/input_text_v1.txt"↪→

input_placeholder = "{{DOCUMENT_CONTENT}}"
output_placeholder = "{{MODEL_OUTPUT_FORMAT}}"

output_template_folder = "../../model_output_templates"

version_number = 1
for filename in os.listdir(output_template_folder):

if filename.endswith(".txt"):
output_template_file_name =

f"output_json_v{version_number}.txt"↪→

output_file_template_path =
os.path.join(output_template_folder,
output_template_file_name)

↪→

↪→

output_folder_path =
f"{output_folder}/{model}/v{version_number}"↪→

processor.query_model_bulk(prompt_template_path=p ⌋

rompt_template_path,↪→

input_placeholder=input_placeholder,
output_format_path=output_file_template_p ⌋

ath,↪→

output_placeholder=output_placeholder,
folder_path=sentencias_path,
output_folder=output_folder_path,
save_output=True)

version_number += 1

Code 2—Function for processing all documents with multiple

models to benchmark the results

11

generate_output(
ollama_models=[

"llama3.1",
"gemma2",
"mistral-nemo",
"qwen2",
"deepseek-coder-v2",
"phi3",
"mixtral"
],

output_folder="../../model_output",
model_hyperparameters={"temperature": 0.7, "top_p": 0.9}

)

Code 3—Code execution using multiple models with Ollama

12

{
"informacion general": {

"numero de ordenanza": "",
"numero unico de caso (NUC)": "",
"tipo de caso": "",
"jurisdiccion": ""

},
"partes involucradas": {

"demandante": "",
"demandado": "",
"intervinientes": []

},
"fechas clave": {

"fecha de presentacion demanda (DD/MM/YYYY)": "",
"fecha de notificacion demanda (DD/MM/YYYY)": "",
"fecha de audiencias (DD/MM/YYYY)": [],
"fecha de fallo reservado (DD/MM/YYYY)": "",
"fecha de lectura de sentencia (DD/MM/YYYY)": ""

},
"detalles del proceso": {

"numero total audiencias": 0,
"hubo defecto": false,
"hubo intervencion voluntaria": false

},
...

}

Code 4—Updated JSON template preview (access repository to

view full detail)

4 DOCUMENTATION

1. Data Collection and Preprocessing:
• Judicial decisions (sentencias) in PDF and DOC format were obtained from

Dr. Alexander, originating from the National School of the Judiciary in the

Dominican Republic.

13

• Text was extracted from PDF and DOC files using the PyMuPDF library and

converted to TXT format.
• The extracted text was processed to remove headers, footers, pagination, and

other repetitive elements in the corpus.
• Clean text files were generated with the processed content.

2. Text Analysis and Feature Extraction:
• Instead of identifying named entities, a new approach using LLM models

was adopted to directly identify specific content in the cleaned text files.
• LLM models such as LLama3.1 were run locally using GPT4All and Ollama.
• A template file was created to verify correct installation and use of the

Ollama model.
• An output JSON template was developed based on Dr. Alexander’s require-

ments for data retrieval.
• A process was implemented to bulk extract data from all given "sentencias"

and store results in JSON format according to the template, including bench-

mark information such as processing time and token count.

3. Model Implementation:
• An OllamaModelProcessor class was created to simplify the process of using

multiple models for generating outputs and benchmarking.
• The class includes functions for direct text querying, file-based querying,

and bulk querying of files in a folder.
• A generate_output function was implemented to process all documents with

multiple models for benchmarking results.
• Various Ollama models were utilized, including llama3.1, gemma2, mistral-

nemo, qwen2, deepseek-coder-v2, phi3, and mixtral.

5 SCRIPT VALIDATION

A set of validation data has been generated to assess the accuracy and complete-

ness of the information extracted by the LLM models. However, the validation

process is still in progress due to the nature of the data and the required flexibility

in response interpretation.

Key points:

14

• Validation data set has been prepared based on the output JSON template.
• The validation process aims to check the accuracy of extracted information

rather than entity recognition.
• Code for automated validation is pending development, as some fields require

string-based comparison with a degree of flexibility.
• Manual spot-checks have been performed to gauge initial performance, but a

comprehensive validation is yet to be implemented.

Next steps for validation:

• Develop a flexible string matching algorithm to compare extracted data with

the validation set.
• Implement a scoring system to quantify the accuracy of extracted information

for each field in the output template.
• Create a validation report generator to summarize the performance of different

models and configurations.
• Establish thresholds for acceptable accuracy levels for each type of extracted

information.

6 PROOF OF WORK

The implemented system demonstrates significant progress in developing a

framework for analyzing legal documents using large language models. Key

achievements and current status include:

• Data Processing Pipeline: Successfully implemented a pipeline for extracting

text from PDF and DOC files, cleaning the data, and preparing it for analysis.
• LLM Integration: Developed the OllamaModelProcessor class, enabling the

use of multiple Ollama-based language models for text analysis.
• Bulk Processing: Implemented functionality for bulk processing of legal doc-

uments, generating individual JSON files for each document containing ex-

tracted key information.
• Model Versatility: The system can utilize multiple Ollama models (llama3.1,

gemma2, mistral-nemo, qwen2, deepseek-coder-v2, phi3, mixtral), allowing for

comprehensive benchmarking and comparison of model performance.
• Output Generation: Successfully generating structured JSON outputs based

on the predefined template, capturing key information from legal documents.
• Benchmark Information: Including processing time and token count for each

15

document analysis, providing insights into model efficiency.
• Validation Data: Generated a set of validation data to assess the accuracy

and completeness of extracted information, laying the groundwork for future

automated validation.

Challenges and ongoing work:

• Accuracy Refinement: While initial results show improvement over previous

methods, further prompt engineering and model fine-tuning are needed to

enhance data extraction accuracy.
• Validation Process: Development of an automated validation system is pend-

ing, requiring the implementation of flexible string matching algorithms to

handle variations in text-based responses.
• Visualization Tools: Current result analysis relies on manual inspection of

JSON outputs. Development of comprehensive visualization tools is planned

but not yet implemented.

Next steps:

1. Enhance prompt engineering techniques to improve data extraction accuracy

and completeness.

2. Develop and implement the automated validation system, including flexible

string matching and a scoring mechanism for assessing extraction accuracy.

3. Create visualization tools and an interactive dashboard for easier analysis and

presentation of extracted data and model performance metrics.

4. Conduct a comprehensive benchmarking of different Ollama models to iden-

tify the most effective model(s) for this specific legal document analysis task.

5. Explore potential integration of other NLP techniques to complement the

LLM-based approach and further improve information extraction capabilities.

6. Possibility to develop a user-friendly interface for interacting with the system,

allowing for easy document upload, model selection, and result visualization.

This proof of work demonstrates substantial progress in developing a robust

system for legal document analysis using state-of-the-art language models. The

foundation laid sets the stage for more advanced analysis, improved accuracy,

and comprehensive insights in the coming phases of the project. The combination

of bulk processing capabilities, multi-model support, and the groundwork for

validation and visualization positions this project for significant advancements

in legal document processing and analysis.

16

Week 5 | HAAG - NLP | Fall 2024

Alejandro Gomez

September 20th, 2024

1 Time-log

1.1 What progress did you make in the last week?

• I worked on a script for the part of the pipeline that will take a JSON template and fill out a
Microsoft Word docx file. The Lexia Abogados team had requested for a step in the pipeline
that could funnel the data summarized from the model into a Word document. So I setup a
Word document that takes in variables from a mock JSON output file and insersts them into the
Word doc to have a summarized cover page on the sentencias.

• I worked on sandboxing different models on a PACE cluster that had access to GPU. Last week I
had run Llama3.1:8b on my local machine without a GPU and it was very slow and I was having
issues with the context window and processing documents using a GUI (Open WebUI). By setting
up a High Performance Computing (HPC) node I was able to run models locally and see instant
changes in response speed from the LLM’s. A response that would take a few minutes on my
machine locally could be delivered by the HPC node in less than 10 seconds. Using my team’s
scripts I was able to learn how to use the PACE cluster and understand how this can affect the
architecture decisions for our ML pipeline. My team’s scripts had time metrics for benchmarking,
but I can say from using many of the available LLM’s that I feel mistral-nemo could be a good fit
when compared to other small/mid-size models as it was very fast to response and generally had
the most response fields filled out. I also learned the PACE is more of a sandboxing platform as I
understand and not a long-running machine to serve our model so although we can test/prototype
on there, we need to consider other cloud resources and their respective costs.

1.2 What are you planning on working on next?

• My teammates and I had honed in on the decision to leverage LLM’s and we have many scripts
working independently at this point. I think it would be good to start designing an API with
a simple GUI that can take a sentencias PDF through the ML pipeline and return the docx
cover page. This would require some collaboration to design this system, some refactoring, and
developing out new features.

1.3 Is anything blocking you from getting work done?

N/A

2 Article Review

2.1 Abstract

GPT is receiving increasing attention and has a variety of application scenarios in clinical practice.
In clinical decision support, ChatGPT has been used to generate accurate differential diagnosis lists,
support clinical decision-making, optimize clinical decision support, and provide insights for cancer
screening decisions. In addition, ChatGPT has been used for intelligent question-answering to provide
reliable information about diseases and medical queries. In terms of medical documentation, ChatGPT

1

has proven effective in generating patient clinical letters, radiology reports, medical notes, and discharge
summaries, improving efficiency and accuracy for health care providers. Future research directions
include real-time monitoring and predictive analytics, precision medicine and personalized treatment,
the role of ChatGPT in telemedicine and remote health care, and integration with existing health
care systems. Overall, ChatGPT is a valuable tool that complements the expertise of health care
providers and improves clinical decision-making and patient care. However, ChatGPT is a double-
edged sword. We need to carefully consider and study the benefits and potential dangers of ChatGPT.
In this viewpoint, we discuss recent advances in ChatGPT research in clinical practice and suggest
possible risks and challenges of using ChatGPT in clinical practice. It will help guide and support
future artificial intelligence research similar to ChatGPT in health doi[Liu23]

2.2 Summary

This article felt extremely relevant to the ongoing work by the NLP team because in the same way the
researchers tested LLM’s to generate patient letters, reports, notes, and summaries, the NLP DR team
is working on developing a pipeline to summarize specific information from sentencias. The paper also
brings up an important point:

”To ensure the safe and reliable use of ChatGPT, a rigorous human review process and human
involvement in the workflow are essential. Adherence to relevant standards and criteria, such as accu-
racy, reliability, interpretability, explainability, and user acceptance benchmarks, is necessary...Security
measures must be taken to safeguard patient information while using ChatGPT, including encryption,
access control, secure data storage, and compliance with privacy regulations.”[Liu23]

These QA and security considerations are important for the NLP team as well because we are
working on a judicial system where mistakes by LLM’s that are accepted into the system can cause
massive entropy in the affected’s life and further legal hurdles. We also work with confidential personal
identification data that we need to be mindful of for the pipeline we’re building. One consideration
we took was making our codebase private to protect this information.

3 Scripts and Code Blocks

3.1 Code

1 {

2 "{{ informacion_general.numero_de_ordenanza }}": "",

3 "{{ informacion_general.numero_unico_caso }}": "",

4 "{{ informacion_general.tipo_caso }}": "",

5 "{{ informacion_general.jurisdiccion }}": "",

6 "{{ partes_involucradas.demandante }}": "",

7 "{{ partes_involucradas.demandado }}": "",

8 "{{ partes_involucradas.intervinientes }}": [],

9 "{{ fechas_clave.presentacion_demanda }}": "",

10 "{{ fechas_clave.notificacion_demanda }}": "",

11 "{{ fechas_clave.audiencias }}": [],

12 "{{ fechas_clave.fallo_reservado }}": "",

13 "{{ fechas_clave.lectura_sentencia }}": "",

14 "{{ detalles_proceso.total_audiencias }}": 0,

15 "{{ detalles_proceso.hubo_defecto }}": false ,

16 "{{ detalles_proceso.hubo_intervencion_voluntaria }}": false ,

17 "{{ resultado.decision }}": "",

18 "{{ resultado.levantamiento_ordenado }}": false ,

19 "{{ resultado.ejecucion_provisional }}": false ,

20 "{{ tiempos_proceso.dias_presentacion_primera_audiencia }}": 0,

21 "{{ tiempos_proceso.dias_ultima_audiencia_lectura }}": 0,

22 "{{ tiempos_proceso.duracion_total_dias }}": 0,

23 "{{ informacion_adicional.monto_disputa }}": "",

24 "{{ informacion_adicional.cantidad_documentos_prueba }}": 0,

25 "{{ metadata.juez_presidente }}": "",

26 "{{ metadata.secretario }}": "",

27 "{{ metadata.palabras_clave }}": []

28 }

Listing 1: flattened json for sentencia summary

2

https://www.jmir.org/2023/1/e48568

1 # methods not shown - visit github repo to see implementations

2

3 def main():

4 # manage inputs and outputs

5 template_file_path: str = "nueva_plantilla.docx"

6 tmp_dir: str = "./tmp/"

7 data_file_path: str = os.path.join(tmp_dir , os.listdir(tmp_dir)[0]) # takes first

file in tmp dir assuming the API in the pipeline will upload here

8 data_file_name: str = Path(data_file_path).stem

9 output_file_path: str = os.path.join(tmp_dir , f"{data_file_name}_resumen_de_datos.

docx")

10

11 new_doc = Document(template_file_path)

12 paragraphs_in_doc = new_doc.paragraphs

13

14 # load json data in to python dict

15 try:

16 data: Dict[str , Any] = load_json_file(data_file_path)

17 logging.info(f"Success! Loaded JSON file.")

18 except Exception as e:

19 logging.error(f"Error loading JSON data: {e}")

20 return

21

22 # replace placeholders keys in the document

23 try:

24 replace_text_in_paragraph(paragraphs_in_doc , data)

25 logging.info(f"Success! added input into template")

26 except Exception as e:

27 logging.error(f"Error replacing text in document: {e}")

28 return

29

30 # saves the new doc

31 try:

32 new_doc.save(output_file_path)

33 logging.info(f"New document with data inputs created and saved as {

output_file_path}")

34 except Exception as e:

35 logging.error(f"Error saving the document: {e}")

36

37 ##

38 ## debugging by printing the new doc to terminal #

39 ##

40 # dd = Document(output_file_path)

41 # for p in dd.paragraphs:

42 # print(p.text)

43 ##################

44 ## end debugging #

45 ##################

46

47 # converts to pdf

48 try:

49 new_pdf_path: str = convert_to_pdf(tmp_dir , output_file_path , new_doc)

50 logging.info(f"new pdf created as {new_pdf_path}")

51 except Exception as e:

52 logging.error(f"Error converting the document: {e}")

53

54

55 # can be used to remove json data if file was only added temporarily

56 # os.remove(f ’./tmp/{ data_file_path }’)

57

58 if __name__ == "__main__":

59 main()

Listing 2: main method for processing JSON into cover page

3.2 Documentation

Running the program to generate the word doc

1 conda activate nlp_env

3

2

3 conda env export --no-builds > current_environment.yml

4

5 conda env update --name nlp_env --file environment.yml --prune

6

7 python generate_plantilla.py

8

9 python generate_sentencia_summary.py

10

11

12 cd tmp && explorer.exe sentencia_504 -2022 -SORD -0529 _resumen_de_datos.docx # opens the

new word doc from WSL2 onto windows host machine

Listing 3: commands

Running Ollama and LLM models on PACE

1 conda activate nlp_env

2

3 curl -fsSL https :// ollama.com/install.sh | sh # had to modify this as I didn ’t have

root access on PACE

4

5 ollama serve # typically would be ollama run but bc of the non -root download method , I

had to use this in one terminal and let it run

6

7 ollama pull llama3 .1:8b

8

9 ollama pull llama3 .1:70b

10

11 ollama pull llama3 .1:405b

12

13 ollama pull mistral -nemo

14

15 # etc...

16

17 ollama run mistral -nemo # for prompting onthe command line

18

19 python3 query_model_main.py # this was my teammates script with benchmarking metrics

Listing 4: commands

3.3 Script Validation (optional)

Working in PACE

4

Figure 1: PACE VM

Figure 2: Comparing mistral-nemo vs. llama3.1:8b sentencia summary

3.4 Results Visualization

Working with word docs

5

Figure 3: ML pipeline step that fills summary page from Word doc variables

3.5 Proof of Work

Scripts in GitHub Repo

4 Next Week’s Proposal

• Start working toward a cohesive ML pipeline that can meet the acceptance criteria for the NLP
team’s first deliverable: extracting specific information from the sentencias to be used as a cover
page for previous sentencias.

• Explore architectural designs and resources for the model deployments - this can help us un-
derstand the resources we should be constrained to when prototyping (e.g. llama3.1 :8b vs.
llama3.1:405b have vastly different system requirements).

• As usual: update slide to share my material with my team and update the NLP group website
with current records

References

[Liu23] Jialin Liu. Utility of chatgpt in clinical practice. Journal of Medical Internet Research,
25(1):e48568–e48568, 2023.

6

https://github.gatech.edu/calexander97/sentencias/tree/main/alejandro/5_week

HAAG NLP Sentencias — Week 5 Report

NLP-Gen Team

Karol Gutierrez

September 20, 2024

1 Weekly Project Update

1.1 What progress did you make in the last week?

• Performance experiments with Llama 3 using local setup. I experimented with prompting engi-
neering through iterations and feedback. I generated several output files and compared perfor-
mance vs. real fields extracted from the sentencias.

• Using the experiments, I generated several instances of data containing the fields that Dr. Alexan-
der requested for the next milestone.

• I also coded an analogous version of the GPT4ALL functionality in Python, however, it doesn’t
have the embedding capabilities to load the documents.

• I did research and experimentation in embeddings models in Spanish but need to check how to
add it to my implementation using existing Llama model.

• Literature review on LLMs and embeddings.

• Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.

• Attended seminar for pathways to PhD.

1.2 What are you planning on working on next?

• Complete implementation with embeddings for Spanish language, and integrate it in the existing
workflow that uses Llama 3.

• Further literature review on embeddings and applications of them.

• Sync with team on how to present results to stakeholders.

• Design pipeline to iterate on specific fields that are harder to extract.

• Continue fulfilling my role as Meet Manager/Documentor by working on the tasks expected for
my position (gather notes from meetings and prepare recordings).

1.3 Is anything blocking you from getting work done?

No, but as mentioned by Dr. Alexander, it would be helpful to have access to some experts on NLP
for advice or general office hours.

2 Literature Review

Paper: Clinical Flair: A Pre-Trained Language Model for Spanish Clinical Natural Language Process-
ing [RDV22].

1

2.1 Abstract

Word embeddings have been widely used in Natural Language Processing (NLP) tasks. Although these
representations can capture the semantic information of words, they cannot learn the sequence-level
semantics. This problem can be handled using contextual word embeddings derived from pre-trained
language models, which have contributed to significant improvements in several NLP tasks. Further
improvements are achieved when pre-training these models on domain-specific corpora. In this paper,
we introduce Clinical Flair, a domain-specific language model trained on Spanish clinical narratives. To
validate the quality of the contextual representations retrieved from our model, we tested them on four
named entity recognition datasets belonging to the clinical and biomedical domains. Our experiments
confirm that incorporating domain-specific embeddings into classical sequence labeling architectures
improves model performance dramatically compared to general-domain embeddings, demonstrating
the importance of having these resources available.

2.2 Summary

The paper discusses the development of a domain-specific language model for Spanish clinical nar-
ratives, designed to outperform general-purpose models in medical NLP tasks like Named Entity
Recognition (NER). It incorporates several key enhancements to achieve this:

• Character-Level Language Model: Built on Flair, Clinical Flair captures word-level context
through character embeddings, improving performance on medical text.

• Domain-Specific Fine-Tuning: The model is trained on Chilean clinical data to adapt to medical
terminology.

• Performance Evaluation: Tested on four datasets, Clinical Flair outperforms other models on
tasks involving clinical and biomedical data.

This model demonstrates the potential of fine-tuned, domain-specific NLP models for processing
clinical narratives in Spanish, particularly in identifying key medical entities. However, future work is
required to apply these techniques to broader NLP tasks and further enhance the model’s robustness
in clinical applications.

2.3 Relevance

This paper is highly relevant to our project because it directly talks about the need for domain-specific
language models in Spanish, which is crucial for processing Spanish-language legal and clinical docu-
ments in NLP tasks. It also highlights the usage of embeddings. By using domain-specific embeddings,
I can load and analyze these documents more effectively, extracting meaningful information such as
named entities and dates. The emphasis on fine-tuning with clinical narratives provides a model to
adapt it to my needs of extracting and structuring key data.

3 Scripts and code blocks

As previously mentioned, the existing code is in a private repository. Since we are handling private
information from the PDF files, it was decided alongside Dr. Alexander that we should add all of our
code work here from now on.

3.1 Code developed

• Sample code using sentence-transformers/all-distilroberta-v1 as embedding. This allows
us to extract context for a specific answer.

• Embed sentencias documents into Llama 3 model by using UI with nomic-embed-text-v1.5

embedding.

2

https://github.gatech.edu/calexander97/sentencias

• Experiments on Llama 3 to extract the requested fields from the documents and display them in
JSON format. Different experimentation by providing feedback to LLM and iterative improve-
ment.

• Analogous implementation in Python, to retrieve JSON components by chunking the text into
blocks such that the prompt is below the limit of 2040 tokens.

• Compare results vs manual classification

By using GPT4All[AI24], I experimented with prompting engineering by using some of the following
strategies:

• Sample code using sentence-transformers/all-distilroberta-v1 as embedding. This allows
us to extract context for a specific answer.

• Embed sentencias documents into Llama 3 model by using UI with nomic-embed-text-v1.5

embedding.

• Give feedback to the LLM by mentioning that some attributes doesn’t have the look of a valid
asnwer, e.g. giving a placeholder instead of a name. This proved to be effective after several tries
for some examples.

• Ask to display output in JSON readable format.

Figure 1: Output from Llama 3

The current Python code is limited by the size of the prompt, then the process splits the original
string and tries to fill the required fields as much as possible in each iteration. This workflow is
explained in 2, a code block for this is found in 3.

4 Documentation

The documentation is present in the README.md file in the repository. Refer to the repository to
get the most updated instructions on how to run the code.

For the progress of this week, a new version of the environment.yml file was added, which include
more of the libraries and dependencies.

3

https://github.gatech.edu/calexander97/sentencias/

Figure 2: Code logic flow chart.

5 Script Validation

It doesn’t apply at this point of the development of the project.

6 Results Visualization

The replies to the prompts can be seen in the next figures. First, Figure 4 show the replies using the
visual interface. Figure 5 show the replies by calling the models and providing the context in Python.

7 Proof of Work

All the scripts work end to end from the starting PDF files as shown in the images from the visualiza-
tion. The quality of the results is yet to be examined quantitatively it showed promising results that
can be further improved.

8 Next Week’s Proposal

Refer to section 1.2 for details (avoid repetition).

References

[AI24] Nomic AI. Gpt4all. https://www.nomic.ai/gpt4all, 2024. Accessed: 2024-09-13.

[RDV22] Mat́ıas Rojas, Jocelyn Dunstan, and Fabián Villena. Clinical flair: A pre-trained language
model for Spanish clinical natural language processing. In Tristan Naumann, Steven Bethard,
Kirk Roberts, and Anna Rumshisky, editors, Proceedings of the 4th Clinical Natural Language
Processing Workshop, pages 87–92, Seattle, WA, July 2022. Association for Computational
Linguistics.

4

https://www.nomic.ai/gpt4all

Figure 3: Code section from Jupyter notebook

Figure 4: Example of embedding usage to get context.

5

Figure 5: Output JSON file sample

Figure 6: Example of field extraction

6

Week 5 Research Report

Thomas Orth (NLP Summarization / NLP Gen Team)

September 2024

0.1 What did you work on this week?

1. Run LED legal tuned model for finetuning

2. Conclude LongT5 experiment issues

3. Experiment with Phi3 for initial experimentation

4. Generate initial summaries with LED legal tuned

0.2 What are you planning on working on next?

1. Continue LLM testing and tools

2. Generate more summaries for validation

3. Prepare questions for Dr. Alexanders NLP freelancer

0.3 Is anything blocking you from getting work done?

1. None

1 Abstracts

• Title: From Sparse to Dense: GPT-4 Summarization with Chain of Den-
sity Prompting. Conference: ACL 2023, Proceedings of the 4th New Fron-
tiers in SummarizationWorkshop. Link: https://aclanthology.org/2023.newsum-
1.7/

• Abstract: Selecting the “right” amount of information to include in a
summary is a difficult task. A good summary should be detailed and
entity-centric without being overly dense and hard to follow. To better
understand this tradeoff, we solicit increasingly dense GPT-4 summaries
with what we refer to as a “Chain of Density” (CoD) prompt. Specifically,
GPT-4 generates an initial entity-sparse summary before iteratively incor-
porating missing salient entities without increasing the length. Summaries
generated by CoD are more abstractive, exhibit more fusion, and have less

1

of a lead bias than GPT-4 summaries generated by a vanilla prompt. We
conduct a human preference study on 100 CNN DailyMail articles and
find that humans prefer GPT-4 summaries that are more dense than those
generated by a vanilla prompt and almost as dense as human written sum-
maries. Qualitative analysis supports the notion that there exists a trade-
off between informativeness and readability. 500 annotated CoD sum-
maries, as well as an extra 5,000 unannotated summaries, are freely avail-
able on HuggingFace (https://huggingface.co/datasets/griffin/chain of density).

• Summary: Chain of Density was proposed to allow fo iterative summariza-
tion by creating denser and denser summaries after each iteration accord-
ing tot he prompt. This let to more abstractive and less biased summaries
than with vanilla prompting from GPT-4.

• Relevance: This is a wildly popular prompting technique for summariza-
tion that, if it works for OSS LLMs as well, will be very useful.

2 Relevant Info

• LED model is a proposed transformer technique from 2020 for the use in
long document tasks in NLP. The paper on it can be found here.

• Legal documents are very long, making models meant for long form doc-
uments the ideal candidates.

• Phi-3 is an LLM created by Microsoft that was meant to be on the smaller
end and thus uses less compute.

3 Scripts

1. All scripts uploaded to https://github.com/Human-Augment-Analytics/NLP-
Gen

2. Scripts were run with the following file for testing: https://gatech.box
.com/s/hv70flwkm977gky004l5vz15rpgfdmir

3. Thomas-Orth/ollam test.py

• Brief Description: This runs Chain of Density prompting on Phi-3
with a chosen summary

• Status: Tested by running the pipeline to completion without issue

• Important Code Blocks:

(a) First block: Read in and set up the dataset and choose a sum-
mary

(b) Second block: Build prompt

(c) Third Block: Apply to Ollama

2

https://arxiv.org/abs/2004.05150
https://gatech.box.com/s/hv70flwkm977gky004l5vz15rpgfdmir
https://gatech.box.com/s/hv70flwkm977gky004l5vz15rpgfdmir
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/Thomas-Orth/ollama_test.py

(d) Fourth Block: Print output

• Screenshot of code:

Figure 1: Phi3 Code

4. Flow Diagram:

Figure 2: Flow diagram

5. Running scripts:

(a) Download the script and the csv from the box link.

(b) Download ollama

(c) Run: ollama pull phi3:medium

(d) Run: python -m pip install langchain pandas langchain ollama

(e) Run: python ollama test.py

4 Documentation

1. Download CSV file, with two columns: Document and Summary

2. Update script to point to the CSV file

3. Prompt Phi3 with Chain of Density

4. Manually evaluate summary

3

5 Results

5.1 LED Summary Comparison

5.1.1 Ground truth

”COVID-19 Summary: This is a class action petition for a writ of mandamus
alleging that the Minnesota Department of Corrections failed in its legal duty to
protect individuals under its custody or control from COVID-19. On October
22, 2020, thirteen individuals in the custody and control of the Minnesota De-
partment of Corrections (MNDOC) filed this petition for a writ of mandamus in
the Second Judicial District of Minnesota on behalf of themselves and all oth-
ers similarly situated. Represented by the ACLU of Minnesota and individual
public defenders, the petitioners asked the court to find that the MNDOC had
failed and refused to perform its legal duty to protect the petitioners and those
similarly situated from COVID-19 and to issue a peremptory writ of mandamus
compelling the MNDOC to do so.The petitioners alleged that the COVID-19
virus was allowed to spread rapidly at the Moose Lake Correctional Facility be-
cause the MNDOC had failed to implement reasonable measures to slow or stop
the transmission of the virus. They further alleged that in the period between
June 2, 2020, and June 23, 2020, Faribault Correctional Facility saw its case
count explode from three confirmed cases to 205 confirmed positive COVID-
19 cases, including two deaths. The petition names six other facilities, five of
which saw similar exponential increases in confirmed COVID-19 cases.The pe-
titioners–most of whom have pre-existing conditions making them particularly
vulnerable to a severe infection with COVID-19–alleged that social distancing
was impossible within correctional facilities; that cleaning procedures and sup-
plies were inadequate to prevent the spread of the virus; and that staff failed to
comply with proper protective procedures for COVID-19, including mask wear-
ing. Various petitioners also alleged that they were denied adequate medical
care for other conditions because of the pandemic, that they were denied con-
ditional medical release, that they were denied COVID-19 testing except when
exhibiting the most serious symptoms, that they were forced to work despite
being symptomatic, and that they were forced into or threatened with punitive
segregation.The petitioners argued that MNDOC had a duty to protect incar-
cerated people from the foreseeable harm of COVID-19 that arose at least as
early as President Trump’s March 13, 2020, acknowledgment of the pandemic
and announcement of a national emergency. They further argued that failure
and refusal to protect incarcerated people from COVID-19 constituted cruel
and unusual punishment in violation of the Minnesota Constitution and also
violated Minnesota state statutes. They contended that halting the spread of
the virus in correctional settings would be best achieved through population
reduction. The case was assigned to Judge Sara R. Grewing. On December 10,
2020, the petitioners filed an amended and supplemental petition for a writ of
mandamus. The amended petition added six new petitioners and requested the
court order MNDOC to obtain sufficient quantity of vaccine to vaccinate staff

4

and incarcerated people. It otherwise maintained most aspects of the original
petition.On March 31, 2021, the court granted the motion for class certification
and motion to amend the petition to add new respondent and new causes of
action. The certified class consisted of all prisoners either in the custody or
under the supervision of the Minnesota Department of Corrections. However,
the court denied the request for a writ of mandamus. In her order, Judge Grew-
ing expressed concern that the petitioners requested the court direct MNDOC’s
exercise of discretion, noting that the response to COVID-19 involved the exer-
cise of thousands of discretionary acts. In denying the request, the court noted
that there is no law mandating specifically how the Commissioner of MNDOC
should be responding to COVID-19 and that MNDOC had not failed to act, but
had engaged in population reduction, testing, and quarantining of some indi-
viduals.The next day, the petitioners filed a second amended and supplemental
petition requesting an injunction enjoining MNDOC from continuing to violate
their legal duty; declaratory judgment that MNDOC had violated the Cruel or
Unusual Punishment Clause, the Equal Protection Clause, and the Due Process
Clause of the Minnesota Constitution and a permanent injunction preventing
MNDOC from continuing to do so; and an affirmative order that MNDOC pri-
oritize COVID-19 vaccinations for all class members.In July, the respondents
filed a motion to dismiss for failure to state a claim. On September 30, 2021
the court denied the petitioners’ motion for a temporary injunction and granted
the respondents’ motion for failure to state a claim, entering judgment in favor
of the respondents.”

5.1.2 Generated

”[This summary is temporary while we research the case.] This is a class action
lawsuit in which the American Civil Liberties Union of Minnesota (ACLU-MN)
and the Minnesota State Public Defender (MSPD) filed suit against the Min-
nesota Department of Corrections (DOC) on behalf of themselves and all others
similarly affected by COVID-19. The plaintiffs, represented by the ACLU-MN,
alleged that the DOC failed to take preventative measures to slow or stop the
spread of the disease resulting from the novel coronavirus. They sought declara-
tory judgment, preliminary and permanent injunctions, and a writ of mandamus
to require the DOC to perform its legal duty to keep prisoners reasonably safe
from the disease. The case was originally brought in 2020, and the plaintiffs filed
a second amended and Supplemental Petition on March 1, 2021. The second
amended petition was filed on April 28, 2021, in the U.S. District Court for the
District of Minnesota. The third amended and supplemental petition, filed in
the Minnesota Supreme Court on April 29, 2021 and unsealed on May 1, 2022,
alleged violations of the Minnesota Constitution and Minnesota Statutes, Sec-
tions 586, 586 and 7 of the State Constitution. The amended petition asked the
court for a Writ of Mandamus, a declarator judgment, and to grant the parties’
motion for a writ to show cause why they should not be ordered to perform
their duty to protect prisoners from the new disease. The amended amended
petition also included a provision for the parties to show probable cause why the

5

defendants should not perform their duties to keep the disease contained within
their prisons. In the amended amended complaint, the parties agreed to the
granting of a Writ to Mandamus and to give the parties the right to dismiss the
amended petition. The parties also agreed to pay a penalty of $100,000 each.
On May 2, 2021 the parties reached a settlement agreement, which is subject
to court approval. This settlement is ongoing.”

5.1.3 Summary Comparison

The summary is coherent and able to pick up some facts. Although it seems to
get some facts incorrect

5.2 Phi-3 Chain of Density

Figure 3: Phi-3 CoD output

The output of the Chain-of density seems to be not super impressive. But that
could be a limitation of langchain when applying the Chain-of-density prompt.

6 Proof of Results

The LED model used for finetuning was initially trained from legal documents
and was using the already validated pipeline.

6.1 Known Limitations

The initial work is done with an early version of the dataset so further results
with this dataset may be sub-par to start.

Additionally, Phi-3 does not have the same effect with Chain-of-Density
prompting that ChatGPT did.

6

