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1 Slack Questions

What did you accomplish this week?

• Finished Training Script with Clearinghouse Data

What are you planning on working on next?

• Get Issue Data from UPenn Database

• If further results are desired on clearinghouse classification task to show that it actually works,
run the script on PACE so that I don’t run out of memory

What is blocking you from progressing?

• My PACE home directory doesn’t exist, we have submitted a support ticket for this and
contacted PACE.

2 Abstract

Transformer-based models are unable to process long sequences due to their self-attention opera-
tion, which scales quadratically with the sequence length. To address this limitation, we introduce
the Longformer with an attention mechanism that scales linearly with sequence length, making it
easy to process documents of thousands of tokens or longer. Longformer’s attention mechanism
is a drop-in replacement for the standard self-attention and combines a local windowed attention
with a task motivated global attention. Following prior work on long-sequence transformers, we
evaluate Longformer on character-level language modeling and achieve state-of-the-art results on
text8 and enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it
on a variety of downstream tasks. Our pretrained Longformer consistently outperforms RoBERTa
on long document tasks and sets new state-of-the-art results on WikiHop and TriviaQA. We fi-
nally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting long
document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv
summarization dataset.

Link: https://arxiv.org/abs/2004.05150v2
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2.1 Brief Analysis

Longformer Encoder-Decoder is a transformer adapted to handle tasks involving long documents.
Transformers typically use self-attention, which has O(n2) complexity. Longformer’s sliding window
attention has O(n) complexity. It works by having each token attend only to tokens near it. To
increase the size of the receptive field, Longformer dilates the window. Additionally, for a few
pre-selected tokens, they get the full self-attention. Then, Longformer uses the same pretraining
paradigm that models like BERT use.

Longformer does achieve better performance on long documents than short models. However,
in my opinion, the point of attention is that its globally receptive. If I wanted a locally receptive
feature extractor, why can’t I use a 1D convolutional layer? One reason I can think of is that
convolution complexity is O(nlogn), so perhaps a CNN is less efficient than LongFormer’s attention
mechanism

3 Scripts and Code Blocks

MLM Pipeline:
mistral datasets.py(updated):

1 import torch

2 import numpy as np

3 from torch.utils.data import Dataset

4 from tqdm import tqdm

5 from datasets import load_dataset , Dataset as HFDataset

6 import re

7 from transformers import AutoTokenizer

8 import string

9 from langdetect import detect

10 import random

11 from transformers import DataCollatorForLanguageModeling

12 import sys

13 sys.path.append(’../../ ’)

14 from summarizers.get_complaints import get_complaint_only_cases

15 from summarizers.ocr import read_doc , extract_text_from_pdf

16 from copy import deepcopy

17

18 def normalize(comment , lowercase , remove_stopwords):

19 if lowercase:

20 comment = comment.lower()

21 comment = nlp(comment)

22 lemmatized = list()

23 for word in comment:

24 lemma = word.lemma_.strip()

25 if lemma:

26 if not remove_stopwords or (remove_stopwords and lemma not in stops):

27 lemmatized.append(lemma)

28 return " ".join(lemmatized)

29

30 ISSUE_IDS = {

31 ’Child Welfare ’: 0,

32 ’Criminal Justice (Other)’: 1,

33 ’Disability Rights ’: 2,

34 ’Education ’: 3,

35 ’Election/Voting Rights ’: 4,
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36 ’Environmental Justice ’: 5,

37 ’Equal Employment ’: 6,

38 ’Fair Housing/Lending/Insurance ’: 7,

39 ’Immigration and/or the Border ’: 8,

40 ’Indigent Defense ’: 9,

41 ’Intellectual Disability (Facility)’: 10,

42 ’Jail Conditions ’: 11,

43 ’Juvenile Institution ’: 12,

44 ’Labor Rights ’: 13,

45 ’Mental Health (Facility)’: 14,

46 ’National Security ’: 15,

47 ’Nursing Home Conditions ’: 16,

48 ’Policing ’: 17,

49 ’Presidential/Gubernatorial Authority ’: 18,

50 ’Prison Conditions ’: 19,

51 ’Public Accommodations/Contracting ’: 20,

52 ’Public Benefits/Government Services ’: 21,

53 ’Public Housing ’: 22,

54 ’Reproductive Issues ’: 23,

55 ’School Desegregation ’: 24,

56 ’Speech and Religious Freedom ’: 25

57 }

58

59 class DocumentClassificationDataset(Dataset):

60 def __init__(self , tokenizer , cases_path , n = -1):

61 self.dataset = {’text’: [], ’labels ’: []}

62 print(’Retrieving complaints ’)

63 if n == -1:

64 cases = get_complaint_only_cases(cases_path)

65 else:

66 cases = get_complaint_only_cases(cases_path)[:n]

67 print(’Iterate over complaints ’)

68 self.text_len = 512

69 for entry in tqdm(cases):

70 summary = entry.summary

71 if not summary or len(summary) < 1 or not entry or not entry.

case_documents or len(entry.case_documents) < 1:

72 continue

73 doc = entry.case_documents [0]

74 document_text = read_doc(doc)

75 print(entry.case_types)

76 self.dataset[’text’]. append(document_text)

77 self.dataset[’labels ’]. append(ISSUE_IDS[entry.case_types [0]])

78

79 #self.dataset = HFDataset.from_dict(self.dataset)

80 self.tokenizer = tokenizer

81

82 def __len__(self):

83 print(’This is the dataset length:’, len(self.dataset[’labels ’]))

84 return len(self.dataset[’labels ’])

85

86 def __getitem__(self , idx):

87 """

88 Args:

89 idx (int): Index of the sample to retrieve.

90

91 Returns:

92 tuple: (data_sample , label) where data_sample is the data at index idx ,
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93 and label is the corresponding label.

94 """

95 return self.dataset[’text’][idx], self.dataset[’labels ’][idx]

96

97

98 def train_test_split(self , pct = 0.8):

99 train = deepcopy(self)

100 test = deepcopy(self)

101 n_train = int(len(self) * pct)

102 train.dataset[’text’] = train.dataset[’text’][: n_train]

103 train.dataset[’labels ’] = train.dataset[’labels ’][: n_train]

104 test.dataset[’text’] = test.dataset[’text’][ n_train :]

105 test.dataset[’labels ’] = test.dataset[’labels ’][ n_train :]

106

107 return train , test

108 #Use this in the event of using a DataCollator

109 def prepare_corpus(self , vocab , normalize_text , tokenizer , pad , text_len):

110

111 dataset = {’text’: [], ’labels ’: []}

112 for text , label in zip(self.dataset[’text’], self.dataset[’labels ’]):

113 feature = text

114 label = label

115

116 feature = pad(vocab(tokenizer(normalize_text(feature))), text_len)

117 one_hot = [0] * 26

118 one_hot[label] = 1

119

120 dataset[’text’]. append(feature)

121 dataset[’labels ’]. append(one_hot)

122

123 self.dataset = dataset

124

125

126 class MistralMLMDataset(Dataset):

127 def __init__(self , tokenizer , split = ’train’, text_len = 24):

128 """

129 Args:

130 split (list or ndarray): "train" or "validation ".

131 """

132 self.dataset = load_dataset("pile -of-law/pile -of-law", "nlrb_decisions")

133 self.dataset = self.dataset[split]

134 print(self.dataset)

135 self.text_len = text_len

136 self.tokenizer = tokenizer

137

138 def __len__(self):

139 """ Returns the number of samples in the dataset."""

140 return len(self.dataset)

141

142 def __getitem__(self , idx):

143 """

144 Args:

145 idx (int): Index of the sample to retrieve.

146

147 Returns:

148 tuple: (data_sample , label) where data_sample is the data at index idx ,

149 and label is the corresponding label.

150 """
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151 data_sample = self.dataset[idx][’text’]

152 lang = ’’

153 while data_sample.isspace () or lang != ’en’:

154 try:

155 lang = detect(data_sample)

156 idx += 1

157 data_sample = self.dataset[idx%len(self.dataset)][’text’]

158 except:

159 lang = ’’

160 #tokens = self.tokenizer(data_sample , return_tensors=’pt ’)

161 #text_index = random.randrange (0, len(data_sample) - self.text_len + 1)

162 #data_sample = data_sample[text_index: text_index + self.text_len]

163 return data_sample

164

165 #Use this in the event of using a DataCollator

166 def prepare_corpus(self):

167 #concatenated_sequences = []

168 #concatenated_masks = []

169 #for data_sample in self.dataset:

170 # data_sample = data_sample[’text ’]

171 # tokenized = self.tokenizer(data_sample)

172 # concatenated_samples.extend(tokenized[’input_ids ’])

173 # concatenated_masks.extend(tokenized[’attention_masks ’])

174

175 def tokenize(sample):

176 return self.tokenizer(sample[’text’])

177

178 tokenized_input = self.dataset.map(tokenize , batched = True , num_proc = 4,

remove_columns = [’text’, ’created_timestamp ’, ’downloaded_timestamp ’, ’url’])

179 print(tokenized_input)

180 def group_texts(samples):

181

182 examples = {k: sum(samples[k], []) for k in samples.keys()}

183 total_length = len(examples[list(examples.keys())[0]])

184

185 if total_length >= self.text_len:

186 total_length = (total_length // self.text_len) * self.text_len

187

188 return {

189 k : [t[ i: i + self.text_len] for i in range(0, total_length ,

self.text_len)] for k, t in examples.items()

190 }

191

192 mlm_dataset = tokenized_input.map(group_texts , batched = True , num_proc = 4)

193

194 return mlm_dataset

195

196 # Example usage:

197 if __name__ == "__main__":

198 import numpy as np

199

200 # Create dataset

201 #train_dataset = MistralMLMDataset(AutoTokenizer.from_pretrained (" distilbert/

distilbert -base -uncased "))

202 train_dataset = DocumentClassificationDataset(AutoTokenizer.from_pretrained("

allenai/longformer -base -4096"), cases_path = ’../../ all_cases_clearinghouse.pkl’

)

203 #val_dataset = DocumentClassificationDataset(AutoTokenizer.from_pretrained ("
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distilbert/distilbert -base -uncased "), cases_path = ’../../

all_cases_clearinghouse.pkl ’)

204

205 #data_collator = DataCollatorForLanguageModeling(tokenizer = train_dataset.

tokenizer , mlm_probability = 0.1)

206 # DataLoader for batching and shuffling

207 mlm_train = train_dataset.prepare_corpus ()

208 #mlm_val = val_dataset.prepare_corpus ()

209

210 #dataloader = torch.utils.data.DataLoader(mlm_train , batch_size =2, shuffle=False

)

211 # Iterate through the DataLoader

212 #for batch_data in dataloader:

213 # #print(batch_data)

214 # quit()

model.py

1 from torchtext.data.utils import get_tokenizer

2 from torch.utils.data import DataLoader

3 from torchtext.vocab import build_vocab_from_iterator

4 import spacy

5 import string

6 import sys

7 import torch

8 from torch import nn

9 from tqdm import tqdm

10 import time

11 from torch.utils.data.dataset import random_split

12 from torch.utils.tensorboard import SummaryWriter

13 from torchtext.data.functional import to_map_style_dataset

14 import datetime

15 import os

16 from matplotlib import pyplot as plt

17 import seaborn as sns

18 from torchmetrics import ConfusionMatrix

19 import numpy as np

20 from sklearn.metrics import confusion_matrix , ConfusionMatrixDisplay

21

22 sys.path.append(’../’)

23 from mistral.mistral_datasets import DocumentClassificationDataset , ISSUE_IDS

24

25 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

26 tokenizer = get_tokenizer("basic_english")

27

28 # Load SpaCy’s English model

29 nlp = spacy.load("en_core_web_sm")

30

31

32 class TextClassificationModel(nn.Module):

33 def __init__(self , vocab_size , embed_dim , num_class):

34 super(TextClassificationModel , self).__init__ ()

35 self.embedding = nn.EmbeddingBag(vocab_size , embed_dim , sparse=False)

36 self.fc = nn.Linear(embed_dim , num_class)

37 self.init_weights ()

38

39 def init_weights(self):

40 initrange = 0.5

41 self.embedding.weight.data.uniform_(-initrange , initrange)
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42 self.fc.weight.data.uniform_(-initrange , initrange)

43 self.fc.bias.data.zero_ ()

44

45 def forward(self , text):

46 embedded = self.embedding(text , None)

47 return self.fc(embedded)

48

49 def train(model , dataloader , optimizer , criterion):

50

51 model.train ()

52 total_acc , total_count = 0, 0

53 total_loss = 0

54 log_interval = 1

55 start_time = time.time()

56

57 for idx , (label , text) in enumerate(dataloader):

58 optimizer.zero_grad ()

59 predicted_label = model(text)

60 loss = criterion(predicted_label , label)

61 loss.backward ()

62 optimizer.step()

63 total_acc += (predicted_label.argmax (1) == label.argmax (1)).sum().item()

64 total_count += label.size (0)

65 total_loss += loss.item()

66 #if idx % log_interval == 0:

67 # elapsed = time.time() - start_time

68 # print(

69 # "| epoch {:3d} | {:5d}/{:5d} batches "

70 # "| accuracy {:8.3f} loss {:8.3f}". format(

71 # epoch , idx , len(dataloader), total_acc / total_count , loss.item

()

72 # )

73 # )

74 # total_acc , total_count = 0, 0

75 # start_time = time.time()

76

77 return total_acc/total_count , total_loss/total_count

78

79 def evaluate(model , dataloader , criterion):

80 model.eval()

81 total_acc , total_loss , total_count = 0, 0, 0

82 preds = []

83 trues = []

84 with torch.no_grad ():

85 for idx , (label , text) in enumerate(dataloader):

86 predicted_label = model(text)

87 loss = criterion(predicted_label , label)

88 total_acc += (predicted_label.argmax (1) == label.argmax (1)).sum().item()

89 total_count += label.size (0)

90 total_loss += loss.item()

91

92 preds.append(predicted_label.argmax (1))

93 trues.append(label.argmax (1))

94 return total_acc / total_count , total_loss / total_count , (torch.cat(preds),

torch.cat(trues))

95

96 def normalize_text(text):

97 # Process the text using SpaCy
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98 doc = nlp(text)

99

100 # Define a list to hold normalized tokens

101 normalized_tokens = []

102

103 for token in doc:

104 # Convert to lowercase , remove punctuation and stop words , and lemmatize the

tokens

105 if not token.is_punct and not token.is_stop:

106 lemma = token.lemma_.lower () # Lowercase and lemmatize

107 normalized_tokens.append(lemma)

108

109 # Join the tokens back into a normalized string

110 normalized_text = ’ ’.join(normalized_tokens)

111

112 return normalized_text

113

114 def yield_token(data_iter):

115 for text , lbl in data_iter:

116 yield tokenizer(normalize_text(text))

117

118 def pad(text_processed , text_len):

119 text = text_processed[len(text_processed)//2 - text_len //2 : len(text_processed)

//2 + text_len //2]

120 while len(text) < text_len:

121 text.append (-1)

122 return text

123

124 if __name__ == ’__main__ ’:

125 ds = DocumentClassificationDataset(None , cases_path = ’../../

all_cases_clearinghouse.pkl’, n = -1)

126 print(’DS made , building vocabulary ’)

127 vocab = build_vocab_from_iterator(yield_token(ds), specials = ["<unk >"])

128 vocab.set_default_index(vocab["<unk >"])

129 text_len = 256

130

131 print(’Text pipeline ’)

132 text_preprocessing_pipeline = lambda x: pad(vocab(tokenizer(normalize_text(x))),

text_len)

133 print(normalize_text(ds [0][0]))

134

135 ds.prepare_corpus(vocab , normalize_text , tokenizer , pad , text_len)

136

137 def collate_fn(batch):

138 text_batch = []

139 label_batch = []

140 for text , label in batch:

141 text_batch.append(text)

142 label_batch.append(label)

143

144 label_batch = torch.tensor(label_batch).double ()

145 text_batch = torch.tensor(text_batch)

146

147 return label_batch.to(device), text_batch.to(device)

148

149 print(len(ds[0]))

150 train_ds , val_ds = ds.train_test_split ()

151
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152 train_dataloader = DataLoader(train_ds , batch_size = 2, shuffle = True ,

collate_fn = collate_fn)

153 val_dataloader = DataLoader(val_ds , batch_size = 2, shuffle = True , collate_fn =

collate_fn)

154 #dataloader = DataLoader(ds, batch_size = 8, shuffle = False , collate_fn =

collate_fn)

155 del ds

156

157 print(’Data Loaded , total length = ’, len(train_dataloader) + len(val_dataloader

))

158 num_class = 26#len(set([ label for (label , text , offset) in dataloader ]))

159 vocab_size = len(vocab)

160 emsize = 64

161 model = TextClassificationModel(vocab_size , emsize , num_class).to(device)

162 # Hyperparameters

163 EPOCHS = 100 # epoch

164

165 #total_accu = None

166 #print(’Num Train: ’, num_train)

167 #print(train_dataloader , len(train_dataloader))

168 LR = 1e-3 # learning rate

169 criterion = torch.nn.CrossEntropyLoss ()

170 optimizer = torch.optim.Adam(model.parameters (), lr = LR)

171

172 now = datetime.datetime.now()

173 logdir = now.strftime(’./runs/tensorboard /%Y%m%d_%H%M%S’)

174 savedir = now.strftime(’./runs/checkpoints /%Y%m%d_%H%M%S’)

175 writer = SummaryWriter(logdir , flush_secs = 1)

176 os.makedirs(savedir)

177 confmat = ConfusionMatrix(task = ’multilabel ’, num_labels = num_class)

178

179 for epoch in range(1, EPOCHS + 1):

180 accu_train , loss_train = train(model , train_dataloader , optimizer , criterion

)

181 accu_val , loss_val , (preds , trues) = evaluate(model , val_dataloader ,

criterion)

182 torch.save({

183 ’epoch’: epoch ,

184 ’model_state_dict ’: model.state_dict (),

185 ’optimizer_state_dict ’: optimizer.state_dict (),

186 ’loss’: loss_train ,

187 }, os.path.join(savedir , f’{epoch}_{loss_val }.pt’))

188 writer.add_scalar("Accuracy/train", accu_train , epoch)

189 writer.add_scalar("Accuracy/val", accu_val , epoch)

190 writer.add_scalar("Loss/train", loss_train , epoch)

191 writer.add_scalar("Loss/val", loss_val , epoch)

192

193 fig , ax1 = plt.subplots ()

194 cm = confusion_matrix(trues.cpu().numpy(), preds.cpu().numpy (), labels = np.

arange(num_class))

195 ConfusionMatrixDisplay(confusion_matrix=cm , display_labels = list(ISSUE_IDS.

keys())).plot(ax = ax1)

196 # Log confusion matrix to TensorBoard

197 writer.add_figure("Confusion Matrix", fig , epoch)

198 plt.close(fig)
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4 Documentation

For this starting task, I took the clearinghouse data and removed every field except the OCR’d
complaint and the first issue that it was tagged with. Then, I trained generated a vocabulary and
tokenizer with torchtext. Then, I took the middle 256 characters of the text and padded if necessary
with blank tokens. I used the tokenized text to train a model that had an embedding and a linear
layer to project the embedding to a classification of one of the 26 issue classes. Given that this
model does not have any hidden layers, it doesn’t perform optimally. I also have been unable to run
a full dataset on my GPU due to problems logging into PACE and my local computer not having
enough GPU memory. Out of the tiny dataset, the small model has 66% validation accuracy. But
most importantly, I was able to show that training runs will reach 0 training loss and 100% training
accuracy on a small dataset, indicating that the script is functioning correctly and can have larger
datasets run through it to product better tiny models.

5 Scription Validation(Optional)
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Figure 1: Reading in the complaints and issues

6 Results Visualization

The problem with these results is still the CUDA error. Figure 2 shows the loss and accuracy curves
of the tiny model. Even though the validation looks low, realize that this model essentially has no
parameters, its only parameters are in the projection to the output space. Importantly, notice that
the training loss decreases towards 0. This means that the training script is working and is ready
to train larger models on larger datasets.
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Figure 2: Tensorboard of best model on a tiny dataset
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Figure 3: Test Confusion Matrix for Tiny Model on Validation Set
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7 Next Week’s proposal

• Train on PACE

• Use UPenn Data
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1 WEEKLY PROJECT UPDATES

What progress did you make in the last week?

• Implemented code for extracting and grouping json objects from models re-

sponse in order to later use them for the model benchmarking and valida-

tion. Models outputs used so far are: llama3.1, gemma2, mistral-nemo, qwen2,

deepseek-coder-v2, phi3, and mixtral.
• Created a set of functions to compare model responses contained in JSON file

based on the field data type. Short strings such as case number, allow for no

error margin, but longer strings such as what is the case about, allow for a wider

difference when compared to the validation dataset. Still, this is something that

may require further analysis to better validate the models output.
• Created a validation template that simply contains a json object with each of

the fields expected in the output and the data type for each of them that will

then help identify how to compare the model prediction with the validation

data.
• Executed benchmarking process on data generated by the models for input

template v1 and output template v1.
• Met with the NLP-Sentencias team on Saturday 21st to align on our goals and

distribute our tasks more efficiently.
• Created and distributed surveys for Pathways to PhD seminar carried out by

Dr. Lindvall.
• Organized and assisted Dr. Lindvall in the Pathways to PhD seminar on Septem-

ber 24th.
• Meeting with the NLP team on September 27th for our weekly meeting.
• Meeting with Dr. Alexander and Nathan Dahlberg on September 27th to get

further insighs on NLP research.
• Reached out to colleagues in my current company to get insights on UIs used

for ML projects and contacts for getting more insights around NLP research.

What progress are you making next?

• Enhance prompt engineering techniques to improve data extraction accuracy

and completeness.
• Polish automated validation system to address cases like long strings, or data

ranges.
• Review scoring logic to correctly compare all models under same conditions.
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• Keep conducting comprehensive benchmarking of different Ollama models to

identify the most effective model(s) for our specific task. Include latest Llama

3.2 model.
• Retrieve additional insights and perform a second round with modified tem-

plates (v2).
• Meet with the NLP team on October 4th for our weekly meeting.

Is there anything blocking you from making progress?

No significant blockers at this time. Already checking out executing code in

PACE for faster development and validation.
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2 ABSTRACTS

1. Title: Semantic Segmentation of Legal Documents via Rhetorical Roles
• URL: https://aclanthology.org/2022.nllp-1.13.pdf

• Abstract: Legal documents are unstructured, use legal jargon, and have con-

siderable length, making them difficult to process automatically via con-

ventional text processing techniques. A legal document processing system

would benefit substantially if the documents could be segmented into coher-

ent information units. This paper proposes a new corpus of legal documents

annotated (with the help of legal experts) with a set of 13 semantically co-

herent units labels (referred to as Rhetorical Roles), e.g., facts, arguments,

statute, issue, precedent, ruling, and ratio. We perform a thorough analysis

of the corpus and the annotations. For automatically segmenting the legal

documents, we experiment with the task of rhetorical role prediction: given

a document, predict the text segments corresponding to various roles. Using

the created corpus, we experiment extensively with various deep learning-

based baseline models for the task. Further, we develop a multitask learning

(MTL) based deep model with document rhetorical role label shift as an

auxiliary task for segmenting a legal document. The proposed model shows

superior performance over the existing models. We also experiment with

model performance in the case of domain transfer and model distillation

techniques to see the model performance in limited data conditions.

• Summary: This paper introduces a corpus of legal documents annotated

with rhetorical roles (e.g. facts, arguments, statutes) and proposes methods

for automatically predicting these roles in new documents. The authors

create a dataset of 100 Indian legal documents from competition law and

income tax domains, annotated with 13 fine-grained rhetorical role labels.

They experiment with various deep learning models for predicting roles,

including a novel multitask learning approach that leverages label shift in-

formation.

• Relevance: Even though this paper focuses on Indian legal documents in

English, some aspects could be relevant to our work on Spanish legal docu-

ments. The concept of rhetorical roles and methods for automatically identi-
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fying them could potentially be adapted to Spanish texts. However, the spe-

cific roles may differ for Spanish legal documents, and we possibly would

need to develop a Spanish-specific corpus and models.

3 SCRIPTS AND CODE BLOCKS

All scripts have been uploaded to the HAAG NLP Repo. Outputs files, processed

sentencias and any other document that may contain sensitive information is

located in the private NLP-Sentencias Repo.

The following code contains the logic and functions I have been working on this

week.

1. JSON extraction from model outputs code, uploaded here.

This file extracts the JSON objects that are expected to be returned by the

model in the output text plus the one added with execution information when

saving the output and convert it into a single JSON file output for each of

the obtained outputs from the models. This new extracted JSON will then be

used for output validation and model benchmarking. It has been designed to

bulk extract JSON files by passing the model outputs parent folder and then

extracting these JSON object from all files contained in such folder. The code

is the following:
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def extract_json_from_text(text):
"""Extract JSON objects from text using a stack-based

approach."""↪→

json_objects = []
stack = []
start = -1

for i, char in enumerate(text):
if char == '{':

if not stack:
start = i

stack.append(char)
elif char == '}':

if stack:
stack.pop()
if not stack:

try:
json_obj = json.loads(text[start:i+1])
json_objects.append(json_obj)

except json.JSONDecodeError:
print(f"Warning: Could not parse JSON

object: {text[start:i+1][:50]}...")↪→

return json_objects

Code 1—Function for extracting the JSON objects from the text

file
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def process_file(input_path, output_path):
"""Process a single file, extract JSON, and save as new

file."""↪→

with open(input_path, 'r', encoding='utf-8') as file:
content = file.read()

json_objects = extract_json_from_text(content)

if len(json_objects) == 2:
# Combine the two JSON objects
combined_json = {**json_objects[0], **json_objects[1]}

elif len(json_objects) == 1:
combined_json = json_objects[0]

else:
print(f"Warning: Unexpected number of JSON objects

({len(json_objects)}) in {input_path}")↪→

return

# Save the combined JSON
with open(output_path, 'w', encoding='utf-8') as file:

json.dump(combined_json, file, ensure_ascii=False,
indent=2)↪→

print(f"Processed: {input_path} -> {output_path}")

Code 2—Function for processing a file and then storing the result

in a new json file
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def process_model_directory(model_input_dir, model_output_dir):
"""Process all text files in a single model's directory."""
if not os.path.exists(model_output_dir):

os.makedirs(model_output_dir)

for filename in os.listdir(model_input_dir):
if filename.startswith("output_") and

filename.endswith(".txt"):↪→

input_path = os.path.join(model_input_dir, filename)
new_name = filename.replace("output_",

"").replace(".txt", "_extracted.json")↪→

output_path = os.path.join(model_output_dir, new_name)
process_file(input_path, output_path)

def process_parent_directory(parent_input_dir, parent_output_dir):
"""Process all model directories in the parent directory."""
for model_dir in os.listdir(parent_input_dir):

model_input_path = os.path.join(parent_input_dir,
model_dir)↪→

if os.path.isdir(model_input_path):
model_output_path = os.path.join(parent_output_dir,

model_dir)↪→

print(f"\033[94mProcessing model: {model_dir}\033[0m")
process_model_directory(model_input_path,

model_output_path)↪→

Code 3—Functions for processing all files in a model folder and

bulk processing a parent folder containing folders for all models

2. Helper functions to compare specific fields from predicted output with vali-

dation output based on their data type. Code uploaded here.

These functions allow to generate a validation score to compare the output

from all models and benchmarking their results. There is a function for each

of the expected data types, although logic when some of the data is missing

still requires some additional polishing/rethinking. The code is the following:
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def word_similarity(pred: Any, true: Any, threshold: float = 0.8)
-> float:↪→

pred_str = str(pred).lower()
true_str = str(true).lower()

pred_words = set(pred_str.split())
true_words = set(true_str.split())

if not true_words:
return 1.0 if not pred_words else 0.0

intersection = pred_words.intersection(true_words)
union = pred_words.union(true_words)
return len(intersection) / len(union)

Code 4—String comparison function

def compare_lists(pred: List[Any], true: List[Any], threshold:
float = 0.8) -> float:↪→

if not isinstance(pred, list):
pred = [pred]

if not isinstance(true, list):
true = [true]

if not true:
return 1.0 if not pred else 0.0

matches = sum(word_similarity(p, t, threshold) for p in pred
for t in true)↪→

return min(matches / len(true), 1.0)

Code 5—List comparison function
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def compare_dates(pred: Any, true: Any) -> float:
try:

pred_date = datetime.strptime(str(pred), "%d/%m/%Y")
true_date = datetime.strptime(str(true), "%d/%m/%Y")
return 1.0 if pred_date == true_date else 0.0

except ValueError:
return 0.0

def compare_numbers(pred: Any, true: Any) -> float:
try:

return 1.0 if float(pred) == float(true) else 0.0
except ValueError:

return 0.0

def compare_booleans(pred: Any, true: Any) -> float:
return 1.0 if bool(pred) == bool(true) else 0.0

def get_comparison_function(data_type: str):
comparison_functions = {

"string": word_similarity,
"list": compare_lists,
"date": compare_dates,
"date_list": compare_lists,
"integer": compare_numbers,
"boolean": compare_booleans

}
return comparison_functions.get(data_type, word_similarity)

Code 6—Remaining functions to compare dates, numbers and

booleans. Additional function with dictionary to retrieve function

based on data type

3. Benchmark code for reading all JSON files, retrieve each document’s scores

and generate charts to compare the results from all the models. Code uploaded

here.

These functions allow to bulk process all the files generated for the different
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models outputting a JSON file with all the average results for all models and 3

charts containing results per field being evaluated, overall model performance

for the given documents and models average execution time.

def evaluate_model(model_outputs_dir: str, validation_dir: str,
config_path: str) -> Dict[str, Any]:↪→

config = load_json(config_path)
total_scores = {}
file_count = 0
total_processing_time = 0
model_name = os.path.basename(model_outputs_dir)

print(f"Processing model: {model_name}")
print(f"Model output directory: {model_outputs_dir}")
print(f"Validation directory: {validation_dir}")

for filename in os.listdir(model_outputs_dir):
if filename.endswith("_extracted.json"):

base_name = filename.replace("_extracted.json", "")
prediction_path = os.path.join(model_outputs_dir,

filename)↪→

validation_path = os.path.join(validation_dir,
f"{base_name}_validation.json")↪→

try:
if not os.path.exists(validation_path):

print(f"Warning: Validation file not found for
{filename}")↪→

continue
prediction = load_json(prediction_path)
validation = load_json(validation_path)
scores = evaluate_document(prediction, validation,

config)↪→
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print(f"Scores for {filename}:")
for key, value in scores.items():

print(f" {key}: {value}")
if key not in total_scores:

total_scores[key] = 0
total_scores[key] += value

# Extract execution details
execution_details =

prediction.get("execution_details", {})↪→

total_processing_time +=
execution_details.get("processing_time", 0)↪→

file_count += 1
print(f"Successfully processed file: {filename}")

except json.JSONDecodeError as e:
print(f"Error decoding JSON in file {filename}:

{str(e)}")↪→

except Exception as e:
print(f"Error processing file {filename}:

{str(e)}")↪→

if file_count == 0:
print(f"No valid files processed for model {model_name}")
return {

"model_name": model_name,
"error": "No valid files processed",
"average_scores": {},
"overall_score": 0,
"files_processed": 0,
"average_processing_time": 0

}

# Calculate average scores
avg_scores = {key: value / file_count for key, value in

total_scores.items()}↪→

# Calculate overall score
overall_score = sum(avg_scores.values()) / len(avg_scores) if

avg_scores else 0↪→
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return {
"model_name": model_name,
"average_scores": avg_scores,
"overall_score": overall_score,
"files_processed": file_count,
"average_processing_time": total_processing_time /

file_count if file_count > 0 else 0↪→

}

Code 7—Main function for evaluating model results

4 DOCUMENTATION

JSON Extraction and Grouping

• Code implemented for extracting and grouping JSON objects from model re-

sponses.
• Data prepared for model benchmarking and validation.
• Outputs processed from multiple models: llama3.1, gemma2, mistral-nemo,

qwen2, deepseek-coder-v2, phi3, and mixtral.

Comparison Functions Development

• Functions created to compare model responses in JSON format based on field

data types.
• Flexible comparison implemented for longer strings, allowing for wider differ-

ences when compared to the validation dataset.
• Need recognized for further analysis to refine validation of model outputs,

especially for complex fields.

Validation Template Creation

• Validation template developed containing a JSON object with expected output

fields.
• Data type information included for each field to guide the comparison process.
• Template designed to facilitate accurate comparison between model predictions

and validation data.
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Model Benchmarking

• Benchmarking process executed on data generated by various models.
• Input template v1 and output template v1 used for standardized evaluation.
• Groundwork prepared for comprehensive model comparison and performance

analysis.

5 SCRIPT VALIDATION

A set of validation data has been generated to assess the accuracy and complete-

ness of the information extracted by the LLM models. This script was executed

to retrieve insights on the models performance and compare models to each

other providing additional insights on the best options for extracting data from

the Spanish legal documents.

Key points:

• Validation data set has been prepared based on the output JSON template.
• A data type template matching the fields from the output template to their

correspoing expected data types was created and used for data validation.
• A summary JSON file was created containing the comparable data for all dif-

ferent models.

Next steps for validation:

• Polish logic for string comparison between predicted and validation data.
• Review scoring logic to correctly compare all models under same conditions.
• Retrieve additional insights and perform a second round with modified tem-

plates (v2).

All generated files and content may be found either in the Documents folder for

the private GitHub repository here, or within my corresponding folder in the

same repository here

6 RESULTS VISUALIZATION

The following charts were generated upon the models results, comparing the

different parameters measured for all the models being assessed.
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Figure 1—Fields per model comparison

As it may be observed, there are significant differences between models, but there

are also some indications on what fields will require additional thought.

Figure 2—Overall score comparison
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Figure 3—Processing time comparison in local execution

7 PROOF OF WORK

The implemented system demonstrates significant progress in developing a

framework for analyzing legal documents using large language models. The

currently implemented pipeline for processing the documents follows the steps

described in the following diagram:

Figure 4—Processing time comparison in local execution

Key achievements and current status include:
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• Data Processing Pipeline: Successfully implemented a pipeline for extracting

text from PDF and DOC files, cleaning the data, and preparing it for analysis.
• LLM Integration: Developed the OllamaModelProcessor class, enabling the

use of multiple Ollama-based language models for text analysis.
• Bulk Processing: Implemented functionality for bulk processing of legal doc-

uments, generating individual JSON files for each document containing ex-

tracted key information.
• Model Versatility: The system can utilize multiple Ollama models (llama3.1,

gemma2, mistral-nemo, qwen2, deepseek-coder-v2, phi3, mixtral), allowing for

comprehensive benchmarking and comparison of model performance.
• Output Generation: Successfully generating structured text outputs with JSON

format based on the predefined template, capturing key information from legal

documents.
• Benchmark Information: Including processing time and token count for each

document analysis, providing insights into model efficiency.
• Validation Data: Generated a set of validation data to assess the accuracy

and completeness of extracted information, laying the groundwork for future

automated validation.
• Output Conversion to JSON: Successfully extracted JSON content from model

output text, retrieving the key information from the legal documents.
• Output JSON Validation and Scoring/Benchmark execution: Processed all

models output and scored their output agains the validation dataset.
• Scores summary and charts: Based on the benchmarking scores, generated a

summary file containing summaries for all the compared models and charts

with visual representations of the scores summary and scores per field.

So far, all documents have been generated correctly. In terms of validation,

there is one specific model, phi3, which is returning significantly worse results

in terms of data extraction than any other model being tested.

Additionally, it was observed there are certain fields, such as dates difference

calculation, for which all models are not returning appropriate results. Given

this isn’t a simple text extraction task, but it requires performing operations on

the extracted dates, it may be possible that some additional preprocessing is

required, performing later the dates calculation via code instead of requesting

it as an output from the model.

General results are still weak for these in terms of data extraction, which was

expected considering these models are the lower tiers of the available ones.

17



Additional benchmarking will be carried out on larger models to check if this

indeed makes a big difference on the predicted output.

8 NEXT WEEK’S PROPOSAL

1. Enhance prompt engineering techniques to improve data extraction accuracy

and completeness.

2. Polish automated validation system to address cases like long strings, or data

ranges.

3. Review scoring logic to correctly compare all models under same conditions.

4. Keep conducting comprehensive benchmarking of different Ollama models to

identify the most effective model(s) for our specific task. Include latest Llama

3.2 model.

5. Retrieve additional insights and perform a second round with modified tem-

plates (v2).
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HAAG NLP Sentencias — Week 6 Report

NLP-Gen Team

Karol Gutierrez

September 27, 2024

1 Weekly Project Update

1.1 What progress did you make in the last week?

• Implementation of embeddings to add local documents to the context of the LLM, with this the
questions can be asked without providing context or passing part of the sentencia.

• Enhanced implementation of chunking by using Spacy Spanish library to get chunks with logical
separation (e.g. paraghraphs), then applied old model to generate replies.

• Literature review on embeddings and datasets for LLMs.

• Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.

• Meetings with Dr. Alexander and team, as well as internal meetings with team to sync on next
steps.

1.2 What are you planning on working on next?

• Use feedback from NLP expert to improve performance using chunking and fine tuning the model.
Start implementation on this.

• Work with larger dataset including Supreme Court Decisions and analyze performance of model
there.

• Design pipeline to iterate on specific fields that are harder to extract.

• Continue fulfilling my role as Meet Manager/Documentor by working on the tasks expected for
my position (gather notes from meetings and prepare recordings).

1.3 Is anything blocking you from getting work done?

No.

2 Literature Review

Paper: ToolQA: A Dataset for LLM Question Answering with External Tools [ZYW+23].

2.1 Abstract

Large Language Models (LLMs) have demonstrated impressive performance in various NLP tasks, but
they still suffer from challenges such as hallucination and weak numerical reasoning. To overcome
these challenges, external tools can be used to enhance LLMs’ question-answering abilities. However,
current evaluation methods do not distinguish between questions that can be answered using LLMs’
internal knowledge and those that require external information through tool use. To address this issue,
we introduce a new dataset called ToolQA, which is designed to faithfully evaluate LLMs’ ability to
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use external tools for question answering. Our development of ToolQA involved a scalable, automated
process for dataset curation, along with 13 specialized tools designed for interaction with external
knowledge in order to answer questions. Importantly, we strive to minimize the overlap between our
benchmark data and LLMs’ pre-training data, enabling a more precise evaluation of LLMs’ tool-use
reasoning abilities. We conducted an in-depth diagnosis of existing tool-use LLMs to highlight their
strengths, weaknesses, and potential improvements. Our findings set a new benchmark for evaluating
LLMs and suggest new directions for future advancements. Our data and code are freely available for
the broader scientific community on GitHub.

2.2 Summary

The paper introduces ToolQA, a dataset aimed at evaluating how well Large Language Models (LLMs)
can use external tools to answer questions. It addresses a key limitation in current evaluations, which
don’t clearly separate what the model knows internally from its ability to use external resources. Key
contributions include:

• Dataset Creation: ToolQA is built using an automated process to generate questions across
eight domains, ensuring that answering requires external tools, not just the model’s pre-trained
knowledge.

• Specialized Tools: Thirteen tools, like text retrieval and code interpreters, help models interact
with external information to enhance their problem-solving abilities.

• Performance Evaluation: Testing shows that existing LLMs struggle with tasks that need external
tools. Even tool-augmented models, such as ReAct, show limited success on more complex tasks.

ToolQA sets a new benchmark for measuring LLMs’ tool-use capabilities and underscores the need
for further improvements in how models reason and work with multiple tools.

2.3 Relevance

This paper developed by Georgia Tech students is relevant to our project as it emphasizes the use of
external tools to improve the performance of Large Language Models, which is crucial for our task
of extracting procedural history from legal documents like sentencias and that goes in line with the
process wer are following. The approach of integrating multiple specialized tools for specific functions
can guide our strategy for structuring legal data more efficiently, like with date extraction. Moreover,
its focus on addressing complex, multi-step tasks is similar to our need for accurate case timeline
predictions. Incorporating these methods could enhance our model’s ability to extract and organize
key legal information, providing valuable insights for judicial decisions.

3 Scripts and code blocks

As previously mentioned, the existing code is in a private repository. Since we are handling private
information from the PDF files, it was decided alongside Dr. Alexander that we should add all of our
code work here from now on.

3.1 Code developed

Regarding embeddings work, the following items were developed, and codeblocks are shown in Figure 1.
The workflow of the code is shown in Figure 2.

• I used FAISS (Facebook AI Similarity Search) in combination with embeddings to get a Conver-
sationalRetrievalChain (from LangChain) and generate an embeddings .npy file, which can be
integrated with an LLM

• By using huggingface hub I was able to use the pretrained meta-llama/Llama-3.1-8B-Instruct
model for text generation
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Figure 1: Load document to LLM using embedding.

Figure 2: Code logic flow chart for embeddings.

• By using a JSON template I can just ask the LLM to fill the requested components and get a
reply in JSON format.

Regarding chunking work, the following items were developed, and codeblocks are shown in Figure 4
and Figure ??. The workflow of the code is shown in Figure 5

• Use Spacy model es core news lg to process text and then divide it into chunks.

• Generate prompt template with context and query.

• Use template with Meta--3-8B-Instruct.Q4 0.gguf LLM to get a reply.

• Ask LLM to display output in JSON readable format.

4 Documentation

The documentation is present in the README.md file in the repository. Refer to the repository to
get the most updated instructions on how to run the code.

For the progress of this week, a new version of the environment.yml file was added, which include
more of the libraries and dependencies.

Additions in this submission:
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Figure 3: Code section to generate chunks.

pip install llama-toolchain

pip install langchain_community

pip install sentence-transformers

pip install faiss-cpu

pip install langchain_groq

pip install -U pip setuptools wheel

pip install -U spacy

python -m spacy download es_core_news_lg

5 Script Validation

Both sets of scripts are validated by the generated output JSON files that they produce and stored in
the root folder of the Week6 code. Example of JSONs before and after in Figures 6 and 7.
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Figure 4: Code section to process chunks and generate answer.

6 Results Visualization

Figure 8 show the JSON files generated using the embedding approach, as it can be observed, it
retrieves some of the values but some of them are still empty. The plan to solve this is by deliberate
iterations through different sections of the document.

7 Proof of Work

All the scripts work end to end from the starting PDF files as shown in the images. In particular,
the date extraction works for complex cases such as “seis (06) d́ıas del mes de enero del año dos mil
veintitrés (2023)”, as shown in the Figure 9:

8 Next Week’s Proposal

Refer to section 1.2 for details (avoid repetition).

References

[ZYW+23] Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset
for llm question answering with external tools, 2023.
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Figure 5: Code diagram for chunking.

Figure 6: Output JSON file sample using embedding approach
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Figure 7: Output JSON file sample using embedding approach
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Figure 8: Output JSON file sample using embedding approach

Figure 9: Proof of work for date extraction
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Week 6 Research Report

Thomas Orth (NLP Summarization / NLP Gen Team)

September 2024

0.1 What did you work on this week?

1. Generated more summaries for validation. Waiting to hear back from end
user team to review.

2. Run Phi3 through DSPy for auto prompt optimization

3. Run Phi3 through outlines library to test further chain of density

4. Met with NLP freelancer to discuss models and techniques

0.2 What are you planning on working on next?

1. Investigate llama and mistral/mixtral models

2. Begin setting up for commercial models in order to be cost effective

3. Investigate Adalflow for use of LLMs

4. Investigate Summary Chain-of-thought

0.3 Is anything blocking you from getting work done?

1. None

1 Abstracts

• Title: Element-aware Summarization with Large Language Models: Expert-
aligned Evaluation and Chain-of-Thought Method. Conference: ACL
2023. Link: https://aclanthology.org/2023.acl-long.482.pdf

• Abstract: Automatic summarization generates concise summaries that
contain key ideas of source documents. As the most mainstream datasets
for the news sub-domain, CNN/DailyMail and BBC XSum have been
widely used for performance benchmarking. However, the reference sum-
maries of those datasets turn out to be noisy, mainly in terms of factual
hallucination and information redundancy. To address this challenge, we
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first annotate new expertwriting Element-aware test sets following the
“Lasswell Communication Model” proposed by Lasswell (1948), allowing
reference summaries to focus on more fine-grained news elements objec-
tively and comprehensively. Utilizing the new test sets, we observe the
surprising zero-shot summary ability of LLMs, which addresses the is-
sue of the inconsistent results between human preference and automatic
evaluation metrics of LLMs’ zero-shot summaries in prior work. Further,
we propose a Summary Chain-of-Thought (SumCoT) technique to elicit
LLMs to generate summaries step by step, which helps them integrate
more finegrained details of source documents into the final summaries that
correlate with the human writing mindset. Experimental results show our
method outperforms state-of-the-art fine-tuned PLMs and zero-shot LLMs
by +4.33/+4.77 in ROUGE-L on the two datasets, respectively. Dataset
and code are publicly available at https://github.com/Alsace08/SumCoT..

• Summary: This is a method to generate summaries from a given document
that contains the relevant information in the document such as dates and
entities. The work showed it could generate more detailed summaries than
standard prompting with LLMs.

• Relevance: Given the amount of information in these LLMs, this technique
is worth trying to pair down.

2 Relevant Info

• Phi3 is an LLM proposed by Microsoft that is on the smaller side of LLMs.
Paper: https://arxiv.org/abs/2404.14219

• DSPy is a library to do auto prompt optimization instead of prompt en-
gineering by hand. Docs: https://dspy-docs.vercel.app/

• Outlines is a library for interacting with LLMs and supports chain of
density prompting. Docs: https://dottxt-ai.github.io/outlines/

• Ollama is a tool to serve LLMs locally on consumer hardware. Docs:
https://ollama.com/

• Adalflow is similar to DSPy but boasts superior performance. Url: https:
//adalflow.sylph.ai/

3 Scripts

1. All scripts uploaded to https://github.com/Human-Augment-Analytics/NLP-
Gen

2. Scripts were run with the following file for testing: https://gatech.box
.com/s/hv70flwkm977gky004l5vz15rpgfdmir
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3. Thomas-Orth/dspy model test.py

• Brief Description: This runs DSPy with Phi3 to optimize an llm
prompt for summarization

• Status: Tested by running the pipeline to completion without issue

• Important Code Blocks:

(a) First block: Read in CSV file and prepare DSPy dataset

(b) Second block: Run DSPy optimization

(c) Third Block: Run evaluator

• Screenshot of code:

Figure 1: First part of DSPy code

Figure 2: Second part of DSPy code

4. Thomas-Orth/outlines chain of density.py
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• Brief Description: This runs chain of density through phi3 using
outlines. Its a sanity check for the chain of density technique

• Status: Tested by running the pipeline to completion without issue

• Important Code Blocks:

(a) First block: Load CSV and choose summary from dataframe

(b) Second block: Run Chain of Density

(c) Third Block: Evaluate results

• Screenshot of code:

Figure 3: Outlines code

5. Flow Diagram:

Figure 4: Flow diagram
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6. Running scripts:

(a) Download the scripts, the csv from the box link and llm.requirements.txt

(b) Install ollama: https://ollama.com/download

(c) To pull and run phi3, run: ollama run phi3:medium

(d) Run: python -m pip install -r llm.requirements.txt

(e) Run: python chosen python script

4 Documentation

1. Download CSV file, with two columns: Document and Summary

2. Update script to point to the CSV file

3. Prompt Phi3 with Chain of Density and DSPY

4. Manually evaluate summary or evaluate metrics

5 Results

Figure 5: DSPy Rouge 2 results

In Figure 5, the Rouge-2 for Phi3 are quite bad.

Figure 6: Chain of Density results

In Figure 6, the generated summary doesn’t make sense.

6 Proof of Results

The prompting technique of chain of density was published in the ACL anthol-
ogy: https://aclanthology.org/2023.newsum-1.7/.

DSPy and outlines, the libraries chosen, are used by different companies and
production workflows.
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6.1 Known Limitations

Phi3 does worse than the LED baseline shown before. Victor from Sentencias
and another GT grad student noticed similarly bad performance with Phi3.
Conclusion is the techniques currently aren’t the issue but the model so other
LLMs will be explored.
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