HAAG NLP Summarization Week 6

Michael Bock
September 2024

1 Slack Questions

What did you accomplish this week?
e Finished Training Script with Clearinghouse Data
What are you planning on working on next?
e Get Issue Data from UPenn Database

e If further results are desired on clearinghouse classification task to show that it actually works,
run the script on PACE so that I don’t run out of memory

What is blocking you from progressing?

e My PACE home directory doesn’t exist, we have submitted a support ticket for this and
contacted PACE.

2 Abstract

Transformer-based models are unable to process long sequences due to their self-attention opera-
tion, which scales quadratically with the sequence length. To address this limitation, we introduce
the Longformer with an attention mechanism that scales linearly with sequence length, making it
easy to process documents of thousands of tokens or longer. Longformer’s attention mechanism
is a drop-in replacement for the standard self-attention and combines a local windowed attention
with a task motivated global attention. Following prior work on long-sequence transformers, we
evaluate Longformer on character-level language modeling and achieve state-of-the-art results on
text8 and enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it
on a variety of downstream tasks. Our pretrained Longformer consistently outperforms RoBERTa
on long document tasks and sets new state-of-the-art results on WikiHop and TriviaQA. We fi-
nally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting long
document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv
summarization dataset.

Link: https://arxiv.org/abs/2004.05150v2

2.1 Brief Analysis

Longformer Encoder-Decoder is a transformer adapted to handle tasks involving long documents.
Transformers typically use self-attention, which has O(n?) complexity. Longformer’s sliding window
attention has O(n) complexity. It works by having each token attend only to tokens near it. To
increase the size of the receptive field, Longformer dilates the window. Additionally, for a few
pre-selected tokens, they get the full self-attention. Then, Longformer uses the same pretraining
paradigm that models like BERT use.

Longformer does achieve better performance on long documents than short models. However,
in my opinion, the point of attention is that its globally receptive. If I wanted a locally receptive
feature extractor, why can’t I use a 1D convolutional layer? One reason I can think of is that
convolution complexity is O(nlogn), so perhaps a CNN is less efficient than LongFormer’s attention
mechanism

3 Scripts and Code Blocks

MLM Pipeline:
mistral_datasets.py(updated):

import torch

import numpy as np

from torch.utils.data import Dataset

from tqdm import tqdm

from datasets import load_dataset, Dataset as HFDataset
import re

from transformers import AutoTokenizer

import string

from langdetect import detect

import random

from transformers import DataCollatorForLanguageModeling
import sys

sys.path.append(’../../’)

from summarizers.get_complaints import get_complaint_only_cases
from summarizers.ocr import read_doc, extract_text_from_pdf
from copy import deepcopy

def normalize (comment, lowercase, remove_stopwords):
if lowercase:

comment = comment.lower ()
comment = nlp(comment)
lemmatized = list()
for word in comment:

lemma = word.lemma_.strip()

if lemma:
if not remove_stopwords or (remove_stopwords and lemma not in stops):
lemmatized.append(lemma)
".join(lemmatized)

return "

ISSUE_IDS = {
’Child Welfare’: O,

’Criminal Justice (Other)’: 1,
’Disability Rights’: 2,
’Education’: 3,

’Election/Voting Rights’: 4,

}

’Environmental Justice’: 5,

’Equal Employment’: 6,

’Fair Housing/Lending/Insurance’: 7,
>’Immigration and/or the Border’: 8,
’Indigent Defense’: 9,

>Intellectual Disability (Facility)’: 10,
>Jail Conditions’: 11,

>Juvenile Institution’: 12,

>Labor Rights’: 13,

’Mental Health (Facility)’: 14,

’National Security’: 15,

’Nursing Home Conditions’: 16,

’Policing’: 17,

’Presidential/Gubernatorial Authority’: 18,
’Prison Conditions’: 19,

>Public Accommodations/Contracting’: 20,
’Public Benefits/Government Services’: 21,

’Public Housing’: 22,
’Reproductive Issues’: 23,

’School Desegregation’: 24,
’>Speech and Religious Freedom’: 25

class DocumentClassificationDataset(Dataset):

def __init__(self, tokenizer, cases_path, n = -1):
self.dataset = {’text’: [], ’labels’: []}
print (’Retrieving complaints’)
if n == -1:
cases = get_complaint_only_cases(cases_path)
else:
cases = get_complaint_only_cases(cases_path) [:n]
print (’Iterate over complaints’)
self.text_len = 512
for entry in tqdm(cases):
summary = entry.summary
if not summary or len(summary) < 1 or not entry or not entry.
case_documents or len(entry.case_documents) < 1:

continue
doc = entry.case_documents [0]
document_text = read_doc(doc)

print (entry.case_types)
self .dataset[’text’].append(document_text)
self .dataset[’labels’].append (ISSUE_IDS [entry.case_types [0]])

#self.dataset = HFDataset.from_dict(self.dataset)
self.tokenizer = tokenizer

def __len__(self):
print (’This is the dataset length:’, len(self.dataset[’labels’]))
return len(self.dataset[’labels’])

def __getitem__(self, idx):
Args:
idx (int): Index of the sample to retrieve.

Returns:
tuple: (data_sample, label) where data_sample is the data at index

idx,

and label is the corresponding label.
nnn

return self.dataset[’text’][idx], self.dataset[’labels’][idx]

def train_test_split(self, pct = 0.8):
train = deepcopy(self)
test = deepcopy(self)
n_train = int(len(self) * pct)

train.dataset[’text’] = train.dataset[’text’][:n_train]
train.dataset [’labels’] = train.dataset[’labels’][:n_train]
test.dataset[’text’] = test.dataset[’text’][n_train:]

test.dataset[’labels’] = test.dataset[’labels’][n_train:]

return train, test
#Use this in the event of using a DataCollator

def prepare_corpus(self, vocab, normalize_text, tokenizer,

dataset = {’text’: [], ’labels’: []}

pad, text_len):

for text, label in zip(self.dataset[’text’], self.dataset[’labels’]):

feature = text
label = label

feature = pad(vocab(tokenizer (normalize_text(feature))), text_len)

one_hot = [0] * 26
one_hot[label] = 1

dataset [’text’].append(feature)
dataset [’labels’].append(one_hot)

self .dataset = dataset

class MistralMLMDataset (Dataset):
def __init__(self, tokenizer, split = ’train’, text_len =
nnn
Args:
split (list or ndarray): "train" or "validation".

self.dataset = load_dataset("pile-of-law/pile-of-law",

self .dataset = self.dataset[split]
print (self.dataset)
self.text_len = text_len
self .tokenizer = tokenizer
def __len__(self):
"""Returns the number of samples in the dataset."""
return len(self.dataset)

def __getitem__(self, idx):

Args:
idx (int): Index of the sample to retrieve.

Returns:

tuple: (data_sample, label) where data_sample is the data at index idx,

and label is the corresponding label.

24):

"nlrb_decisions")

151 data_sample = self.dataset[idx][’text’]

152 lang = 7’

153 while data_sample.isspace() or lang != ’en’:

154 try:

155 lang = detect(data_sample)

156 idx += 1

157 data_sample = self.dataset[idx)len(self.dataset)][’text’]
158 except:

159 lang = 7~

160 #tokens = self.tokenizer (data_sample, return_tensors=’pt’)

161 #text_index = random.randrange (0, len(data_sample) - self.text_len + 1)
162 #data_sample = data_sample[text_index: text_index + self.text_len]

163 return data_sample

165 #Use this in the event of using a DataCollator

166 def prepare_corpus(self):

167 #concatenated_sequences = []

168 #concatenated_masks = []

169 #for data_sample in self.dataset:

170 # data_sample = data_sample[’text’]

171 # tokenized = self.tokenizer(data_sample)

172 # concatenated_samples.extend (tokenized[’input_ids’])

173 # concatenated_masks.extend(tokenized[’attention_masks’])

174

175 def tokenize (sample):

176 return self.tokenizer (sample[’text’])

177

178 tokenized_input = self.dataset.map(tokenize, batched = True, num_proc = 4,
remove_columns = [’text’, ’created_timestamp’, ’downloaded_timestamp’, ’url’])

179 print (tokenized_input)

180 def group_texts(samples):

181

182 examples = {k: sum(samples[k], []) for k in samples.keys()}

183 total_length = len(examples[list(examples.keys()) [0]])

184

185 if total_length >= self.text_len:

186 total_length = (total_length // self.text_len) * self.text_len

187

188 return {

189 k : [t[i: i + self.text_len] for i in range(0, total_length,
self.text_len)] for k, t in examples.items()

190 }

191

192 mlm_dataset = tokenized_input.map(group_texts, batched = True, num_proc = 4)

193

194 return mlm_dataset

195

196 # Example usage:
n

197 if __name__ == "__main__":

198 import numpy as np

199

200 # Create dataset

201 #train_dataset = MistralMLMDataset (AutoTokenizer.from_pretrained("distilbert/
distilbert -base-uncased"))

202 train_dataset = DocumentClassificationDataset (AutoTokenizer.from_pretrained ("
allenai/longformer -base-4096"), cases_path = ’../../all_cases_clearinghouse.pkl’
)

203 #val_dataset = DocumentClassificationDataset(AutoTokenizer.from_pretrained("

distilbert/distilbert -base-uncased"), cases_path = ’../../
all_cases_clearinghouse.pkl’)

#data_collator = DataCollatorForLanguageModeling(tokenizer = train_dataset.
tokenizer , mlm_probability = 0.1)
Dataloader for batching and shuffling

mlm_train = train_dataset.prepare_corpus ()

#mlm_val = val_dataset.prepare_corpus ()

#dataloader = torch.utils.data.Dataloader (mlm_train, batch_size=2, shuffle=False
)

Iterate through the Dataloader
#for batch_data in dataloader:

#print (batch_data)
quit ()
model.py

from torchtext.data.utils import get_tokenizer

from torch.utils.data import DatalLoader

from torchtext.vocab import build_vocab_from_iterator
import spacy

import string

import sys

import torch

from torch import nn

from tqdm import tqdm

import time

from torch.utils.data.dataset import random_split

from torch.utils.tensorboard import SummaryWriter

from torchtext.data.functional import to_map_style_dataset
import datetime

import os

from matplotlib import pyplot as plt

import seaborn as sns

from torchmetrics import ConfusionMatrix

import numpy as np

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

sys.path.append(’../’)
from mistral.mistral_datasets import DocumentClassificationDataset, ISSUE_IDS

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = get_tokenizer("basic_english")

Load SpaCy’s English model
nlp = spacy.load("en_core_web_sm")

class TextClassificationModel (nn.Module):

def __init__(self, vocab_size, embed_dim, num_class):
super (TextClassificationModel, self).__init__()
self .embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)
self.fc = nn.Linear (embed_dim, num_class)

self.init_weights ()

def init_weights(self):
initrange = 0.5
self .embedding.weight.data.uniform_(-initrange, initrange)

self .fc.weight.data.uniform_(-initrange, initrange)

self.fc.bias.data.zero_ ()

def forward(self, text):

embedded = self.embedding(text, None)

return self.fc(embedded)

def train(model, dataloader, optimizer, criteriomn):

model.train ()

total_acc, total_count = 0, O
total_loss = 0

log_interval = 1

start_time = time.time ()

for idx, (label, text) in enumerate(dataloader):

optimizer.zero_grad ()

predicted_label = model (text)
loss = criterion(predicted_label, label)

loss.backward ()
optimizer.step ()

total_acc += (predicted_label.argmax (1)

total_count += label.size (0
total_loss += loss.item()

)

start_time

"| accuracy {:8.3f} loss {:8.3f}".format (

#if idx % log_interval == 0:

elapsed = time.time() -

print (

"| epoch {:3d} | {:5d4}/{:5d} batches "
#

epoch, idx, len(dataloader),

)

total_acc, total_count

H H O ®

=0, O

start_time = time.time ()

return total_acc/total_count, total_loss/total_count

def evaluate (model, dataloader, criterion):

model.eval ()

total_acc, total_loss, total_count = 0, 0, O

preds = []
trues = []
with torch.no_grad():

for idx, (label, text) in enumerate(dataloader):
predicted_label = model (text)
loss = criterion(predicted_label, label)

total_acc += (predicted_label.argmax (1)

total_count += label.size (0)
total_loss += loss.item()

preds.append(predicted_label.argmax (1))
trues.append(label.argmax (1))

return total_acc / total_count,
torch.cat (trues))

def normalize_text(text):
Process the text using SpaCy

total_loss / total_count,

== label.argmax (1)) .sum().item ()

total_acc / total_count, loss.item

== label.argmax (1)) .sum().item()

(torch.cat (preds),

doc = nlp(text)

Define a list to hold normalized tokens
normalized_tokens = []

for token in doc:

Convert to lowercase, remove punctuation and stop words,

tokens
if not token.is_punct and not token.is_stop:

and lemmatize the

lemma = token.lemma_.lower () # Lowercase and lemmatize

normalized_tokens.append (lemma)

Join the tokens back into a normalized string
normalized_text = ’ ’.join(normalized_tokens)

return normalized_text

def yield_token(data_iter):
for text, 1lbl in data_iter:
yield tokenizer (normalize_text(text))

def pad(text_processed, text_len):
text = text_processed[len(text_processed)//2 - text_len//2
//2 + text_len//2]
while len(text) < text_len:
text.append (-1)
return text

len(text_processed)

if __name__ == ’__main__"’:
ds = DocumentClassificationDataset (None, cases_path = ’../../
all_cases_clearinghouse.pkl’, n = -1)
print (°’DS made, building vocabulary’)
vocab = build_vocab_from_iterator(yield_token(ds), specials = ["<unk>"])
vocab.set_default_index (vocab["<unk>"])
text_len = 256
print (’Text pipeline’)
text_preprocessing_pipeline = lambda x: pad(vocab(tokenizer (normalize_text(x))),

text_len)
print (normalize_text (ds [0][0]))

ds.prepare_corpus (vocab, normalize_text, tokenizer, pad, text_len)

def collate_fn(batch):
text_batch = []
label_batch = []
for text, label in batch:
text_batch.append (text)
label_batch.append(label)

label_batch = torch.tensor (label_batch).double ()
text_batch = torch.tensor(text_batch)

return label_batch.to(device), text_batch.to(device)

print (len(ds[0]))
train_ds, val_ds = ds.train_test_split()

196
197

198

train_dataloader = DatalLoader (train_ds, batch_size = 2, shuffle = True,
collate_fn = collate_fn)

val_dataloader = DatalLoader(val_ds, batch_size = 2, shuffle = True, collate_fn =
collate_£fn)

#dataloader = Dataloader(ds, batch_size = 8, shuffle = False, collate_fn =
collate_fn)

del ds

print (’Data Loaded, total length = ’, len(train_dataloader) + len(val_dataloader

))

num_class = 26#len(set([label for (label, text, offset) in dataloader]))

vocab_size = len(vocab)

emsize = 64

model = TextClassificationModel (vocab_size, emsize, num_class).to(device)

Hyperparameters
EPOCHS = 100 # epoch

#total_accu = None

#print(’Num Train: ’, num_train)

#print (train_dataloader, len(train_dataloader))
LR = 1le-3 # learning rate

criterion = torch.nn.CrossEntropyLoss ()
optimizer = torch.optim.Adam(model.parameters(), lr = LR)
now = datetime.datetime.now ()

logdir = now.strftime(’./runs/tensorboard/%Y%m%d_%HAMYS?)
savedir = now.strftime(’./runs/checkpoints/%Y%m%d_%H%MYS?)

writer = SummaryWriter (logdir, flush_secs = 1)
os.makedirs (savedir)
confmat = ConfusionMatrix(task = ’multilabel’, num_labels = num_class)

for epoch in range(l, EPOCHS + 1):
accu_train, loss_train = train(model, train_dataloader, optimizer, criterion
)
accu_val, loss_val, (preds, trues) = evaluate(model, val_dataloader,
criterion)
torch.save ({
’epoch’: epoch,

‘model_state_dict’: model.state_dict (),
’optimizer_state_dict’: optimizer.state_dict(),
’loss’: loss_train,

}, os.path.join(savedir, f’{epoch}_{loss_vall}.pt’))
writer.add_scalar ("Accuracy/train", accu_train, epoch)
writer.add_scalar ("Accuracy/val", accu_val, epoch)
writer.add_scalar("Loss/train", loss_train, epoch)
writer.add_scalar("Loss/val", loss_val, epoch)

fig, axl = plt.subplots ()

cm = confusion_matrix(trues.cpu().numpy(), preds.cpu().numpy(), labels = np.
arange (num_class))

ConfusionMatrixDisplay (confusion_matrix=cm, display_labels = 1ist(ISSUE_IDS.
keys ())).plot(ax = axl)

Log confusion matrix to TemnsorBoard

writer.add_figure("Confusion Matrix", fig, epoch)

plt.close(fig)

4 Documentation

For this starting task, I took the clearinghouse data and removed every field except the OCR’d
complaint and the first issue that it was tagged with. Then, I trained generated a vocabulary and
tokenizer with torchtext. Then, I took the middle 256 characters of the text and padded if necessary
with blank tokens. I used the tokenized text to train a model that had an embedding and a linear
layer to project the embedding to a classification of one of the 26 issue classes. Given that this
model does not have any hidden layers, it doesn’t perform optimally. I also have been unable to run
a full dataset on my GPU due to problems logging into PACE and my local computer not having
enough GPU memory. Out of the tiny dataset, the small model has 66% validation accuracy. But
most importantly, I was able to show that training runs will reach 0 training loss and 100% training
accuracy on a small dataset, indicating that the script is functioning correctly and can have larger
datasets run through it to product better tiny models.

5 Scription Validation(Optional)

10

*Labor
Electi

*Equal

ing Rights

on_and/or_the Border "

1 Public
'Public
*Public

*Pub!
Gubernatorial Authority']

‘Equal
10 Equal

*Equal

Figure 1: Reading in the complaints and issues

6 Results Visualization

The problem with these results is still the CUDA error. shows the loss and accuracy curves
of the tiny model. Even though the validation looks low, realize that this model essentially has no
parameters, its only parameters are in the projection to the output space. Importantly, notice that
the training loss decreases towards 0. This means that the training script is working and is ready
to train larger models on larger datasets.

11

Q, Filter tags (regular expressions supported)

Accuracy

Accuracy/train
tag: Accuracy/train

0.95
0.85
075
0.65
0.55 |
0.45

ra
LdJd

Loss

Loss/train

=

tag: Loss/train

0.45

0.35

0.25

015

0.05

20

40

60

80

100

ra
LdJd

=

20

40

60

80

100

Accuracy/val
tag: Accuracy/val

0.66

0.62

0.58

0.54

]

40 &0 80 100

ra
LJd

Loss/val

tag: Loss/val
0.65
0.55
045
0.35

0.25

20 40 60 B0 100

0
(=]

ra
LJd

Figure 2: Tensorboard of best model on a tiny dataset

12

Child Welfare
ustice {Other)
sability Rights

ucation

fVoting Rights
mental Justice
| Employment
fing/Insurance
for the Border
igent Defense
bility (Facility)
Jail Conditions
nile Institution
Labor Rights
ealth (Facility)
Zional Security
me Conditions
) Policing
orial Authority
ion Conditions
1s/Contracting
ment Services
ublic Housing
ductive Issues

Jesegregation
jious Freedom

Cri bt

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Figure 3: Test Confusion Matrix for Tiny Model on Validation Set

13

7 Next Week’s proposal

e Train on PACE
e Use UPenn Data

14

HAAG Research Report
NLP - Sentencias / NLP - Gen Team
Week 6

Victor C. Ferndndez
September 2024

CONTENTS

=

Weekly Project Updates

2 Abstracts

3 Scripts and Code Blocks

4 Documentation

5 Script Validation

6 Results Visualization

7 Proof of Work

8 Next Week’s Proposal

13

14

14

16

18

1 WEEKLY PROJECT UPDATES
What progress did you make in the last week?

- Implemented code for extracting and grouping json objects from models re-
sponse in order to later use them for the model benchmarking and valida-
tion. Models outputs used so far are: llamas.1, gemmaz, mistral-nemo, qwen2,
deepseek-coder-vz2, phi3, and mixtral.

- Created a set of functions to compare model responses contained in JSON file
based on the field data type. Short strings such as case number, allow for no
error margin, but longer strings such as what is the case about, allow for a wider
difference when compared to the validation dataset. Still, this is something that
may require further analysis to better validate the models output.

- Created a validation template that simply contains a json object with each of
the fields expected in the output and the data type for each of them that will
then help identify how to compare the model prediction with the validation
data.

- Executed benchmarking process on data generated by the models for input
template vi and output template v1.

* Met with the NLP-Sentencias team on Saturday 21st to align on our goals and
distribute our tasks more efficiently.

» Created and distributed surveys for Pathways to PhD seminar carried out by
Dr. Lindvall.

- Organized and assisted Dr. Lindvall in the Pathways to PhD seminar on Septem-
ber 24th.

- Meeting with the NLP team on September 27th for our weekly meeting.

* Meeting with Dr. Alexander and Nathan Dahlberg on September 27th to get
further insighs on NLP research.

* Reached out to colleagues in my current company to get insights on Uls used

for ML projects and contacts for getting more insights around NLP research.
What progress are you making next?

- Enhance prompt engineering techniques to improve data extraction accuracy
and completeness.

- Polish automated validation system to address cases like long strings, or data
ranges.

- Review scoring logic to correctly compare all models under same conditions.

- Keep conducting comprehensive benchmarking of different Ollama models to
identify the most effective model(s) for our specific task. Include latest Llama
3.2 model.

- Retrieve additional insights and perform a second round with modified tem-
plates (v2).

- Meet with the NLP team on October 4th for our weekly meeting.

Is there anything blocking you from making progress?

No significant blockers at this time. Already checking out executing code in

PACE for faster development and validation.

2 ABSTRACTS

1. Title: Semantic Segmentation of Legal Documents via Rhetorical Roles

- URL: https:/ /aclanthology.org/2022.nllp-1.13.pdf

- Abstract: Legal documents are unstructured, use legal jargon, and have con-
siderable length, making them difficult to process automatically via con-
ventional text processing techniques. A legal document processing system
would benefit substantially if the documents could be segmented into coher-
ent information units. This paper proposes a new corpus of legal documents
annotated (with the help of legal experts) with a set of 13 semantically co-
herent units labels (referred to as Rhetorical Roles), e.g., facts, arguments,
statute, issue, precedent, ruling, and ratio. We perform a thorough analysis
of the corpus and the annotations. For automatically segmenting the legal
documents, we experiment with the task of rhetorical role prediction: given
a document, predict the text segments corresponding to various roles. Using
the created corpus, we experiment extensively with various deep learning-
based baseline models for the task. Further, we develop a multitask learning
(MTL) based deep model with document rhetorical role label shift as an
auxiliary task for segmenting a legal document. The proposed model shows
superior performance over the existing models. We also experiment with
model performance in the case of domain transfer and model distillation

techniques to see the model performance in limited data conditions.

- Summary: This paper introduces a corpus of legal documents annotated
with rhetorical roles (e.g. facts, arguments, statutes) and proposes methods
for automatically predicting these roles in new documents. The authors
create a dataset of 100 Indian legal documents from competition law and
income tax domains, annotated with 13 fine-grained rhetorical role labels.
They experiment with various deep learning models for predicting roles,
including a novel multitask learning approach that leverages label shift in-

formation.

- Relevance: Even though this paper focuses on Indian legal documents in
English, some aspects could be relevant to our work on Spanish legal docu-

ments. The concept of rhetorical roles and methods for automatically identi-

fying them could potentially be adapted to Spanish texts. However, the spe-
cific roles may differ for Spanish legal documents, and we possibly would

need to develop a Spanish-specific corpus and models.

3 SCRIPTS AND CODE BLOCKS

All scripts have been uploaded to the HAAG NLP Repo. Outputs files, processed
sentencias and any other document that may contain sensitive information is

located in the private NLP-Sentencias Repo.

The following code contains the logic and functions I have been working on this

week.

1. JSON extraction from model outputs code, uploaded here.
This file extracts the JSON objects that are expected to be returned by the
model in the output text plus the one added with execution information when
saving the output and convert it into a single JSON file output for each of
the obtained outputs from the models. This new extracted JSON will then be
used for output validation and model benchmarking. It has been designed to
bulk extract JSON files by passing the model outputs parent folder and then
extracting these JSON object from all files contained in such folder. The code

is the following;:

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor
https://github.gatech.edu/calexander97/sentencias
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/models_benchmark/extract_json.py

def extract_json_from_text(text):
""MExtract JSON objects from text using a stack-based
approach."""
json_objects []
stack []
start 1

for i, char enumerate (text) :
if char g
if stack:
start i
stack.append(char)
elif char B
if stack:

stack.pop()
if stack:

try:
json_obj json.loads(text[start:i+1])
json_objects.append(json_obj)
except json.JSONDecodeError:
print(f"wWarning: Could not parse JSON
object: {text[start:i+1][:50]}...")

return json_objects

Code 1—Function for extracting the JSON objects from the text
file

def process_file(input_path, output_path):
"""Process a single file, extract JSON, and save as new
f-i-l.e. nmmon
with open(input_path, 'r', encoding-'utf-8') as file:

content file.read()

json_objects extract_json_from_text(content)

if len(json_objects)

combined_json {**json_objects[0], json_objects[1]}
elif len(json_objects) 1:
combined_json json_objects[0]
else:
print(f"Warning: Unexpected number of JSON objects
({len(json_objects)}) 1in {input_path}")

return

with open(output_path, 'w', encoding='utf-8') as file:
json.dump (combined_json, file, ensure_ascii=False,

indent=2)

print(f"Processed: {input_path} -> {output_path}")

Code 2—Function for processing a file and then storing the result

in a new json file

def process_model_directory(model_input_dir, model_output_dir):
"""Process all text files in a single model's directory."""
if os.path.exists(model_output_dir):

os.makedirs(model_output_dir)

for filename os. listdir(model_input_dir):
if filename.startswith("output_")

filename.endswith(".txt"):

input_path os.path.join(model_input_dir, filename)

new_name filename.replace("output_",
"") . replace(".txt", "_extracted.json")
output_path os.path.join(model_output_dir, new_name)

process_file(input_path, output_path)

def process_parent_directory(parent_input_dir, parent_output_dir):
"""Process all model directories in the parent directory."""
for model_dir os. listdir(parent_input_dir):
model_input_path os.path.join(parent_input_dir,
model_dir)
if os.path.isdir(model_input_path):
model_output_path os.path.join(parent_output_dir,
model_dir)
print(f"\033[94mProcessing model: {model_dir}\033[Om")
process_model_directory(model_input_path,

model_output_path)

Code 3—Functions for processing all files in a model folder and

bulk processing a parent folder containing folders for all models

2. Helper functions to compare specific fields from predicted output with vali-
dation output based on their data type. Code uploaded here.
These functions allow to generate a validation score to compare the output
from all models and benchmarking their results. There is a function for each
of the expected data types, although logic when some of the data is missing

still requires some additional polishing/rethinking. The code is the following:

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/models_benchmark/helper_functions.py

def word_similarity(pred: Any, true: Any, threshold: float 0.8)

float:
pred_str str(pred) . lower ()

true_str str(true) . lower ()

pred_words set(pred_str.split())

true_words set(true_str.split())

if true_words:

return 1.0 1if pred_words else 0.0

intersection pred_words.intersection(true_words)
union pred_words.union(true_words)

return len(intersection) len(union)

Code 4—String comparison function

compare_Tlists(pred: List[Any], true: List[Any], threshold:
float 0.8) float:
if isinstance(pred, list):
pred [pred]
if isinstance(true, list):

true [true]

true:

return 1.0 if pred else 0.0

matches sum(word_similarity(p, t, threshold) for p pred
for t true)

return min(matches len(true), 1.0)

Code 5—List comparison function

def compare_dates(pred: Any, true: Any) float:
try:
pred_date datetime.strptime(str(pred), "%d/%m/%Y")
true_date datetime.strptime(str(true), "%d/%m/%Y")
return 1.0 if pred_date true_date else 0.0
except ValueError:

return 0.0

compare_numbers(pred: Any, true: Any) float:
try:

return 1.0 if float(pred) float(true) else 0.0
except ValueError:

return 0.0

compare_booleans(pred: Any, true: Any) float:

return 1.0 if bool(pred) bool(true) else 0.0

get_comparison_function(data_type: str):

comparison_functions {
"string": word_similarity,
"list": compare_l1ists,
"date": compare_dates,
"date_list": compare_lists,
"integer": compare_numbers,
"boolean": compare_booleans

}

return comparison_functions.get(data_type, word_similarity)

Code 6—Remaining functions to compare dates, numbers and
booleans. Additional function with dictionary to retrieve function

based on data type

3. Benchmark code for reading all JSON files, retrieve each document’s scores
and generate charts to compare the results from all the models. Code uploaded
here.

These functions allow to bulk process all the files generated for the different

10

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/models_benchmark/model_benchmark.py

models outputting a JSON file with all the average results for all models and 3
charts containing results per field being evaluated, overall model performance

for the given documents and models average execution time.

def evaluate_model(model_outputs_dir: str, validation_dir: str,
config_path: str) Dict[str, Any]:
config = load_json(config_path)
total_scores {1}
file_count 0
total_processing_time 0]

model_name os.path.basename(model_outputs_dir)

print(f"Processing model: {model_name}")
print(f"Model output directory: {model_outputs_dir}")
print(f"Validation directory: {validation_dir}")

for filename os. listdir (model_outputs_dir):
if filename.endswith("_extracted.json"):
base_name filename.replace("_extracted.json", "")
prediction_path os.path.join(model_outputs_dir,
filename)
validation_path os.path.join(validation_dir,

f"{base_name}_validation.json")

os.path.exists(validation_path):
print(f"Warning: Validation file not found for
{filenamel}")

continue

prediction load_json(prediction_path)

validation load_json(validation_path)
scores evaluate_document(prediction, validation,

config)

11

print(f"Scores for {filename}:")
for key, value scores.items():
print(f" {key}: {value}")
if key total_scores:
total_scores[key] 0]

total_scores[key] value

execution_details
prediction.get("execution_details", {})
total_processing_time

execution_details.get("processing_time", 0)

file_count 1
print(f"Successfully processed file: {filename}")
except json.JSONDecodeError as e:
print(f"Error decoding JSON in file {filename}:
{str(e)}™)
except Exception as e:
print(f"Error processing file {filename}:

{str(e)}")

if file_count O:
print(f'"No valid files processed for model {model_name}'")
return {
"model_name": model_name,
"error": "No valid files processed",
"average_scores": {},
"overall_score": 0,
"files_processed": 0,

"average_processing_time": 0

avg_scores {key: value file_count for key, value

total_scores.items()}

overall_score sum(avg_scores.values()) len(avg_scores)

avg_scores else 0

return {
"model_name": model_name,
"average_scores'": avg_scores,
"overall_score": overall_score,

"files_processed": file_count,

"average_processing_time": total_processing_time

file_count if file_count 0 else O

Code 7—Main function for evaluating model results

4 DOCUMENTATION
JSON Extraction and Grouping

- Code implemented for extracting and grouping JSON objects from model re-
sponses.

- Data prepared for model benchmarking and validation.

- Outputs processed from multiple models: llama3.1, gemmaz2, mistral-nemo,

qwenz, deepseek-coder-v2, phi3, and mixtral.
Comparison Functions Development

- Functions created to compare model responses in JSON format based on field
data types.

- Flexible comparison implemented for longer strings, allowing for wider differ-
ences when compared to the validation dataset.

- Need recognized for further analysis to refine validation of model outputs,

especially for complex fields.
Validation Template Creation

- Validation template developed containing a JSON object with expected output
fields.

- Data type information included for each field to guide the comparison process.

- Template designed to facilitate accurate comparison between model predictions

and validation data.

13

Model Benchmarking

- Benchmarking process executed on data generated by various models.
- Input template vi and output template v1 used for standardized evaluation.
- Groundwork prepared for comprehensive model comparison and performance

analysis.

5 SCRIPT VALIDATION

A set of validation data has been generated to assess the accuracy and complete-
ness of the information extracted by the LLM models. This script was executed
to retrieve insights on the models performance and compare models to each
other providing additional insights on the best options for extracting data from

the Spanish legal documents.
Key points:

- Validation data set has been prepared based on the output JSON template.

- A data type template matching the fields from the output template to their
correspoing expected data types was created and used for data validation.

- A summary JSON file was created containing the comparable data for all dif-

ferent models.
Next steps for validation:

- Polish logic for string comparison between predicted and validation data.
- Review scoring logic to correctly compare all models under same conditions.
- Retrieve additional insights and perform a second round with modified tem-

plates (v2).
All generated files and content may be found either in the Documents folder for
the private GitHub repository here, or within my corresponding folder in the
same repository here

6 RESULTS VISUALIZATION

The following charts were generated upon the models results, comparing the

different parameters measured for all the models being assessed.

14

https://github.gatech.edu/calexander97/sentencias/tree/main/documents
https://github.gatech.edu/calexander97/sentencias/tree/main/victor

Model Comparison Across Metrics

10 Model
—gemma2

= mixtral

- phiz

- quen2

0.5 mm deepseek-coderv2
= lama3.1

s mistral-nemo

o0
g i ¢ PR PR § ¢ g ¢ & ¢ 3 3§ B ¢
2 4 5 3 g H H kil 2 g 5 H
ER H i ¢ A g 2
g f : L o . AN S B S A
s & H B 5 H H 2 H H H g i g s H
3 = 3 3 g 8 g g g 5 ES 5 4 K} H] § ¢ 2 3
I T £ 5 & &8 8 § = § & E 5 = ¢ g 2 % 0
s g 3 g 3 5 H 2 g £ g 5 3 g 3 g B £ g g
g B 5 H] 5] : % £ £ 2 E-S £ H . |
A ER S R g ¢ £ 3§ ¢ 5 g £
IR S B 8 & & & 3 E 5 3 5§ 2 ¢ 3 ¢ & ¢
£ 5 H - H g M = 2 g g H H 3 5 E €
H L 3 R A
s by 3 3 & s g 3 K H E g £
g ¢ 2 f 9 & g T T
£ g g & = & g g 8 g & 3 =
H O TR S] s 3 3

I E g ¢ 7

Metric

Figure 1—Fields per model comparison

As it may be observed, there are significant differences between models, but there

are also some indications on what fields will require additional thought.

Overall Score Comparison

0.40

0.35 4

0.30 4

0.25 4

0.20 4

0.15

0.10

0.05 4

0.00 -
gemma?2 mixtral phi3 qwen2 deepseek-coder-v2 llama3.1 mistral-nemo

Figure 2—Overall score comparison

15

Average Processing Time Comparison

80

[
(=}
L

Time (seconds)
3]

gemmaz2 mixtral phi3 gwen2 deepseek-coderv2 llama3.1 mistral-nemo

Figure 3—Processing time comparison in local execution

7 PROOF OF WORK

The implemented system demonstrates significant progress in developing a
framework for analyzing legal documents using large language models. The

currently implemented pipeline for processing the documents follows the steps
described in the following diagram:

Model 1
Y ()
Original Legal Cleaning and
Documents Text P i
Model 2 JSON
" (gemmal) Extraction
Model 3
(qwen2)
wy JSON Resulis
Validation Data Configuration Evaluation and
Preparation File king
Comparison
. Charts

Figure 4—Processing time comparison in local execution

Key achievements and current status include:

16

- Data Processing Pipeline: Successfully implemented a pipeline for extracting
text from PDF and DOC files, cleaning the data, and preparing it for analysis.
- LLM Integration: Developed the OllamaModelProcessor class, enabling the
use of multiple Ollama-based language models for text analysis.

* Bulk Processing: Implemented functionality for bulk processing of legal doc-
uments, generating individual JSON files for each document containing ex-
tracted key information.

- Model Versatility: The system can utilize multiple Ollama models (llama3s.1,
gemmaz, mistral-nemo, qwenz, deepseek-coder-v2, phi3, mixtral), allowing for
comprehensive benchmarking and comparison of model performance.

- Output Generation: Successfully generating structured text outputs with JSON
format based on the predefined template, capturing key information from legal
documents.

- Benchmark Information: Including processing time and token count for each
document analysis, providing insights into model efficiency.

- Validation Data: Generated a set of validation data to assess the accuracy
and completeness of extracted information, laying the groundwork for future
automated validation.

- Output Conversion to JSON: Successfully extracted JSON content from model
output text, retrieving the key information from the legal documents.

- Output JSON Validation and Scoring/Benchmark execution: Processed all
models output and scored their output agains the validation dataset.

- Scores summary and charts: Based on the benchmarking scores, generated a
summary file containing summaries for all the compared models and charts
with visual representations of the scores summary and scores per field.

So far, all documents have been generated correctly. In terms of validation,
there is one specific model, phi3, which is returning significantly worse results
in terms of data extraction than any other model being tested.

Additionally, it was observed there are certain fields, such as dates difference
calculation, for which all models are not returning appropriate results. Given
this isn’t a simple text extraction task, but it requires performing operations on
the extracted dates, it may be possible that some additional preprocessing is
required, performing later the dates calculation via code instead of requesting
it as an output from the model.

General results are still weak for these in terms of data extraction, which was

expected considering these models are the lower tiers of the available ones.

17

Additional benchmarking will be carried out on larger models to check if this

indeed makes a big difference on the predicted output.

8 NEXT WEEK’S PROPOSAL

1. Enhance prompt engineering techniques to improve data extraction accuracy
and completeness.

2. Polish automated validation system to address cases like long strings, or data
ranges.

3. Review scoring logic to correctly compare all models under same conditions.

4. Keep conducting comprehensive benchmarking of different Ollama models to
identify the most effective model(s) for our specific task. Include latest Llama
3.2 model.

5. Retrieve additional insights and perform a second round with modified tem-

plates (v2).

18

Week 6 | HAAG - NLP | Fall 2024

Alejandro Gomez

September 27th, 2024

1 Time-log

1.1 What progress did you make in the last week?

e My efforts this week were spent on two parts: publication pre-planning and sandboxing. This
week, the NLP-DR team met to organize the current state of our project goals where we discussed
how to achieve these and set action items for each member. The purpose was to hone in on a
topic for a publication and try to engage contacts who could advise us on what this topic could
be based on our current understanding and goals and also what mediums we can submit to
in order to publish a scientific paper. I organized a list of conferences and journals based on
their focus (i.e. computer science vs. law vs. both) to share with the team and looked at
some previous publications that I shared with the team to give us an understanding of sample
topics we could use that could be novel. Additionally, our team has been working independently
but in parallel, so I wanted to attempt chunking with langchain per the recommendation of the
general NLP team. I did some experiments but did not yield positive results, so I'll review with
the team because this approach is recommended for resource constrained environments. I was
running scripts on my local machine without a dedicated graphics card and it was still severely
slow and inaccurate. Running the same experiments in PACE increased response speed but the
inaccuracy was still present. I believe this is a merge issue with the response for the script so I
will continue investigating if this will be a potential architectural constraint upon completion of
the ML pipeline.

1.2 What are you planning on working on next?

e Our team spent the week searching for journals, articles, conferences, etc. to submit for publi-
cation so we will need to finalize a selection to structure our theme/thesis of our project. Then
we can converge our efforts and focus on building out this pipleine together We have a meeting
set up on Friday with one of Dr. Alexander’s contacts in the CS department at GT who will be
able to guide us given the list of questions we provided them.

1.3 Is anything blocking you from getting work done?
N/A

2 Article Review

2.1 Abstract

The docket sheet of a court case contains a wealth of information about the progression of a case,
the parties’ and judge’s decision-making along the way, and the case’s ultimate outcome that can be
used in analytical applications. However, the unstructured text of the docket sheet and the terse and
variable phrasing of docket entries require the development of new models to identify key entities to
enable analysis at a systematic level. We developed a judge entity recognition language model and
disambiguation pipeline for US District Court records. Our model can robustly identify mentions of
judicial entities in free text (99% F-1 Score) and outperforms general state-of-the- art language models

by 13able to robustly identify both appointed and non-appointed judicial actors and correctly infer
the type of appointment (99% precision). Lastly, we show with a case study on in forma pauperis
decision-making that there is substantial error (30%) attributing decision outcomes to judicial actors
if the free text of the docket is not used to make the identification and attribution. doi[PRS*21]

2.2 Summary

This article was shared to the NLP-DR team by Dr. Alexander because we are looking to select a
conference or journal for submitting a publication. The article was published on IEEE and is at the
cross section of computer science and law using NLP. In their study, they used NER to identify judges
- this is relevant because our project builds on this notion where we are using NLP to identify key data
from our ”sentencia” but we are aiming to use LLM for their generative qualities which is especially
necessary for taking in dates of any format and responding with properly formatted dates.

3 Scripts and Code Blocks

1

3.1 Code

import json

from langchain_community.llms import Ollama

from langchain.chains.question_answering import load_qa_chain

1lm = 0Ollama(

model="1llama3.1",

temperature=0,

9)

with open(’sentencia.txt’, ’r’) as f:
2 sen_data = f.read()

response = {

"{{tiempos_proceso.duracion_total_dias}}": [],
7 "{{informacion_adicional .monto_disputal}}": [],
"{{informacion_adicional.cantidad_documentos_pruebal}}":
39 "{{metadata.juez_presidente}}": [],
"{{metadata.secretariol}}": I[1,
"{{metadata.palabras_clavel}}": []

"{{informacion_general.
"{{informacion_general.

"{{informacion_general.tipo_casol}}": [],
"{{informacion_general. jurisdiccion}}": I[1,
"{{partes_involucradas.demandantel}}": [],
"{{partes_involucradas.demandado}}": [],
"{{partes_involucradas.intervinientes}}":

"{{fechas_clave.

"{{tiempos_proceso.dias_presentacion_primera_audiencial}}":
"{{tiempos_proceso.dias_ultima_audiencia_lectural}l}":

}

chain = load_qa_chain(llm = 1lm, chain_type =

for key in response.

query = f"'"

presentacion_demandal}}":

keys () :

I,
1,

"map_reduce")

numero_de_ordenanzal}t}": [],
numero_unico_caso}}":

I,

4 "{{fechas_clave.notificacion_demandal}}": [],

5 "{{fechas_clave.audiencias}}": [],

) "{{fechas_clave.fallo_reservadol}}": [1,

7 "{{fechas_clave.lectura_sentencial}}": [],

8 "{{detalles_proceso.total_audiencias}}": [],

9 "{{detalles_proceso.hubo_defectol}}": [],

0 "{{detalles_proceso.hubo_intervencion_voluntarial}l}":
"{{resultado.decision}}": [],
"{{resultado.levantamiento_ordenado}}": [],
"{{resultado.ejecucion_provisionall}}": [],

48

[CEV)

N}
)

Analiza el siguiente documento legal y extrae la informaci n solicitada en

formato JSON. Si alg n dato no est presente, usa ’N/A’. Busca en el documento

para llenar el dato, osea el value de este key en el JSON: {keyl}: []

Nota: Incluye solo el JSON en la respuesta.
nnn

response [key].append(chain.run(input_documents = sen_data, question = query))

with open(’result.json’, ’w’) as file:
json.dump (response, file)

Listing 1: langchain

3.2 Documentation

updating the env to manage the langchain dependencies for chunking
conda env update --name nlp_env --file environment.yml --prune

Listing 2: commands

Modified environment file to handle conda and additionally new pip dependencies for Langchain

name: nlp_env
channels:
- conda-forge
dependencies:
- black
- ipykernel
- langchain
- langchain-community
- matplotlib
- numpy
- pandas
- pip
- reportLab
- spacy
- spacy-model-es_core_news_1g
- python-docx
- pip:
- es-core-news-sm
- langchain-ollama
- langchain-community
- langchain-core
prefix: /home/ag2004/miniconda3/envs/nlp_env

Listing 3: commands

3.3 Script Validation (optional)

3.4 Results Visualization

Results of the relevant data output using Langchain

3.5

e
{{inform
5 B |

A
{{informi

Figure 1: scripts pipeline leveraging Langchain

Proof of Work

Scripts in GitHub Repo

4

[)

Next Week’s Proposal

I'm looking forward to meeting with the NLP-DR team, Dr. Alexander, and her CS counterpart
on Friday so that we can settle on a publication plan given the provided background, notes,
discussions, queries, etc.

Over the next week or so, Dr. Alexander also communicated to use that she will inquire with
Lexia abogados regarding their expected outcomes from HAAG’s help (i.e. a python script,
a hosted web app, etc) and this could help shape our forward trajectory (i.e. understanding
architectural requirements/constraints), while keeping the HAAG publication as the main goal.

I’ll discuss with the team if it is advantageous to continue developing a part of the pipeline that
uses chunking with langchain - if so, I would like to be able to merge the outputs and dive further
into the lang chain library so that we can have cleaner output.

I’d also like to consider the difference in output between locally hosted models from ollama (on
PACE) and hitting a public endpoint with an APT key such as with Claude.ai since they do not

collect inputs as data, adhering to privacy.

e As usual: update slide to share my material with my team and update the NLP group website
with current records

References

[PRST21] Adam R. Pah, Christian J. Rozolis, David L. Schwartz, Charlotte S. Alexander, and Scales
Okn Consortium. Preside: A judge entity recognition and disambiguation model for us
district court records. In 2021 IEEE International Conference on Big Data (Big Data),
pages 2721-2728, 2021.

HAAG NLP Sentencias — Week 6 Report
NLP-Gen Team

Karol Gutierrez

September 27, 2024

1 Weekly Project Update

1.1 What progress did you make in the last week?

e Implementation of embeddings to add local documents to the context of the LLM, with this the
questions can be asked without providing context or passing part of the sentencia.

e Enhanced implementation of chunking by using Spacy Spanish library to get chunks with logical
separation (e.g. paraghraphs), then applied old model to generate replies.

e Literature review on embeddings and datasets for LLMs.
e Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.
e Meetings with Dr. Alexander and team, as well as internal meetings with team to sync on next

steps.

1.2 What are you planning on working on next?

e Use feedback from NLP expert to improve performance using chunking and fine tuning the model.
Start implementation on this.

e Work with larger dataset including Supreme Court Decisions and analyze performance of model
there.

e Design pipeline to iterate on specific fields that are harder to extract.
e Continue fulfilling my role as Meet Manager/Documentor by working on the tasks expected for
my position (gather notes from meetings and prepare recordings).

1.3 Is anything blocking you from getting work done?
No.

2 Literature Review

Paper: ToolQA: A Dataset for LLM Question Answering with External Tools [ZYWT23].

2.1 Abstract

Large Language Models (LLMs) have demonstrated impressive performance in various NLP tasks, but
they still suffer from challenges such as hallucination and weak numerical reasoning. To overcome
these challenges, external tools can be used to enhance LLMs’ question-answering abilities. However,
current evaluation methods do not distinguish between questions that can be answered using LLMs’
internal knowledge and those that require external information through tool use. To address this issue,
we introduce a new dataset called ToolQA, which is designed to faithfully evaluate LLMs’ ability to

use external tools for question answering. Our development of ToolQA involved a scalable, automated
process for dataset curation, along with 13 specialized tools designed for interaction with external
knowledge in order to answer questions. Importantly, we strive to minimize the overlap between our
benchmark data and LLMs’ pre-training data, enabling a more precise evaluation of LLMs’ tool-use
reasoning abilities. We conducted an in-depth diagnosis of existing tool-use LLMSs to highlight their
strengths, weaknesses, and potential improvements. Our findings set a new benchmark for evaluating
LLMs and suggest new directions for future advancements. Our data and code are freely available for
the broader scientific community on GitHub.

2.2 Summary

The paper introduces ToolQA, a dataset aimed at evaluating how well Large Language Models (LLMs)
can use external tools to answer questions. It addresses a key limitation in current evaluations, which
don’t clearly separate what the model knows internally from its ability to use external resources. Key
contributions include:

e Dataset Creation: ToolQA is built using an automated process to generate questions across
eight domains, ensuring that answering requires external tools, not just the model’s pre-trained
knowledge.

e Specialized Tools: Thirteen tools, like text retrieval and code interpreters, help models interact
with external information to enhance their problem-solving abilities.

e Performance Evaluation: Testing shows that existing LLMs struggle with tasks that need external
tools. Even tool-augmented models, such as ReAct, show limited success on more complex tasks.

ToolQA sets a new benchmark for measuring LLMs’ tool-use capabilities and underscores the need
for further improvements in how models reason and work with multiple tools.

2.3 Relevance

This paper developed by Georgia Tech students is relevant to our project as it emphasizes the use of
external tools to improve the performance of Large Language Models, which is crucial for our task
of extracting procedural history from legal documents like sentencias and that goes in line with the
process wer are following. The approach of integrating multiple specialized tools for specific functions
can guide our strategy for structuring legal data more efficiently, like with date extraction. Moreover,
its focus on addressing complex, multi-step tasks is similar to our need for accurate case timeline
predictions. Incorporating these methods could enhance our model’s ability to extract and organize
key legal information, providing valuable insights for judicial decisions.

3 Scripts and code blocks

As previously mentioned, the existing code is in a private repository. Since we are handling private
information from the PDF files, it was decided alongside Dr. Alexander that we should add all of our
code work here from now on.

3.1 Code developed

Regarding embeddings work, the following items were developed, and codeblocks are shown in Figure 1.
The workflow of the code is shown in Figure 2.

e I used FAISS (Facebook AI Similarity Search) in combination with embeddings to get a Conver-
sationalRetrievalChain (from LangChain) and generate an embeddings .npy file, which can be
integrated with an LLM

e By using huggingface_hub I was able to use the pretrained meta-llama/Llama-3.1-8B-Instruct
model for text generation

https://github.gatech.edu/calexander97/sentencias

def load_txt_as.
with open(file_path, 'r’, encoding='utf-8') as file:
e file content

document (file_path):

text = file.read()

Create a Document object

ocument = Document (ETENEINER-text)
return document
Example usage

file_path =
doc = load_txt_

Sexample. txt’
document (file_path)

from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_communi torstores import FAISS

from langchain. text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseloader
import bs4

documents = [doc]
USER_AGENT environment variable not set, consider setting it to idemtify your reguests.

type(documents[@1)

1angchain_core. documents . base. Document

, chunk_overlap=58)

Step 3: Store the document into a vector store with a spe:
vectorstore = FAISS.from_documents(all_splits, HuggingFace!

embedding model

Embecdings (moce]_name="sentence-transformers/all-mpnet-base-v2"))

Figure 1: Load document to LLM using embedding.

PDF file

embedding

LLM

eg.LLAMAZS8B | | LangChain Q&A

result text

Question
(no context needed)

Figure 2: Code logic flow chart for embeddings.

e By using a JSON template I can just ask the LLM to fill the requested components and get a

reply in JSON format.

Regarding chunking work, the following items were developed, and codeblocks are shown in Figure 4
and Figure ?7. The workflow of the code is shown in Figure 5

Generate prompt template with context and query.

Ask LLM to display output in JSON readable format.

4 Documentation

Use Spacy model es_core news_1lg to process text and then divide it into chunks.

Use template with Meta--3-8B-Instruct.Q4-0.gguf LLM to get a reply.

The documentation is present in the README.md file in the repository. Refer to the repository to

get the most updated instructions on how to run the code.

For the progress of this week, a new version of the environment.yml file was added, which include
more of the libraries and dependencies.
Additions in this submission:

https://github.gatech.edu/calexander97/sentencias/

import faiss
nlp = spacy.load('es_core_news_lg')

[4]: # Load the Large text file
def load_large_text(file_path)}:
with open(file_path, 'r', encoding="utf-8') as file:
return file.read{)

Split the text into chunks using spaCy’'s sentence tokenizer and paragraph structure
def split_text into_chunks{text, max_chunk_size=58@):
doc = nlp(text)
chunks = [
current_chunk = []

current_chunk_length = @

SplLit into chunks of sentences or paregraphs
for sent in doc.sents: # Sentence-based splitting
sentence_length = len{sent.text.split()) # Word count of the current semtence
if current_chunk_length + sentence_length <= max_chunk_size:
current_chunk.append(sent.text)
current_chunk_length += sentence_length
else:
chunks.append(" ".join(current_chunk)) # Add the chunk to the List
current_chunk = [sent.text] #& Start g mew chunk
current_chunk_length = sentence_length

Add gny remaining sentences as the Last chunk
if current_chunk:
chunks.append(" ".join{current_chunk)}

return chunks

Create embeddings for each chunk using a pre-trained model

def create_embeddings(chunks):
model = SentenceTransformer('all-MinilM-L6-v2')} # Or g Spanish-friendly model
embeddings = model.encode(chunks)
return embeddings

Sgve embeddings and chunks to disk
def save_embeddings(embeddings, chunks, file_name):
np.save(f"{file_name}_embeddings.npy", embeddings)
with open(f"{file_name}_chunks.json", 'w', encoding='utf-8') as f:
Json.dump(chunks, f, ensure_gscii=False)

Figure 3: Code section to generate chunks.

pip install llama-toolchain

pip install langchain_community

pip install sentence-transformers

pip install faiss-cpu

pip install langchain_groq

pip install -U pip setuptools wheel

pip install -U spacy

python -m spacy download es_core_news_lg

5 Script Validation

Both sets of scripts are validated by the generated output JSON files that they produce and stored in
the root folder of the Week6 code. Example of JSONs before and after in Figures 6 and 7.

def load_preprocessed_data(embedding_file, chunk_file):
embeddings = np.load{embedding_file) # Load the pre-saved embeddings
with open(chunk_file, 'r', encoding='utf-8') as f:
chunks = json.load{f) # Load the pre-saved text chunks
return embeddings, chunks

def search_faiss(embeddings, query_embedding, top_k=5):
Initialize @ FAISS index for similarity search
index = faiss.IndexFlatlL2({embeddings.shape[1]) # L2 simil
index.add(embeddings) # Add the embeddings into the FAISS i

¢ (or use IndexFlatIP for cosine similarity)

Ensure query_embedding is a 20 array (1, embedding dim)
if len{query_embedding.shape) == 1:
query_embedding = query_embedding.reshape(l, -1)

Perform the search
distances, indices = index.search(query_embedding, top_k) # Search the top_k closest chunks
return indices[8], distances[8]

Convert the user's guestion into an embedding

def get_query_embedding(query):
model = SentenceTransformer{'all-MinilM-L&-v2') # Ensure you're using the same model os the embedding phase
guery_embedding = model.encode([query]) # Encods the guestion os an embedding
return guery_embedding

Retrieve the relevant chunks based on the user's query

def retrieve_chunks{query, embeddings, chunks, top_k=5):
query_embedding = get_query_embedding(query) # Get the query's embedding
reply = search_faiss(embeddings, query_embedding, top_k=top k)
indices, _ = search_faiss(embeddings, query_embedding, top_k=top_k)} # Searc
relevant_chunks = [chunks[i] for i in indices] # Get the co
return relevant_chunks

the relevant chunks

Main function to Load the data and ask questions

def ask_question(embedding_file, chunk_file, query, top_k=5):
embeddings, chunks = load_preprocessed_data{embedding_file, chunk_file) # L at:
relevant_chunks = retrieve_chunks(query, embeddings, chunks, top_k=top_k) # Retrieve relevant text chunks based on the guery
return relevant_chunks

Figure 4: Code section to process chunks and generate answer.

6 Results Visualization

Figure 8 show the JSON files generated using the embedding approach, as it can be observed, it
retrieves some of the values but some of them are still empty. The plan to solve this is by deliberate
iterations through different sections of the document.

7 Proof of Work

All the scripts work end to end from the starting PDF files as shown in the images. In particular,
the date extraction works for complex cases such as “seis (06) dfas del mes de enero del ano dos mil
veintitrés (2023)”, as shown in the Figure 9:

8 Next Week’s Proposal

Refer to section 1.2 for details (avoid repetition).

References

[ZYW*23] Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset
for llm question answering with external tools, 2023.

PDF file

Spacy tokenizer

Question

text chunks

LLM L
e.g. LLAMA 3 8B

prompt template:
context and
question

Query LLM

l

result JSON reply

Figure 5: Code diagram for chunking.

query_3son =

"general_information
“ordinance_number”:

string”,
e_number”: "string”,
type": "string”,
diction”: "string"”

“case_un
"case

_involved”: {

“plaintiff": "string”,

“defendant”: "string”,

"interveners": ["string"]

I

"key_dates": {

g_date”: "DD/MM/YYYY",
“notification_date”: "DD/MM/YYYY",
"hearing_dates": ["DD/MM/YYYY"],
“reserved_ruling_date”: "DD/HM/YYYY'
“ruling_reading_date": "DD/PH/YYYY"

T

"process_details": {
“total_hearings”: "number”,
“was_there_a_default”: "boolean”,

luntary_intervention": "boclean”

“was_there_.
N
"outcome": {
ion": "string",
“lifting ordered”: "boolean”,

onal_execution”: "boolean”

“process_timelines”:
"days_betwsen_filing snd_first_hearing”: "number”,
“days_between_last_hearing_and_ruling_reading”: “number”,
"total_process_duration”: "number”

T

"additional_information”: {

“disputed_amount”:
evidence_documents_count”: “number”

B
"metadata”: {
“presiding_judgs": "string",
“secretary”: "string”,
“keywords": ["string”]
T
T

Example question in Spanish
relevant_chunks = ask_question("spanish_text dsta_embeddings.npy”, "spanish_text_data chunks.json”, query_json, top_k=3) # Retrieve top 3 chunks
len(relevant_chunks)

Figure 6: Output JSON file sample using embedding approach

: Jupyter embedding.json Last Checkpoint: 45 minutes ago

File Edit View Settings Help

B root

@ general_information
ordinance_number "304-2023-50RD-0013"
case_unique_number “2022-0753080"
case_type "Civil"
jurisdiction "PRESICENCIA DE LA CAMARA CIVIL ¥ COMERCIAL DEL JUZGADO DE PRIMERA INSTANCIA DEL DISTRITO NACIONAL®

@ parties_involved
plaintiff “string”
defendant “string"
interveners [0 ifems

o key_dates
filing_date "Mot specified”
notification_date Mot specified”
hearing_dates [O items
reserved_ruling_date "Not specified”
ruling_reading_date "Maot specified”

o process_details
total_hearings Mot specified”
was_there_a_default "MNot specified”
was_there_voluntary_intervention "Not specified"

B outcome
decision Mot specified”
lifting_ordered “Mot specified”
provisional_execution "Mot specified”

@ process_timelines
days_between_filing_and_first_hearing "Mot specified”
days_between_last_hearing_and_ruling_reading “Mot specified”
total_process_duration “Mot specified”

o additional_information
disputed_amount "Mot specified”
evidence_documents_count Mot specified”

o metadata
presiding_judge "Mot specified”
secretary "Not specified”
keywords [J O items

Figure 7: Output JSON file sample using embedding approach

al_information
inance_number”

ase_unique_number™:

Jurisdiction":

es_invol

"plaintiff”:
“defendant
/ene

d_ruling_date
“ruling_reading_de

dditional_informatic
"disputed_amount”:
" dence_d

metadata”™:
"presiding_judge
ecretary”:
ceywords

Figure 8: Output JSON file sample using embedding approach

be included as a

fecha se menciona al inicio
= [{guery, result["answer”])
ion™: gquery, "chat_history™: chat_history})

2" ich date is mentione

resu
md{result

' Jupyter example.txt Last Checkpoint: 7 days ago

File Edit \iew Settings Help

13 EN NOMBRE DE LA REPUBLICA

1 ndm. 584-2823-S0RD-9813 Nimero Unico de caso (NUC) 2022-815808@

ica

idad de Santo Domingo de Guzmén, Distrito Macional, cap. de 1a Repib:
icana, a los seis (B6) dias del mes de enero del afio dos mil veintitrés (2823); sfios ciento
Ind

idn.

ependencia y ciento sesenta (168) de la Restaurac

19 setenta y nueve (179) de la

Figure 9: Proof of work for date extraction

0.1

1.

Week 6 Research Report

Thomas Orth (NLP Summarization / NLP Gen Team)
September 2024

What did you work on this week?

Generated more summaries for validation. Waiting to hear back from end
user team to review.

. Run Phi3 through DSPy for auto prompt optimization

Run Phi3 through outlines library to test further chain of density

Met with NLP freelancer to discuss models and techniques

What are you planning on working on next?

. Investigate llama and mistral /mixtral models

Begin setting up for commercial models in order to be cost effective
Investigate Adalflow for use of LLMs

Investigate Summary Chain-of-thought

Is anything blocking you from getting work done?

1. None

Abstracts

Title: Element-aware Summarization with Large Language Models: Expert-
aligned Evaluation and Chain-of-Thought Method. Conference: ACL
2023. Link: https://aclanthology.org/2023.acl-long.482.pdf

Abstract: Automatic summarization generates concise summaries that
contain key ideas of source documents. As the most mainstream datasets
for the news sub-domain, CNN/DailyMail and BBC XSum have been
widely used for performance benchmarking. However, the reference sum-
maries of those datasets turn out to be noisy, mainly in terms of factual
hallucination and information redundancy. To address this challenge, we

first annotate new expertwriting Element-aware test sets following the
“Lasswell Communication Model” proposed by Lasswell (1948), allowing
reference summaries to focus on more fine-grained news elements objec-
tively and comprehensively. Utilizing the new test sets, we observe the
surprising zero-shot summary ability of LLMs, which addresses the is-
sue of the inconsistent results between human preference and automatic
evaluation metrics of LLMs’ zero-shot summaries in prior work. Further,
we propose a Summary Chain-of-Thought (SumCoT) technique to elicit
LLMs to generate summaries step by step, which helps them integrate
more finegrained details of source documents into the final summaries that
correlate with the human writing mindset. Experimental results show our
method outperforms state-of-the-art fine-tuned PLMs and zero-shot LLMs
by +4.33/44.77 in ROUGE-L on the two datasets, respectively. Dataset
and code are publicly available at https://github.com/Alsace08/SumCoT..

e Summary: This is a method to generate summaries from a given document
that contains the relevant information in the document such as dates and
entities. The work showed it could generate more detailed summaries than
standard prompting with LLMs.

e Relevance: Given the amount of information in these LLMs, this technique
is worth trying to pair down.

2 Relevant Info

e Phi3 is an LLM proposed by Microsoft that is on the smaller side of LLMs.
Paper: https://arxiv.org/abs/2404.14219

e DSPy is a library to do auto prompt optimization instead of prompt en-
gineering by hand. Docs: https://dspy-docs.vercel.app/

e Qutlines is a library for interacting with LLMs and supports chain of
density prompting. Docs: https://dottxt-ai.github.io/outlines/

e Ollama is a tool to serve LLMs locally on consumer hardware. Docs:
https://ollama.com/

e Adalflow is similar to DSPy but boasts superior performance. Url: https:
//adalflow.sylph.ai/

3 Scripts

1. All scripts uploaded to https://github.com/Human-Augment-Analytics/NLP-
Gen

2. Scripts were run with the following file for testing: https://gatech.box
.com/s/hv70f1wkm977gky00415vz15rpgfdmir

https://arxiv.org/abs/2404.14219
https://dspy-docs.vercel.app/
https://dottxt-ai.github.io/outlines/
https://ollama.com/
https://adalflow.sylph.ai/
https://adalflow.sylph.ai/
https://gatech.box.com/s/hv70flwkm977gky004l5vz15rpgfdmir
https://gatech.box.com/s/hv70flwkm977gky004l5vz15rpgfdmir

3. Thomas-Orth/dspy_-model_test.py

e Brief Description: This runs DSPy with Phi3 to optimize an llm
prompt for summarization

e Status: Tested by running the pipeline to completion without issue

e Important Code Blocks:
(a) First block: Read in CSV file and prepare DSPy dataset
(b) Second block: Run DSPy optimization
(¢) Third Block: Run evaluator

e Screenshot of code:

inport dspy

import pandas as pd
from dspy.datasets.dataset import Dataset

from datasets t load_metric
la: Dataset(Dataset):

__init__(self, file_path, args, kkwargs) —> \
uper()._init_ (xargs, #xkwargs)

|t = pd.read_csv(file_path, sep="|").dropna().rename(columns “document”, “Summar

train_set = df.sample(frac = 0.8)

self._train = train_set.to_dict(orient=)

y-Module) :
spy. Chain0fThought (“doc

forward(self, document):
turn self.summarize(document=document)

v
x.with_inputs(‘document*) for x in dataset.train]
dev = [x.with_inputs ument') for x in dataset.dev]
n = dspy.0llamaLocal(model=
dspy. settings. configure(ln=ln)

summarizer_metric(exampl :
rouge = load_metric("rou trust_remote_code=True)
rouge. compute (pret ons=[example.sunmary], references = [pred.summaryl, rouge_types=["rouge2"]) ["rouge2"].mid. fmeasure

from dspy.evaluate import Evaluate

evaluate = Evaluate(devset=dev(:], metric=summarizer_metric, num_threads=4, display_progress=True, display_table=27)

Figure 1: First part of DSPy code

teleprompter = BootstrapFewShotWithRandomSearch(
metric=summarizer_metric,
max_labeled_demos=8,
max_bootstrapped_demos=8,
num_candidate_programs=1,

cot_compiled = teleprompter.compile(Summarizer(), trainset=train, valset=dev)
print(evaluate(cot_compiled, devset=dev[:]))

Figure 2: Second part of DSPy code

4. Thomas-Orth/outlines_chain_of_density.py

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/Thomas-Orth/dspy_model_test.py
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/Thomas-Orth/outlines_chain_of_density.py

e Brief Description: This runs chain of density through phi3 using
outlines. Its a sanity check for the chain of density technique

e Status: Tested by running the pipeline to completion without issue

e Important Code Blocks:

(a) First block: Load CSV and choose summary from dataframe
(b) Second block: Run Chain of Density
(¢) Third Block: Evaluate results

e Screenshot of code:

Figure 3: Outlines code

5. Flow Diagram:

if running DSPy Run DSPy

Load

| Start script | Evaluate —»| End Seript |
[\ P Document | [

If running Cutlines

Run Chain of
Density

Figure 4: Flow diagram

6. Running scripts:

(a) Download the scripts, the csv from the box link and llm.requirements.txt
(b) Install ollama: https://ollama.com/download

(¢) To pull and run phi3, run: ollama run phi3:medium
(d)

)

(e) Run: python chosen python script

Run: python -m pip install -r llm.requirements.txt

4 Documentation

1. Download CSV file, with two columns: Document and Summary
. Update script to point to the CSV file
Prompt Phi3 with Chain of Density and DSPY

oo

Manually evaluate summary or evaluate metrics

5 Results

Figure 5: DSPy Rouge 2 results

In Figure 5] the Rouge-2 for Phi3 are quite bad.

in a legal matter with Request for Status Conference

ing associated with Anierican Liberites Union."

Figure 6: Chain of Density results

In Figure [6] the generated summary doesn’t make sense.

6 Proof of Results

The prompting technique of chain of density was published in the ACL anthol-
ogy: https://aclanthology.org/2023.newsum-1.7/.

DSPy and outlines, the libraries chosen, are used by different companies and
production workflows.

https://ollama.com/download
https://aclanthology.org/2023.newsum-1.7/

6.1 Known Limitations

Phi3 does worse than the LED baseline shown before. Victor from Sentencias
and another GT grad student noticed similarly bad performance with Phi3.
Conclusion is the techniques currently aren’t the issue but the model so other
LLMs will be explored.

