
HAAG NLP Summarization Week 7

Michael Bock

October 2024

1 Slack Questions

What did you accomplish this week?

• Got PACE training working

What are you planning on working on next?

• Add parameters to the model by using the BERT weights on huggingface

• Training on UPenn data, we only just got the pdfs today.

What is blocking you from progressing?

• None

2 Abstract

Position encoding recently has shown effective in the transformer architecture. It enables valuable
supervision for dependency modeling between elements at different positions of the sequence. In
this paper, we first investigate various methods to integrate positional information into the learning
process of transformer-based language models. Then, we propose a novel method named Rotary
Position Embedding(RoPE) to effectively leverage the positional information. Specifically, the pro-
posed RoPE encodes the absolute position with a rotation matrix and meanwhile incorporates the
explicit relative position dependency in self-attention formulation. Notably, RoPE enables valu-
able properties, including the flexibility of sequence length, decaying inter-token dependency with
increasing relative distances, and the capability of equipping the linear self-attention with relative
position encoding. Finally, we evaluate the enhanced transformer with rotary position embed-
ding, also called RoFormer, on various long text classification benchmark datasets. Our experi-
ments show that it consistently overcomes its alternatives. Furthermore, we provide a theoretical
analysis to explain some experimental results. RoFormer is already integrated into Huggingface:
https://huggingface.co/docs/transformers/model doc/roformer

Link: https://arxiv.org/abs/2104.09864v5

1

2.1 Brief Analysis

I like to think of RoPE embeddings kind of like a clock. Basically, the old position embedding from
Attention is all you Need added the position of a token to the input. The authors of this paper
point out that you can also multiply. Additionally, you can use polar coordinates and then rotate
a token around a polar coordinate system according to its absolute position. The same way that
1:00 and 1:01 are close together, two tokens are close together in the embedding. Similarly, 11:00
is very different from 1:00. The main property that the authors talk about is the ability for this
embedding to use absolute positions instead of relative positions and that it can take sequences of
arbitrary length. But in the limitations section they say they fail to provide a faithful explanation
of why this works well on long texts. Additionally, the improvements over BERT and the original
transformers proposed in Attention is all you Need is small on the best tasks and the new embed-
ding fails to improve over BERT on other tasks. I’m skeptical of the results in my short reading
of this paper, but a lot of LLMs(which I eventually want to find a way to incorporate into a clas-
sifier) use this embedding. Even online blogs like this: https://github.com/adalkiran/llama-nuts-
and-bolts/blob/main/docs/10-ROPE-ROTARY-POSITIONAL-EMBEDDINGS.md don’t provide
a satisfactory explanation of RoPE embeddings in my opinion. People say that its more ”math-
ematically meaningful” compared to the old position embeddings. I don’t see why rotation or
multiplication is more meaningful than adding embeddings to an input; the same information is
represented. I also don’t see why we need something to be mathematically meaningful in order for
it to work. Are neural networks necessarily more ”mathematically meaningful” than other ML algo-
rithms? Sure we have neurons and there’s the analogy to neurons in a neural network, but really a
neural network doesn’t have neurons at all, instead it had matrices. You can’t ”disconnect” neurons
in a neural network, you can only set them to zero but you can definetly lose neural connections
in your brain. Ensemble methods like random forests have a claim to being more mathematical
than a neural network because they are explainable and neural networks are black boxes. Does this
mean that random forests are preferable to neural networks because they are more mathematically
meaningful?

3 Scripts and Code Blocks

MLM Pipeline:
model.py

1 from torchtext.data.utils import get_tokenizer

2 from torch.utils.data import DataLoader

3 from torchtext.vocab import build_vocab_from_iterator

4 import spacy

5 import string

6 import sys

7 import torch

8 from torch import nn

9 from tqdm import tqdm

10 import time

11 from torch.utils.data.dataset import random_split

12 from torch.utils.tensorboard import SummaryWriter

13 from torchtext.data.functional import to_map_style_dataset

14 import datetime

15 import os

16 from matplotlib import pyplot as plt

2

17 import seaborn as sns

18 from torchmetrics import ConfusionMatrix

19 import numpy as np

20 from sklearn.metrics import confusion_matrix , ConfusionMatrixDisplay

21 from transformers import AutoTokenizer , BertModel

22

23 sys.path.append(’../’)

24 from mistral.mistral_datasets import DocumentClassificationDataset , ISSUE_IDS

25

26 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

27 tokenizer = get_tokenizer("basic_english")

28

29 # Load SpaCy’s English model

30 nlp = spacy.load("en_core_web_sm")

31

32

33 class TextClassificationModel(nn.Module):

34 def __init__(self , num_class):

35 super(TextClassificationModel , self).__init__ ()

36 #self.embedding = nn.EmbeddingBag(vocab_size , embed_dim , sparse=False)

37 self.embedding = BertModel.from_pretrained("bert -base -uncased", torch_dtype

= torch.float32 , attn_implementation="sdpa")

38 self.fc = nn.Linear(self.embedding.config.hidden_size , num_class)

39 #self.init_weights ()

40

41 def init_weights(self):

42 initrange = 0.5

43 self.embedding.weight.data.uniform_(-initrange , initrange)

44 self.fc.weight.data.uniform_(-initrange , initrange)

45 self.fc.bias.data.zero_ ()

46

47 def forward(self , text , attn , token_text_id):

48 embedded = self.embedding(input_ids = text , attention_mask = attn ,

token_type_ids = token_text_id)

49 return self.fc(embedded.pooler_output)

50

51 def train(model , dataloader , optimizer , criterion):

52

53 model.train ()

54 total_acc , total_count = 0, 0

55 total_loss = 0

56 log_interval = 1

57 start_time = time.time()

58

59 for idx , (label , text , attn , type_id) in enumerate(dataloader):

60 optimizer.zero_grad ()

61 predicted_label = model(text , attn , type_id)

62 loss = criterion(predicted_label , label)

63 loss.backward ()

64 optimizer.step()

65 total_acc += (predicted_label.argmax (1) == label.argmax (1)).sum().item()

66 total_count += label.size (0)

67 total_loss += loss.item()

68 #if idx % log_interval == 0:

69 # elapsed = time.time() - start_time

70 # print(

71 # "| epoch {:3d} | {:5d}/{:5d} batches "

72 # "| accuracy {:8.3f} loss {:8.3f}". format(

3

73 # epoch , idx , len(dataloader), total_acc / total_count , loss.item

()

74 #)

75 #)

76 # total_acc , total_count = 0, 0

77 # start_time = time.time()

78

79 return total_acc/total_count , total_loss/total_count

80

81 def evaluate(model , dataloader , criterion):

82 model.eval()

83 total_acc , total_loss , total_count = 0, 0, 0

84 preds = []

85 trues = []

86 with torch.no_grad ():

87 for idx , (label , text , attn , type_id) in enumerate(dataloader):

88 predicted_label = model(text , attn , type_id)

89 loss = criterion(predicted_label , label)

90 total_acc += (predicted_label.argmax (1) == label.argmax (1)).sum().item()

91 total_count += label.size (0)

92 total_loss += loss.item()

93

94 preds.append(predicted_label.argmax (1))

95 trues.append(label.argmax (1))

96 return total_acc / total_count , total_loss / total_count , (torch.cat(preds),

torch.cat(trues))

97

98 def normalize_text(text):

99 # Process the text using SpaCy

100 doc = nlp(text)

101

102 # Define a list to hold normalized tokens

103 normalized_tokens = []

104

105 for token in doc:

106 # Convert to lowercase , remove punctuation and stop words , and lemmatize the

tokens

107 if not token.is_punct and not token.is_stop:

108 lemma = token.lemma_.lower () # Lowercase and lemmatize

109 normalized_tokens.append(lemma)

110

111 # Join the tokens back into a normalized string

112 normalized_text = ’ ’.join(normalized_tokens)

113

114 return normalized_text

115

116 def yield_token(data_iter):

117 for text , lbl in data_iter:

118 yield tokenizer(normalize_text(text))

119

120 def pad(text_processed , text_len):

121 text = text_processed[len(text_processed)//2 - text_len //2 : len(text_processed)

//2 + text_len //2]

122 while len(text) < text_len:

123 text.append (0)

124 return text

125

126 if __name__ == ’__main__ ’:

4

127 ds = DocumentClassificationDataset(None , cases_path = ’./ all_cases_clearinghouse

.pkl’, n = -1)

128 print(’DS made , building vocabulary ’)

129 #vocab = build_vocab_from_iterator(yield_token(ds), specials = ["<unk >"])

130 #vocab.set_default_index(vocab["<unk >"])

131 text_len = 256

132 tokenizer = AutoTokenizer.from_pretrained("bert -base -uncased")

133

134 print(’Text pipeline ’)

135 text_preprocessing_pipeline = lambda x: tokenizer(normalize_text(x), padding="

max_padding", truncation=True , max_length =128)

136 print(normalize_text(ds [0][0]))

137

138 #ds.prepare_corpus(vocab , normalize_text , tokenizer , pad , text_len)

139 ds.prepare_corpus_for_bert(normalize_text , tokenizer , text_len)

140

141 def collate_fn(batch):

142 text_batch = []

143 attention_batch = []

144 token_type_ids_batch = []

145 label_batch = []

146 for text , label in batch:

147 text_batch.append(text[’input_ids ’])

148 attention_batch.append(text[’attention_mask ’])

149 token_type_ids_batch.append(text[’token_type_ids ’])

150 label_batch.append(label)

151

152 label_batch = torch.tensor(label_batch).double ()

153 text_batch = torch.tensor(text_batch).long()

154 attention_batch = torch.tensor(attention_batch).double ()

155 token_type_ids_batch = torch.tensor(token_type_ids_batch).long()

156

157 return label_batch.to(device), text_batch.to(device), attention_batch.to(

device), token_type_ids_batch.to(device)

158

159 print(len(ds[0]))

160 train_ds , val_ds = ds.train_test_split ()

161

162 train_dataloader = DataLoader(train_ds , batch_size = 2, shuffle = True ,

collate_fn = collate_fn)

163 val_dataloader = DataLoader(val_ds , batch_size = 2, shuffle = True , collate_fn =

collate_fn)

164 #dataloader = DataLoader(ds, batch_size = 8, shuffle = False , collate_fn =

collate_fn)

165

166 print(’Data Loaded , total length = ’, len(train_dataloader) + len(val_dataloader

))

167 num_class = 26#len(set([label for (label , text , offset) in dataloader]))

168 #emsize = 64

169 model = TextClassificationModel(num_class).to(device)

170

171 # Hyperparameters

172 EPOCHS = 100 # epoch

173

174 #total_accu = None

175 #print(’Num Train: ’, num_train)

176 #print(train_dataloader , len(train_dataloader))

177 LR = 1e-3 # learning rate

5

178 criterion = torch.nn.CrossEntropyLoss ()

179 optimizer = torch.optim.Adam(model.parameters (), lr = LR)

180

181 now = datetime.datetime.now()

182 logdir = now.strftime(’/home/hice1/mbock9/scratch/runs/tensorboard /%Y%m%d_%H%M%

S’)

183 savedir = now.strftime(’/home/hice1/mbock9/scratch/runs/checkpoints /%Y%m%d_%H%M%

S’)

184 writer = SummaryWriter(logdir , flush_secs = 1)

185 os.makedirs(savedir)

186 confmat = ConfusionMatrix(task = ’multilabel ’, num_labels = num_class)

187

188 for epoch in range(1, EPOCHS + 1):

189 accu_train , loss_train = train(model , train_dataloader , optimizer , criterion

)

190 accu_val , loss_val , (preds , trues) = evaluate(model , val_dataloader ,

criterion)

191 torch.save({

192 ’epoch’: epoch ,

193 ’model_state_dict ’: model.state_dict (),

194 ’optimizer_state_dict ’: optimizer.state_dict (),

195 ’loss’: loss_train ,

196 }, os.path.join(savedir , f’{epoch}_{loss_val }.pt’))

197 writer.add_scalar("Accuracy/train", accu_train , epoch)

198 writer.add_scalar("Accuracy/val", accu_val , epoch)

199 writer.add_scalar("Loss/train", loss_train , epoch)

200 writer.add_scalar("Loss/val", loss_val , epoch)

201

202 fig , ax1 = plt.subplots ()

203 cm = confusion_matrix(trues.cpu().numpy(), preds.cpu().numpy (), labels = np.

arange(num_class))

204 ConfusionMatrixDisplay(confusion_matrix=cm , display_labels = list(ISSUE_IDS.

keys())).plot(ax = ax1)

205 # Log confusion matrix to TensorBoard

206 writer.add_figure("Confusion Matrix", fig , epoch)

207 plt.close(fig)

model.py

4 Documentation

The main modification that was made here wasn’t in the code, rather it was in the infrastructure I
ran on. I switched from running on a local machine with a 1660 GPU to PACE, which uses a much
larger H-100 gpu. The important difference here is that PACE has more GPU RAM, I only have 4
GB on my local machine which limits how large a model I can make. I basically was testing with
no parameters because of my low GPU ram, but now we can start training models like BERT and
Llama.

5 Scription Validation(Optional)

My script validation doubles as a results visualization. The important thing to notice is that I was
able to overfit the data, indicated by the training loss reaching 0. Figure 1

6

Figure 1: My training pipeline with no parameters, but this time its running on PACE

6 Results Visualization

Now, all errors have been resolved. I was able to achieve 45% accuracy, which is low. However,
my model currently has no hidden layers, its only parameters are in the classification head so its
basically making a prediction given no features. 45% is actually much higher than I would have
predicted. Before these results, I would predict just under 4% accuracy, which is 1

26%, where there
are 26 classes. We can see the diagonal on the confusion matrix Figure 2 having more examples
than the off-diagonal elements, indicating the model is learining something.

7

Figure 2: Enter Caption

8

7 Proof of work

Figure 2 and Figure 1 serve as proof of results.

8 Next Week’s proposal

• Add parameters

• Use UPenn Data(we only just got the UPenn data today, October 4th 2024.

9

HAAG Research Report
NLP - Sentencias / NLP - Gen Team

Week 7
Víctor C. Fernández

October 2024

CONTENTS

1 Weekly Project Updates 2

2 Abstracts 3

3 Scripts and Code Blocks 4

4 Documentation 7

5 Script Validation 8

6 Results Visualization 9

7 Proof of Work 10

8 Next Week’s Proposal 11

1

1 WEEKLY PROJECT UPDATES

What progress did you make in the last week?

• Created code for new pipeline where we’re focusing on date retrieval.
• Generated new input template for date context retrieval.
• Generated new output template for date context retrieval.
• Met with the NLP-Sentencias team on Saturday 28th to align on our goals and

distribute our tasks more efficiently.
• Research how to create a common email address and mailing list for HAAG.
• Meeting with the NLP team on October 4th for our weekly meeting.
• Meeting with Dr. Alexander and Nathan Dahlberg on October 4th to get further

insights on NLP research.

What progress are you making next?

• Generate additional templates for input and output of date context retrieval.
• Connect code to output from prior trained model returning extracted dates.
• Generate outputs with data retrieved from prior model on multiple models to

compare outputs.
• Meet with the NLP team on October 11th for our weekly meeting.
• Meet with Dr. Alexander and Nathan Dahlberg on October 11th to get further

insights on NLP research.

Is there anything blocking you from making progress?

No significant blockers at this time.

2

2 ABSTRACTS

1. Title: Timeline Extraction from Decision Letters Using ChatGPT
• URL: https://aclanthology.org/2024.case-1.3.pdf

• Abstract: Freedom of Information Act (FOIA) legislation grants citizens the

right to request information from various levels of the government, and

aims to promote the transparency of governmental agencies. However, the

processing of these requests is often met with delays, due to the inherent

complexity of gathering the required documents. To obtain accurate esti-

mates of the processing times of requests, and to identify bottlenecks in the

process, this research proposes a pipeline to automatically extract these time-

lines from decision letters of Dutch FOIA requests. These decision letters

are responses to requests, and contain an overview of the process, including

when the request was received, and possible communication between the

requester and the relevant agency. The proposed pipeline can extract dates

with an accuracy of .94, extract event phrases with a mean ROUGE- L F1

score of .80 and can classify events with a macro F1 score of .79.Out of the

50 decision letters used for testing (each letter containing one timeline), the

model correctly classified 10 of the timelines completely correct, with an

average of 3.1 mistakes per decision letter.

• Summary: This paper presents a pipeline for automatically extracting time-

lines from decision letters related to Dutch Freedom of Information Act

(FOIA) requests. The pipeline uses SpaCy for date extraction and ChatGPT

for event phrase extraction and classification. The authors created a dataset

of 100 annotated Dutch decision letters and evaluated their approach on

50 test documents. The pipeline achieved high accuracy for date extraction

(94%), good performance on event phrase extraction (80% ROUGE-L F1

score), and reasonable event classification (79% macro F1 score). Overall,

76% of date-event-class triples were extracted correctly, with an average of

3.1 mistakes per decision letter timeline.

• Relevance: Given the new direction our project has taken to focus on extract-

ing dates from legal documents, the pipeline approach mentioned in this

paper combining SpaCy and ChatGPT could be adapted to our documents.

3

Additionally, it focuses on date extraction and context of the date extraction

which is what we are also focusing on. It also provides evaluation metrics

we could use to address our research and indications that potential research

could be carried out in the same line we are already working towards.

3 SCRIPTS AND CODE BLOCKS

All scripts have been uploaded to the HAAG NLP Repo. Outputs files, processed

sentencias and any other document that may contain sensitive information is

located in the private NLP-Sentencias Repo.

The following code contains the logic and functions I have been working on this

week.

1. New input template for querying the LLM block in charge of retrieving the

context of the identified date here.

Analiza el siguiente texto:
{{DOCUMENT_CONTENT}}

Por favor, según la información en el texto, sustituye
"TO_BE_FILLED_IN" con el contexto adecuado y devuelve solo un
JSON:

↪→

↪→

{{MODEL_OUTPUT_FORMAT}}

Utilizando solo las siguientes opciones para la respuesta:
{{OPTIONS}}

Importante: Incluye solo el JSON en la respuesta.

Code 1— Input template for querying the model, containing place-

holders to be replaced

2. New output template for the data to be retrieved by the LLM model with the

context of the date here.

4

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor
https://github.gatech.edu/calexander97/sentencias
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction/input_text_dates_v1.txt
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction/output_json_dates_v1.json

{
"context": {

"fecha": "{{DATE}}",
"objeto de la fecha": "TO_BE_FILLED_IN"

},
"options": [

"fecha de presentacion de demanda",
"fecha de notificacion de demanda",
"fecha de audiencias",
"fecha de fallo reservado",
"fecha de lectura de sentencia",
"Otra: "

]
}

Code 2—Output template for the model’s output, containing op-

tions for classifying the identified dates

3. Adapted code for replacing placeholders in input template and querying a

model using Ollama to retrieve date context here.

5

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction/ollama_model_processor.py

processor = OllamaModelProcessor("llama3.1", temperature=0.01,
top_k=10, top_p=0.5, seed=42)↪→

input_template = "./input_text_dates_v1.txt"
with open(input_template, 'r', encoding='utf-8') as f:

input_template = f.read()
sample_file = "./test_file.txt"
with open(sample_file, 'r', encoding='utf-8') as f:

sample_file = f.read()
Now we inject the file into the input template
input_text = input_template.replace("{{DOCUMENT_CONTENT}}",

sample_file)↪→

output_template = "./output_json_dates_v1.json"
with open(output_template, 'r', encoding='utf-8') as f:

output_template = json.load(f)
date = "veinticinco (25) días del mes de enero del año dos mil

veintitrés (2023); 25/01/2023"↪→

Now we extract the date options from the output template:
dates_options = json.dumps(output_template["options"])
We now extract the expected output converting the JSON under the

context key:↪→

expected_output =
json.dumps(output_template["context"]).replace("{{DATE}}",
date)

↪→

↪→

We now replace the output placeholder in the input template with
the expected output:↪→

query_text = input_text.replace("{{MODEL_OUTPUT_FORMAT}}",
expected_output)↪→

We now replace the options placeholder in the input template
with the date options:↪→

query_text = query_text.replace("{{OPTIONS}}", dates_options)
We then generate 10 output files to verify output value is

stable.↪→

for i in range(10):
processor.query_model(input_text=query_text,

output_path="./output_json_dates_v1.txt",
save_output=True)

↪→

↪→

Code 3—String comparison function

6

4 DOCUMENTATION

Based on the new direction we are taking, the new pipeline/flow we will be

following is the one below, where we’ll maintain the initial processes we already

have in place to extract and clean the documents. Afterwards, a new process

will take care of diving the clean documents into smaller pieces that can be then

passed as input to a new layer where a Bert based model in Spanish, that has

been fine tuned to better identify dates over legal documents for the Dominican

Republic, is used to retrieve the dates from the corpus. Once these dates have

been identified, they will be passed on to an additional model that will then

retrieve the context of the date to identify what it is representing. Finally, all

dates will be grouped and included in one file, representing the output of all the

pieces of the original document being put together.

The following diagram represents the new intended flow:

Figure 1—Full date extraction process

7

https://huggingface.co/MMG/xlm-roberta-large-ner-spanish

This week my focus has been on the second to last step, using a model to retrieve

the context of the date.

Date context extraction

• Input template generated in txt format to feed the model and retrieve the date

context. This template contains placeholders to fill in:
• Content of the piece of text extracted from the original file where a date is

contained.
• Output template containing the output format expected from the model.
• Fix set of options to classify the date, with one extra option to include cases

not contained within the previous ones.
• Output template containing the expected model’s output as presented in the

code section.
• Model implementation to be fed either a single query or a bulk set of pieces.

The code accepts the following input:
• Output from previous model extracting the date within the text both in its

original format and in DD/MM/YYYY format.
• Input template containing query to be used for the model.
• Output template containing the output format expected from the model.
• Fix set of options to classify the date, with one extra option to include cases

not contained within the previous ones.

The output of the model will be a single text file containing a JSON with the

input date and a field that should be updated by the model containing the

identified context. Additionally, there will be a second JSON object containing

configuration details for the executed model such as hyperparameters used,

model’s name and execution time.

5 SCRIPT VALIDATION

The model was queried over a sample file, given the full pipeline is not yet in

place. For this, a sample of the original "Sentencias" documents containing a date

was extracted and the date was identified manually, passing it as an input to the

model.

The model was triggered 10 consecutive times, informing a seed and with the

following hyperparameters:

8

• Temperature = 0.01,
• Top_k = 10,
• Top_p = 0.5
• Seed = 42

The seed and the low temperature should guarantee stable results over multiple

executions. Unfortunately, this wasn’t the actual case and although results were

very similar with a Llama 3.1 model, they weren’t exactly the same for the sample

text used. Below are some examples retrieved within those 10 executions for the

exact same input:

• fecha de notificacion de demanda
• fecha de sentencia
• Otra: Fecha de expedición de ordenanza civil
• fecha de presentacion de demanda

All generated files and content may be found here.

6 RESULTS VISUALIZATION

The following file content were generated upon the models results, retrieving

the context for the date given as an input to the model.

9

https://github.com/Human-Augment-Analytics/NLP-Gen/tree/main/victor/date_context_extraction

{"fecha": "veinticinco (25) días del mes de enero del año dos mil
veintitrés (2023); 25/01/2023", "objeto de la fecha": "fecha
de notificacion de demanda"}

↪→

↪→

{
"execution_details": {

"model_name": "llama3.1",
"hyperparameters": {

"temperature": 0.01,
"top_k": 10,
"top_p": 0.5,
"seed": 42

},
"processing_time": 1.9965579509735107,
"timestamp": "2024-10-03 22:50:55"

}
}

Code 4—Example output retrieved from the model

This output is based on the provided output template where the model is informs

the field for the date context returning a response that includes both the input

date and the identified context for such date.

7 PROOF OF WORK

The implemented system returns in general terms stable results, although these

heavily depend on the hyperparameters used and the model itself.

In this case, a Llama 3.1 model was triggered 10 consecutive times, with the

following hyperparameters:

• Temperature = 0.01,
• Top_k = 10,
• Top_p = 0.5
• Seed = 42

10

The seed and the low temperature should guarantee stable results over multiple

executions. This wasn’t the actual case and although results were very similar

in content with a Llama 3.1 model, they weren’t exactly the same for the sample

text used. Below are some examples retrieved within those 10 executions for the

exact same input:

• fecha de notificacion de demanda
• fecha de sentencia
• Otra: Fecha de expedición de ordenanza civil
• fecha de presentacion de demanda

All generated files and content may be found here. All documents were generated

correctly without any issues in the output generation process. Only matter to

highlight is the difference between multiple responses.

After thorough review of the text, it was identified there is a certain level of

ambiguity as to what that date represents. A multiple model execution layer

could be added, retrieving the most frequent output from all executions, which

in this case would have been "fecha de notificacion de demanda". This would be

working similarly to a quantum approach where the correct result isn’t the first

output from the model but the most statistically frequent one.

8 NEXT WEEK’S PROPOSAL

1. Generate additional templates for input and output of date context retrieval.

2. Connect code to output from prior trained model returning extracted dates.

3. Generate outputs with data retrieved from prior model on multiple models to

compare outputs.

11

https://github.com/Human-Augment-Analytics/NLP-Gen/tree/main/victor/date_context_extraction

HAAG NLP Sentencias — Week 7 Report

NLP-Gen Team

Karol Gutierrez

October 4, 2024

1 Weekly Project Update

1.1 What progress did you make in the last week?

• Setup of Azure OpenAI environment to use ChatGPT LLMs from Python code.

• Scripts for processing of large PDF files (Dominican Republic Supreme Court sentencias) and
extraction of dates and their context.

• Scripts to use ChatGPT4 to generate JSON files for individual sentencias, including dates, ranges
within the document and context. This will be cleaned and used as training data to improve
models.

• Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.

• Meetings with Dr. Alexander, Nathan and team to discuss progress on project and publication
options, as well as internal meetings with team to sync on next steps.

1.2 What are you planning on working on next?

• Generate more training data using the monthly releases of Dominican Republic Supreme Court.

• Add scripts to clean generated JSON files and ensure the information is accurate.

• Use SpaCy and the generated data to train model.

• Compare results with and without training.

• Continue fulfilling my role as Meet Manager/Documentor by working on the tasks expected for
my position (gather notes from meetings and prepare recordings).

1.3 Is anything blocking you from getting work done?

No.

2 Literature Review

Paper: Pre-trained Language Models for the Legal Domain: A Case Study on Indian Law [PMGG23].

2.1 Abstract

NLP in the legal domain has seen increasing success with the emergence of Transformer-based Pre-
trained Language Models (PLMs) pre-trained on legal text. PLMs trained over European and US legal
text are available publicly; however, legal text from other domains (countries), such as India, have a
lot of distinguishing characteristics. With the rapidly increasing volume of Legal NLP applications
in various countries, it has become necessary to pre-train such LMs over legal text of other countries

1

as well. In this work, we attempt to investigate pre-training in the Indian legal domain. We re-
train (continue pre-training) two popular legal PLMs, LegalBERT and CaseLawBERT, on Indian
legal data, as well as train a model from scratch with a vocabulary based on Indian legal text. We
apply these PLMs over three benchmark legal NLP tasks – Legal Statute Identification from facts,
Semantic Segmentation of Court Judgment Documents, and Court Appeal Judgment Prediction –
over both Indian and non-Indian (EU, UK) datasets. We observe that our approach not only enhances
performance on the new domain (Indian texts) but also over the original domain (European and UK
texts). We also conduct explainability experiments for a qualitative comparison of all these different
PLMs.

2.2 Summary

The paper titled ”Pre-trained Language Models for the Legal Domain: A Case Study on Indian Law”
presents a case study that investigates the development and fine-tuning of language models specifically
for Indian legal texts. It focuses on adapting existing models like LegalBERT and CaseLawBERT by
retraining them on a large corpus of Indian legal documents. The contributions of this work are:

Key Results: The model InLegalBERT (based on LegalBERT) showed significant improvements
in performance for Indian legal texts over its original version. Additionally, CustomInLawBERT
demonstrated strong performance even though it was trained on fewer steps, showcasing the importance
of custom vocabularies for legal-specific NLP tasks.

Explainability: The paper also explored model explainability by comparing attention scores from
the fine-tuned models with expert annotations to ensure the model was making decisions based on
relevant portions of legal texts.

• Pre-training with Indian Legal Texts: The study retrained two popular models—LegalBERT
and CaseLawBERT—on Indian legal data and introduced a custom model, CustomInLawBERT,
trained from scratch using a specialized vocabulary tailored to Indian legal documents.

• End-Task Applications: The models were evaluated on three specific tasks relevant to the legal
domain:

– Legal Statute Identification (LSI): Automatically identifying relevant legal statutes given
the facts of a case.

– Semantic Segmentation of Court Judgements: Classifying different sections in legal judge-
ments (e.g., facts, ruling, arguments).

– Court Judgement Prediction (CJP): Predicting the final decision of a court based on the
case’s facts and arguments.

• Key Results: The model InLegalBERT (based on LegalBERT) showed significant improvements
in performance for Indian legal texts over its original version. Additionally, CustomInLawBERT
demonstrated strong performance even though it was trained on fewer steps, showcasing the
importance of custom vocabularies for legal-specific NLP tasks.

• Explainability: The paper also explored model explainability by comparing attention scores from
the fine-tuned models with expert annotations to ensure the model was making decisions based
on relevant portions of legal texts.

2.3 Relevance

This paper is highly relevant to our project on NLP for extracting procedural history from legal
documents (sentencias). Like our work, it emphasizes the need to fine-tune models to domain-specific
legal texts. The method of pre-training models such as InLegalBERT and CustomInLawBERT using
specialized legal vocabularies is particularly applicable to our need for customizing models to extract
key procedural information from sentencias.

3 Scripts and code blocks

The code is in the private repository repository. The progress for this week is in ./karol/week7/ .

2

https://github.gatech.edu/calexander97/sentencias

3.1 Code developed

The following items were developed this week. The full workflow of the code is shown in Figure 1.

• I created a script to split PDF file into specific sentences, shown in Figure 2

• Cleaning of data and convert the documents into txt files, shown in Figure 3.

• Use ChatGPT 4o to send the sentencias text alongside a prompt to generate an output JSON
file for each sentence, such JSON files contain an array of dates in their original format and a
standardize one, as well as the context of the date, this is shown in Figure 4.

Figure 1: Code logic workflow to process file.

4 Documentation

The documentation is present in the README.md file in the repository. Refer to the repository to
get the most updated instructions on how to run the code. For this week, the useful readme is in
./karol/week7/readme.md

Different to previous weeks, to run the GPT code it is required to setup and environment in Azure
Open AI and set the API KEY as an environmental variable. This code also uses the following libraries.

pip install python-docx

pip install PyMuPDF

pip install openai

3

https://github.gatech.edu/calexander97/sentencias/

Figure 2: Code to split PDF document into sentencias.

5 Script Validation

The scripts are validated by analyzing the final JSON results. The running of the scripts is shown in
Figure 5. This script add all the resulting documents into a folder, as shown in Figure 6.

6 Results Visualization

Figure 7 shows one example of an original sentencia PDF file after the splitting process. Figure 8
shows the process after cleaning the documents. Once the txt files are processed by ChatGPT 4o and
the resulting response is parsed to extract the JSON component, this component is saved in a local
folder to be used in a later stage as training data. An example of a final generated JSON file is shown
in Figure 9 .

4

Figure 3: Code to generate clean txt files.

7 Proof of Work

Figure 9 shows Azure OpenAI Studio, where the deployments of the models were done. All the scripts
work end to end from the starting PDF file, as shown in the Figure 9, the final results correspond to
real dates. Further manual inspection and scripting can be used to ensure quality of the generated
JSON files, so they can be used as training data for our models.

8 Next Week’s Proposal

Refer to section 1.2 for details (avoid repetition).

References

[PMGG23] Shounak Paul, Arpan Mandal, Pawan Goyal, and Saptarshi Ghosh. Pre-trained language
models for the legal domain: A case study on indian law, 2023.

5

Figure 4: Code to call ChatGPT using custom prompt.

Figure 5: Execution of code processing sentencias texts

6

Figure 6: Resulting folder with JSON files

7

Figure 7: Original Sentencia sample file

8

Figure 8: Processed Sentencia text file

Figure 9: Final JSON files showing dates and context

Figure 10: Azure OpenAI Studio

9

Week 7 Research Report

Thomas Orth (NLP Summarization / NLP Gen Team)

October 2024

0.1 What did you work on this week?

1. Adjust dataset based on discussions with Dr. Alexander

2. Generated Summaries using an adjusted form of Summary Chain of Thought

3. Wrote prompt for entity extraction to attempt to follow clearinghouse
guidelines concretely

4. Explored Mistral

5. Read up on AdalFlow

0.2 What are you planning on working on next?

1. Generate more summaries for validation by interview team

2. Scale Summary CoT work with chunking

3. Continue experiment with entity extraction work to create summaries

0.3 Is anything blocking you from getting work done?

1. None

1 Abstracts

• Title: Reasoning with Language Model Prompting: A Survey. Conference:
ACL 2023. Link: https://aclanthology.org/2023.acl-long.294.pdf

• Abstract: Reasoning, as an essential ability for complex problem-solving,
can provide back-end support for various real-world applications, such as
medical diagnosis, negotiation, etc. This paper provides a comprehensive
survey of cutting-edge research on reasoning with language model prompt-
ing. We introduce research works with comparisons and summaries and
provide systematic resources to help beginners. We also discuss the po-
tential reasons for emerging such reasoning abilities and highlight future
research directions.

1

• Summary: This paper is a comprehensive review of different LLM prompt-
ing techniques, the challenge and limitations, and the need for robust
evaluation.

• Relevance: There could be new techniques here that we should investigate.

2 Relevant Info

• Summary Chain of Thought (CoT) is a technique in my last report to
create element driven summaries with LLMs

• Llama 3.2 is a popular LLM given its performance

• Ollama is a way to serve LLMs locally

• Langchain is a popular library for interacting with LLMs‘

3 Scripts

1. All scripts uploaded to https://github.com/Human-Augment-Analytics/NLP-
Gen

2. Scripts were run with the following file for testing: https://gatech.box
.com/s/bb2ay159jlwhow6epsq0u80xn6u3u88u

3. Thomas-Orth/summary chain of thought.py

• Brief Description: Run a modified version of Summary Chain of
thought on the data

• Status: Tested by running the pipeline to completion without issue

• Important Code Blocks:

(a) First block: Read in CSV file, choose document

(b) Second block: Run through prompts

(c) Third Block: Evaluate via manual inspection

• Screenshot of code:

2

https://gatech.box.com/s/bb2ay159jlwhow6epsq0u80xn6u3u88u
https://gatech.box.com/s/bb2ay159jlwhow6epsq0u80xn6u3u88u
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/Thomas-Orth/summary_chain_of_thought.py

Figure 1: Summary CoT

4. Thomas-Orth/extract relevant info.py

• Brief Description: Run entity Extraction Prompts on complaint docs

• Status: Tested by running the pipeline to completion without issue

• Important Code Blocks:

(a) First block: Load CSV and choose document from dataframe

(b) Second block: Run prompts

(c) Third Block: Evaluate results based on manual inspection

• Screenshot of code:

Figure 2: Entity extraction code

5. Flow Diagram:

3

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/Thomas-Orth/extract_relevant_info.py

Figure 3: Flow diagram

6. Running scripts:

(a) Download the scripts, the csv from the box link and llm.requirements.txt

(b) Install ollama: https://ollama.com/download

(c) To pull and run llama 3.2, run: ollama run llama3.2

(d) Run: python -m pip install -r llm.requirements.txt

(e) Run: python chosen python script

4 Documentation

1. Download CSV file, with two columns: Document and Summary

2. Update scripts to point to CSV file

3. Run scripts to output generated summaries

4. Manually evaluate summary

5 Results

5.1 Summary CoT example

Below is an example summary made by the Summary Chain of Thought tech-
nique:

A class-action lawsuit was filed on November 18, 1987, against the De-
fendants responsible for the conditions at the TCDC (Tennessee Correctional
Complex), alleging violations of various constitutional rights. The Plaintiffs,
unnamed individuals likely imprisoned at the TCDC, claim that they and their
relatives and visitors are subjected to poor living conditions, inadequate food

4

https://ollama.com/download

Figure 4: Entity extraction results

and medical care, and denial of access to courts, violating their First, Sixth,
Eighth, and Fourteenth Amendment rights. The ACLU Maryland and ACLU
National Prison Project represent the Plaintiffs in this lawsuit, seeking a declara-
tory judgment, injunctive relief, and damages for the alleged mistreatment and
poor conditions at the TCDC.

The summary contains key information and relevancy. While still missing
some entities the clearing house would like such as the court that this took place
in. But its a good first pass.

5.2 Entity extraction

Here is an example of entity extraction using LLMs:
The LLM is able to extract entities pretty well on complaints. Leveraging

this context will be great to create better summarizations

6 Proof of Results

Llama 3.2 is one of the best performing LLMs currently so its a good OSS model
choice.

Summary CoT is a paper that was published at ACL (https://arxiv.or
g/abs/2305.13412) with results showing the fact asking questions before going
right to summarization helped alot.

6.1 Known Limitations

Currently, I am feeding the document directly to the LLM. For scalability,
chunking of the document will be needed.

5

https://arxiv.org/abs/2305.13412
https://arxiv.org/abs/2305.13412

