HAAG NLP Summarization Week 7

Michael Bock
October 2024

1 Slack Questions

What did you accomplish this week?
e Got PACE training working
What are you planning on working on next?
e Add parameters to the model by using the BERT weights on huggingface
e Training on UPenn data, we only just got the pdfs today.
What is blocking you from progressing?

e None

2 Abstract

Position encoding recently has shown effective in the transformer architecture. It enables valuable
supervision for dependency modeling between elements at different positions of the sequence. In
this paper, we first investigate various methods to integrate positional information into the learning
process of transformer-based language models. Then, we propose a novel method named Rotary
Position Embedding(RoPE) to effectively leverage the positional information. Specifically, the pro-
posed RoPE encodes the absolute position with a rotation matrix and meanwhile incorporates the
explicit relative position dependency in self-attention formulation. Notably, RoPE enables valu-
able properties, including the flexibility of sequence length, decaying inter-token dependency with
increasing relative distances, and the capability of equipping the linear self-attention with relative
position encoding. Finally, we evaluate the enhanced transformer with rotary position embed-
ding, also called RoFormer, on various long text classification benchmark datasets. Our experi-
ments show that it consistently overcomes its alternatives. Furthermore, we provide a theoretical
analysis to explain some experimental results. RoFormer is already integrated into Huggingface:
https://huggingface.co/docs/transformers/model_doc/roformer
Link: https://arxiv.org/abs/2104.09864v5

)

2.1 Brief Analysis

I like to think of RoPE embeddings kind of like a clock. Basically, the old position embedding from
Attention is all you Need added the position of a token to the input. The authors of this paper
point out that you can also multiply. Additionally, you can use polar coordinates and then rotate
a token around a polar coordinate system according to its absolute position. The same way that
1:00 and 1:01 are close together, two tokens are close together in the embedding. Similarly, 11:00
is very different from 1:00. The main property that the authors talk about is the ability for this
embedding to use absolute positions instead of relative positions and that it can take sequences of
arbitrary length. But in the limitations section they say they fail to provide a faithful explanation
of why this works well on long texts. Additionally, the improvements over BERT and the original
transformers proposed in Attention is all you Need is small on the best tasks and the new embed-
ding fails to improve over BERT on other tasks. I'm skeptical of the results in my short reading
of this paper, but a lot of LLMs(which I eventually want to find a way to incorporate into a clas-
sifier) use this embedding. Even online blogs like this: https://github.com/adalkiran/llama-nuts-
and-bolts/blob/main/docs/10-ROPE-ROTARY-POSITIONAL-EMBEDDINGS.md don’t provide
a satisfactory explanation of RoPE embeddings in my opinion. People say that its more ”"math-
ematically meaningful” compared to the old position embeddings. I don’t see why rotation or
multiplication is more meaningful than adding embeddings to an input; the same information is
represented. I also don’t see why we need something to be mathematically meaningful in order for
it to work. Are neural networks necessarily more " mathematically meaningful” than other ML algo-
rithms? Sure we have neurons and there’s the analogy to neurons in a neural network, but really a
neural network doesn’t have neurons at all, instead it had matrices. You can’t ”disconnect” neurons
in a neural network, you can only set them to zero but you can definetly lose neural connections
in your brain. Ensemble methods like random forests have a claim to being more mathematical
than a neural network because they are explainable and neural networks are black boxes. Does this
mean that random forests are preferable to neural networks because they are more mathematically
meaningful?

3 Scripts and Code Blocks

MLM Pipeline:
model.py

from torchtext.data.utils import get_tokenizer
from torch.utils.data import DatalLoader

3 from torchtext.vocab import build_vocab_from_iterator

1

import spacy

5 import string

import sys

import torch

from torch import nn

from tqdm import tqdm

import time

from torch.utils.data.dataset import random_split
from torch.utils.tensorboard import SummaryWriter
from torchtext.data.functional import to_map_style_dataset
import datetime

import os

from matplotlib import pyplot as plt

import seaborn as sns

from torchmetrics import ConfusionMatrix

import numpy as np

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from transformers import AutoTokenizer, BertModel

sys.path.append(’../?)
from mistral.mistral_datasets import DocumentClassificationDataset, ISSUE_IDS

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = get_tokenizer ("basic_english")

Load SpaCy’s English model
nlp = spacy.load("en_core_web_sm")

class TextClassificationModel (nn.Module):

def __init__(self, num_class):
super (TextClassificationModel, self).__init__()
#self .embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)

self .embedding = BertModel.from_pretrained("bert-base-uncased", torch_dtype
= torch.float32, attn_implementation="sdpa")

self .fc = nn.Linear(self.embedding.config.hidden_size, num_class)

#self.init_weights ()

def init_weights(self):
initrange = 0.5
self .embedding.weight.data.uniform_(-initrange, initrange)
self .fc.weight.data.uniform_(-initrange, initrange)
self .fc.bias.data.zero_()

def forward(self, text, attn, token_text_id):

embedded = self.embedding(input_ids = text, attention_mask = attn,
token_type_ids = token_text_id)

return self.fc(embedded.pooler_output)

def train(model, dataloader, optimizer, criterion):

model.train ()

total_acc, total_count = 0, O
total_loss = 0

log_interval = 1

start_time = time.time ()

for idx, (label, text, attn, type_id) in enumerate(dataloader):
optimizer.zero_grad()
predicted_label = model(text, attn, type_id)
loss = criterion(predicted_label, label)
loss.backward ()
optimizer.step ()
total_acc += (predicted_label.argmax (1) == label.argmax(1l)).sum().item()
total_count += label.size (0)
total_loss += loss.item()

#if idx % log_interval == O0:

elapsed = time.time() - start_time

print (

"| epoch {:3d} | {:5d}/{:5d} batches "

"| accuracy {:8.3f} loss {:8.3f}".format(

def

def

def

def

epoch, idx, len(dataloader), total_acc / total_count,

O
)
)
total_acc, total_count = 0, O
start_time = time.time ()

return total_acc/total_count, total_loss/total_count

evaluate (model, dataloader, criterion):
model.eval ()
total_acc, total_loss, total_count = 0, 0, O
preds = []
trues = []
with torch.no_grad():
for idx, (label, text, attn, type_id) in enumerate (dataloader):
predicted_label = model(text, attn, type_id)
loss = criterion(predicted_label, label)

loss.item

total_acc += (predicted_label.argmax(1l) == label.argmax(1)).sum().item()

total_count += label.size (0)
total_loss += loss.item()

preds.append (predicted_label.argmax (1))
trues.append(label.argmax (1))

return total_acc / total_count, total_loss / total_count, (torch.cat(preds),

torch.cat (trues))
normalize_text (text):

Process the text using SpaCy
doc = nlp(text)

Define a list to hold normalized tokens
normalized_tokens = []

for token in doc:

Convert to lowercase, remove punctuation and stop words, and lemmatize the

tokens
if not token.is_punct and not token.is_stop:
lemma = token.lemma_.lower () # Lowercase and lemmatize
normalized_tokens.append (lemma)

Join the tokens back into a normalized string
normalized_text = ’ ’.join(normalized_tokens)

return normalized_text
yield_token(data_iter):
for text, 1lbl in data_iter:

yield tokenizer (normalize_text(text))

pad(text_processed, text_len):

text = text_processed[len(text_processed)//2 - text_len//2 : len(text_processed)

//2 + text_len//2]

while len(text) < text_len:
text.append (0)

return text

= ’__main__"’:

1
1
B
o
8
®
1
l
1

161

162

163

164

ds = DocumentClassificationDataset (None, cases_path = ’./all_cases_clearinghouse
.pkl’, n = -1)

print (°’DS made, building vocabulary’)

#vocab = build_vocab_from_iterator(yield_token(ds), specials = ["<unk>"])
#vocab.set_default_index (vocab["<unk>"])

text_len = 256

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

print (’Text pipeline’)

text_preprocessing_pipeline = lambda x: tokenizer (normalize_text(x), padding="
max_padding", truncation=True, max_length=128)

print (normalize_text (ds [0]1[01))

#ds.prepare_corpus (vocab, normalize_text, tokenizer, pad, text_len)
ds.prepare_corpus_for_bert (normalize_text, tokenizer, text_len)

def collate_fn(batch):

text_batch = []

attention_batch = []

token_type_ids_batch = []

label_batch = []

for text, label in batch:
text_batch.append(text[’input_ids’])
attention_batch.append(text[’attention_mask’])
token_type_ids_batch.append(text[’token_type_ids’])
label_batch.append (label)

label_batch = torch.tensor(label_batch).double ()

text_batch = torch.tensor(text_batch).long()

attention_batch = torch.tensor (attention_batch) .double ()
token_type_ids_batch = torch.tensor(token_type_ids_batch).long()

return label_batch.to(device), text_batch.to(device), attention_batch.to(
device), token_type_ids_batch.to(device)

print (len(ds [0]))

train_ds, val_ds = ds.train_test_split ()

train_dataloader = Dataloader (train_ds, batch_size = 2, shuffle = True,
collate_fn = collate_fn)

val_dataloader = Dataloader(val_ds, batch_size = 2, shuffle = True, collate_fn =
collate_£fn)

#dataloader = Dataloader (ds, batch_size = 8, shuffle = False, collate_fn =

collate_£fn)

print (’Data Loaded, total length = ’, len(train_dataloader) + len(val_dataloader
))

num_class = 26#len(set([label for (label, text, offset) in dataloader]))

#emsize = 64

model = TextClassificationModel (num_class).to(device)

Hyperparameters
EPOCHS = 100 # epoch

#total_accu = None

#print (’Num Train: ’, num_train)

#print (train_dataloader , len(train_dataloader))
LR = le-3 # learning rate

189

190

191
192
193
194
195
196
197
198
199
200
201

202

204

criterion = torch.nn.CrossEntropyLoss ()

optimizer = torch.optim.Adam(model.parameters (), 1lr = LR)

now = datetime.datetime.now ()

logdir = now.strftime(’/home/hicel/mbock9/scratch/runs/tensorboard/J%Y/ml,d_%H%M%
SED)

savedir = now.strftime(’/home/hicel/mbock9/scratch/runs/checkpoints/%Y%m%d_%H%MY
SED)

writer = SummaryWriter (logdir, flush_secs = 1)

os.makedirs (savedir)

confmat = ConfusionMatrix(task = ’multilabel’, num_labels = num_class)

for epoch in range(1, EPOCHS + 1):

accu_train, loss_train = train(model, train_dataloader, optimizer, criterion
)

accu_val, loss_val, (preds, trues) = evaluate(model, val_dataloader,
criterion)

torch.save ({

’epoch’: epoch,

‘model_state_dict’: model.state_dict (),

’optimizer_state_dict’: optimizer.state_dict(),

>loss’: loss_train,

}, os.path.join(savedir, f’{epoch}_{loss_vall}.pt’))
writer.add_scalar ("Accuracy/train", accu_train, epoch)
writer.add_scalar ("Accuracy/val", accu_val, epoch)
writer.add_scalar ("Loss/train", loss_train, epoch)
writer.add_scalar("Loss/val", loss_val, epoch)

fig, axl = plt.subplots()

cm = confusion_matrix(trues.cpu().numpy(), preds.cpu().numpy(), labels = np.
arange (num_class))
ConfusionMatrixDisplay (confusion_matrix=cm, display_labels = 1list(ISSUE_IDS.

keys())) .plot(ax = axl)
Log confusion matrix to TensorBoard
writer.add_figure("Confusion Matrix", fig, epoch)
plt.close(fig)

model.py

4 Documentation

The main modification that was made here wasn’t in the code, rather it was in the infrastructure I
ran on. I switched from running on a local machine with a 1660 GPU to PACE, which uses a much
larger H-100 gpu. The important difference here is that PACE has more GPU RAM, I only have 4
GB on my local machine which limits how large a model I can make. I basically was testing with
no parameters because of my low GPU ram, but now we can start training models like BERT and
Llama.

5 Scription Validation(Optional)

My script validation doubles as a results visualization. The important thing to notice is that I was
able to overfit the data, indicated by the training loss reaching 0.

Q_ Filter tags (regular expressions supported)

Accuracy

Accuracy/train Accuracy/val
tag: Accuracy/train tag: Accuracy/val

Loss/train Loss/val
tag: Loss/train tag: Loss/val

6

0 & 80 (i) 0 10 20 30 40 50 60 70 80 90 100

o]

m
|:I o
m

Figure 1: My training pipeline with no parameters, but this time its running on PACE

6 Results Visualization

Now, all errors have been resolved. I was able to achieve 45% accuracy, which is low. However,
my model currently has no hidden layers, its only parameters are in the classification head so its
basically making a prediction given no features. 45% is actually much higher than I would have
predicted. Before these results, I would predict just under 4% accuracy, which is %%, where there
are 26 classes. We can see the diagonal on the confusion matrix having more examples
than the off-diagonal elements, indicating the model is learining something.

Confusion Matrix 20241002_230329

tag: Confusion Matrix
step 100 Wed Oct 02 2024 23:04:31 Eastern Daylight Time
d

|

Child Welfare
ustice (Other)
sability Rights

ucation
/Voting Rights
mental Justice
| Employment
ling/Insurance

Jjor the Border
igent Defense
bility (Facility)
Jail Conditions
nile Institution

Labor Rights
ealth (Facility)
ional Security
me Conditions

Policing
orial Autharity
on Conditions
1s/Contracting
ment Services
ublic Housing
ductive Issues

Jesegregation
Jious Freedom

C ri iR

Figure 2: Enter Caption

7 Proof of work

[Figure 2| and [Figure 1| serve as proof of results.

8 Next Week’s proposal

e Add parameters

e Use UPenn Data(we only just got the UPenn data today, October 4th 2024.

HAAG Research Report
NLP - Sentencias / NLP - Gen Team
Week 7

Victor C. Ferndndez
October 2024

CONTENTS

=

Weekly Project Updates

2 Abstracts

3 Scripts and Code Blocks

4 Documentation

5 Script Validation

6 Results Visualization

7 Proof of Work

8 Next Week’s Proposal

10

11

1 WEEKLY PROJECT UPDATES
What progress did you make in the last week?

- Created code for new pipeline where we’re focusing on date retrieval.

- Generated new input template for date context retrieval.

- Generated new output template for date context retrieval.

- Met with the NLP-Sentencias team on Saturday 28th to align on our goals and
distribute our tasks more efficiently.

- Research how to create a common email address and mailing list for HAAG.

- Meeting with the NLP team on October 4th for our weekly meeting.

- Meeting with Dr. Alexander and Nathan Dahlberg on October 4th to get further
insights on NLP research.

What progress are you making next?

- Generate additional templates for input and output of date context retrieval.

- Connect code to output from prior trained model returning extracted dates.

- Generate outputs with data retrieved from prior model on multiple models to
compare outputs.

- Meet with the NLP team on October 11th for our weekly meeting.

- Meet with Dr. Alexander and Nathan Dahlberg on October 11th to get further
insights on NLP research.

Is there anything blocking you from making progress?

No significant blockers at this time.

2 ABSTRACTS

1. Title: Timeline Extraction from Decision Letters Using ChatGPT
- URL: https:/ /aclanthology.org/2024.case-1.3.pdf

- Abstract: Freedom of Information Act (FOIA) legislation grants citizens the
right to request information from various levels of the government, and
aims to promote the transparency of governmental agencies. However, the
processing of these requests is often met with delays, due to the inherent
complexity of gathering the required documents. To obtain accurate esti-
mates of the processing times of requests, and to identify bottlenecks in the
process, this research proposes a pipeline to automatically extract these time-
lines from decision letters of Dutch FOIA requests. These decision letters
are responses to requests, and contain an overview of the process, including
when the request was received, and possible communication between the
requester and the relevant agency. The proposed pipeline can extract dates
with an accuracy of .94, extract event phrases with a mean ROUGE- L F1
score of .80 and can classify events with a macro F1 score of .79.0ut of the
50 decision letters used for testing (each letter containing one timeline), the
model correctly classified 10 of the timelines completely correct, with an

average of 3.1 mistakes per decision letter.

- Summary: This paper presents a pipeline for automatically extracting time-
lines from decision letters related to Dutch Freedom of Information Act
(FOIA) requests. The pipeline uses SpaCy for date extraction and ChatGPT
for event phrase extraction and classification. The authors created a dataset
of 100 annotated Dutch decision letters and evaluated their approach on
50 test documents. The pipeline achieved high accuracy for date extraction
(94%), good performance on event phrase extraction (80% ROUGE-L F1
score), and reasonable event classification (79% macro F1 score). Overall,
76% of date-event-class triples were extracted correctly, with an average of

3.1 mistakes per decision letter timeline.

- Relevance: Given the new direction our project has taken to focus on extract-
ing dates from legal documents, the pipeline approach mentioned in this

paper combining SpaCy and ChatGPT could be adapted to our documents.

Additionally, it focuses on date extraction and context of the date extraction
which is what we are also focusing on. It also provides evaluation metrics
we could use to address our research and indications that potential research

could be carried out in the same line we are already working towards.

3 SCRIPTS AND CODE BLOCKS

All scripts have been uploaded to the HAAG NLP Repo. Outputs files, processed
sentencias and any other document that may contain sensitive information is

located in the private NLP-Sentencias Repo.

The following code contains the logic and functions I have been working on this

week.
1. New input template for querying the LLM block in charge of retrieving the

context of the identified date here.

Analiza el siguiente texto:

{{DOCUMENT_CONTENT}}

Por favor, segin la informacidén en el texto, sustituye

"TO_BE_FILLED_IN" con el contexto adecuado y devuelve solo un
JSON:
{{MODEL_OUTPUT_FORMAT}}

Utilizando solo las siguientes opciones para la respuesta:
{{OPTIONS}}

Importante: Incluye solo el JSON en la respuesta

Code 1—Input template for querying the model, containing place-

holders to be replaced

2. New output template for the data to be retrieved by the LLM model with the

context of the date here.

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor
https://github.gatech.edu/calexander97/sentencias
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction/input_text_dates_v1.txt
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction/output_json_dates_v1.json

"context": {

"fecha": "{{DATE}}",

"objeto de la fecha": "TO_BE_FILLED_IN"
b
"options": [

"fecha presentacion de demanda",

"fecha notificacion de demanda",

"fecha audiencias",

"fecha fallo reservado",
"fecha lectura de sentencia",

"Otra:

Code 2—Output template for the model’s output, containing op-

tions for classifying the identified dates

3. Adapted code for replacing placeholders in input template and querying a

model using Ollama to retrieve date context here.

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/victor/date_context_extraction/ollama_model_processor.py

processor OllamaModelProcessor("1llama3.1", temperature=0.01,

top_k=10, top_p=0.5, seed=42)

input_template "./input_text_dates_v1.txt"

with open(input_template, 'r', encoding='utf-8') as f:
input_template f.read()

sample_file ", /test_file.txt"

with open(sample_file, 'r', encoding='utf-8') as f:

sample_file f.read()

input_text input_template.replace (" {{DOCUMENT_CONTENT}}",
sample_file)

output_template "./output_json_dates_vl.json"

with open(output_template, 'r', encoding='utf-8') as f:

output_template json.load(f)
date "veinticinco (25) dias del mes de enero del afio dos mil

veintitrés (2023); 25/01/2023"

dates_options json.dumps (output_template["options"])

expected_output

json.dumps (output_template["context"]) .replace("{{DATE}}",
date)

query_text input_text.replace("{{MODEL_OUTPUT_FORMAT}}",
expected_output)

query_text query_text.replace("{{OPTIONS}}", dates_options)

for 1 range(10):
processor.query_model (input_text=query_text,
output_path="./output_json_dates_v1.txt",

save_output=True)

Code 3—String comparison function

4 DOCUMENTATION

Based on the new direction we are taking, the new pipeline/flow we will be
following is the one below, where we’ll maintain the initial processes we already
have in place to extract and clean the documents. Afterwards, a new process
will take care of diving the clean documents into smaller pieces that can be then
passed as input to a new layer where a Bert based model in Spanish, that has
been fine tuned to better identify dates over legal documents for the Dominican
Republic, is used to retrieve the dates from the corpus. Once these dates have
been identified, they will be passed on to an additional model that will then
retrieve the context of the date to identify what it is representing. Finally, all
dates will be grouped and included in one file, representing the output of all the

pieces of the original document being put together.

The following diagram represents the new intended flow:

Original Legal
Documents

Text Extraction

Cleaning and

Preprocessing

Document

Splitting

BERThased
Date Extraction

Model 1 Model 2 Model 3
(llama3. 1) {gemmal) (gwen2)

Date Grouping
and Output

Figure 1—Full date extraction process

https://huggingface.co/MMG/xlm-roberta-large-ner-spanish

This week my focus has been on the second to last step, using a model to retrieve
the context of the date.

Date context extraction

- Input template generated in txt format to feed the model and retrieve the date
context. This template contains placeholders to fill in:
- Content of the piece of text extracted from the original file where a date is
contained.
- Output template containing the output format expected from the model.
- Fix set of options to classify the date, with one extra option to include cases
not contained within the previous ones.
- Output template containing the expected model’s output as presented in the
code section.
* Model implementation to be fed either a single query or a bulk set of pieces.
The code accepts the following input:
- Output from previous model extracting the date within the text both in its
original format and in DD/MM/YYYY format.
- Input template containing query to be used for the model.
- Output template containing the output format expected from the model.
- Fix set of options to classify the date, with one extra option to include cases
not contained within the previous ones.
The output of the model will be a single text file containing a JSON with the
input date and a field that should be updated by the model containing the
identified context. Additionally, there will be a second JSON object containing
configuration details for the executed model such as hyperparameters used,

model’s name and execution time.

5 SCRIPT VALIDATION

The model was queried over a sample file, given the full pipeline is not yet in
place. For this, a sample of the original "Sentencias" documents containing a date
was extracted and the date was identified manually, passing it as an input to the

model.

The model was triggered 10 consecutive times, informing a seed and with the

following hyperparameters:

+ Temperature = 0.01,

- Top_k = 10,
- Top_p=o0.5
- Seed = 42

The seed and the low temperature should guarantee stable results over multiple
executions. Unfortunately, this wasn’t the actual case and although results were
very similar with a Llama 3.1 model, they weren’t exactly the same for the sample
text used. Below are some examples retrieved within those 10 executions for the

exact same input:

+ fecha de notificacion de demanda
- fecha de sentencia
- Otra: Fecha de expediciéon de ordenanza civil

- fecha de presentacion de demanda

All generated files and content may be found here.

6 RESULTS VISUALIZATION

The following file content were generated upon the models results, retrieving

the context for the date given as an input to the model.

https://github.com/Human-Augment-Analytics/NLP-Gen/tree/main/victor/date_context_extraction

{"fecha": "veinticinco (25) dias del mes de enero del afio dos mil

veintitrés (2023); 25/01/2023", "objeto de la fecha": "fecha

de notificacion de demanda'"}

"execution_details": {
"model_name": "1llama3.1",
"hyperparameters": {
"temperature": 0.01,
"top_k": 10,
"top_p": 0.5,
"seed": 42
b
"processing_time": 1.9965579509735107,
"timestamp": "2024-10-03 22:50:55"

Code 4—Example output retrieved from the model

This output is based on the provided output template where the model is informs
the field for the date context returning a response that includes both the input

date and the identified context for such date.

7 PROOF OF WORK

The implemented system returns in general terms stable results, although these

heavily depend on the hyperparameters used and the model itself.

In this case, a Llama 3.1 model was triggered 10 consecutive times, with the

following hyperparameters:

- Temperature = 0.01,

- Top_k = 10,
- Top_p=o0.5
- Seed = 42

10

The seed and the low temperature should guarantee stable results over multiple
executions. This wasn’t the actual case and although results were very similar
in content with a Llama 3.1 model, they weren’t exactly the same for the sample
text used. Below are some examples retrieved within those 10 executions for the

exact same input:

- fecha de notificacion de demanda
- fecha de sentencia
» Otra: Fecha de expedicién de ordenanza civil

- fecha de presentacion de demanda

All generated files and content may be found here. All documents were generated
correctly without any issues in the output generation process. Only matter to

highlight is the difference between multiple responses.

After thorough review of the text, it was identified there is a certain level of
ambiguity as to what that date represents. A multiple model execution layer
could be added, retrieving the most frequent output from all executions, which
in this case would have been "fecha de notificacion de demanda". This would be
working similarly to a quantum approach where the correct result isn’t the first

output from the model but the most statistically frequent one.

8 NEXT WEEK’S PROPOSAL

1. Generate additional templates for input and output of date context retrieval.
2. Connect code to output from prior trained model returning extracted dates.
3. Generate outputs with data retrieved from prior model on multiple models to

compare outputs.

11

https://github.com/Human-Augment-Analytics/NLP-Gen/tree/main/victor/date_context_extraction

Week 7 | HAAG - NLP | Fall 2024

Alejandro Gomez

October 4th, 2024

1 Time-log

1.1 What progress did you make in the last week?

e This week, I focused my efforts on finetuning. This is a topic I had previously sandboxed with
spaCy, but this approach was far more refined given my improved understanding of ML and
the project scope. During our team meeting last week, we had a large pivot on our project
focus - originally we were focused on extracting all possible metadata, but we have honed in on
solving 1 problem: extracting dates and their correspoding events with our spanish data set.
To fullfill this, the team split up some of the efforts before a larger convergence next week and
this meant I did not have a proper datas set to work with for training. However, I ended up
hosting a deploying a Label Studio instance on a vin and manually annotated a small portion of
our current data set. I then exported this to JSON and leveraged this for the training with the
hugging face model ”MMG /xlm-roberta-large-ner-spanish”. This required some preprocessing for
preparing/cleaning the data set to be able to work with the huggingface libraries e.g. Datasets.
Ultimately I was able to load in the dataset and parse it, where i split it into test 4+ training and
then was able to run the code to fine tune the model. I was using PACE with an H100 Nvidia
GPU to speed this workload but my final test did not produce my expected NER’s. I expect
that by having the intended dataset and a preprocessing script as was provided to me by our
NLP advisor, I will be able to properly fine tune this model and focus on this effort since the
manual annotation should be abstracted away by having a dataset prepared by the team.

1.2 What are you planning on working on next?

e I'll be meeting with the NLP DR team over the weekend to discuss a plan of action for the
upcoming as we get closer to converging our efforts. At this time, my tentative plan is to
hook into the dataset that one of my team members has been preparing as well as leverage a
preprocessing script that was shared with our team by an advisor. These two components should
assist in the finetuning efforts for the Spanish NER model.

1.3 Is anything blocking you from getting work done?
N/A

2 Article Review

2.1 Abstract

Freedom of Information Act (FOIA) legisla- tion grants citizens the right to request infor- mation from
various levels of the government, and aims to promote the transparency of gov- ernmental agencies.
However, the processing of these requests is often met with delays, due to the inherent complexity of
gathering the re- quired documents. To obtain accurate estimates of the processing times of requests,
and to iden- tify bottlenecks in the process, this research pro- poses a pipeline to automatically extract
these timelines from decision letters of Dutch FOIA requests. These decision letters are responses
to requests, and contain an overview of the pro- cess, including when the request was received, and

w w0

possible communication between the re- quester and the relevant agency. The proposed pipeline can
extract dates with an accuracy of .94, extract event phrases with a mean ROUGE- L F1 score of .80
and can classify events with a macro F1 score of .79. Out of the 50 decision letters used for testing
(each letter containing one timeline), the model correctly classified 10 of the timelines com- pletely
correct, with an average of 3.1 mistakes per decision letter. doi[BVHM24]

2.2 Summary

This paper is the most aligned with our project goals. It focuses on extracting date triplets and classifies
them using chatGPT. This serves as an excellent model for us to consider for publication because it
validates that our current proposed project is novel for a publication, but we have an edge that we are
using Spanish data and exploring open source models with finetuning for ease of availability and cost
effectiveness. Our NLP DR group will be extracting dates in Spanish format and DD/MM/YYYY
format and then using generative Al to for the date content in similar fashion to thius article.

3 Scripts and Code Blocks

3.1 Code
json = [
{
"text": "Demanda principal notificada mediante acto n m. 292\/2022, de fecha

veintid s (22) de noviembre del a o dos mil veintid s (2022), instrumentado por
el ministerial ngel Dar o Castillo Mej a, de estrados de la Cuarta Sala de la

C mara Penal del Juzgado de Primera Instancia del Distrito Nacional. ",
"id": 2100,
"label": [
{
"start": 67,
"end": 127,
"text": "veintid s (22) de noviembre del a o dos mil veintid s (2022)",
"labels": [
"DATE"
]
}
]’
"annotator": 1,
"annotation_id": 15,
"created_at": "2024-10-04T04:34:32.24969427Z",
"updated_at": "2024-10-04T04:34:32.249722Z",
"lead_time": 13.351
Fo
{
"text": " ",
"id": 2101,
"annotator": 1,
"annotation_id": 64,
"created_at": "2024-10-04T04:42:12.3351052Z",
"updated_at": "2024-10-04T04:42:12.3351342Z",
"lead_time": 0.984
}3
{
"text": "Demandas en intervenci n voluntarias notificadas por: a) se ora

Milagros Pineda mediante acto n mero 966\/2022, de fecha dos (2) de diciembre del
a o dos mil veintid s (2022), instrumentado por el ministerial Alejandro Antonio
Rodr guez , ordinario de la Primera Sala de la Suprema Corte de Justicia; b)
se ora Clara Elena Guzm n Mart nez mediante acto n m. 1020\/2022, de fecha
catorce (14) de diciembre del a o dos mil veintid s (2022), instrumentado por el
ministerial Alejandro Antonio Rodr guez , ordinario de la Primera Sala de la
Suprema Corte de Justicia. ",
"id": 2102,
"label": [
{
"start": 113,
"end": 173,

50

51

"text": " fecha dos (2) de diciembre del a o dos mil veintid s (2022)",
"labels": [
n DATE n

}
] 3
"annotator": 1,
"annotation_id": 16,
"created_at": "2024-10-04T04:34:46.538994Z7",
"updated_at": "2024-10-04T04:34:46.539023Z",
"lead_time": 9.454
Fo

]

3.2 Documentation

fine tuned model

[lorem ipsum el 19 de noviembre del 2024 J N el 19 de noviembre del 2024. e =
start: 67 end: 127

Figure 1: pipeline step visualization
3.3 Script Validation (optional)

3.4 Results Visualization

& G A Hotse S & G O @ Newlomemsibe

& MyUnve-Google., M Inza e Cotender .. €) GiHus [bdmcumodar [intemahips [Frances [M [6

"I Label Studio

A fulHlecged open soutee solution for data labeing

Sign Up
Email Addds

test@example.com

Gt the lovest news from Heidi <)

i 5 Air=ady have cn occount? Login
Soughtto vou oy

' HumanSignal

Figure 2: cloud hosted label studio

€ 3 0 A Netsseure 1613539123180 proects/ i/ datatask=2 102 % @y 0 b @ Neethemesomse |

& Wy oage. M Inboxex) sgon. [sogietakeca .) Gt [Encurade [D meshes [bsecs [3 M [6T
I Label Studio = poests [MewProject 83 [Labeling Settings T
- e .
Compiatad @ " bt [=r] 1] e B+ (@ H
.z
| OctD32024,21:3408 1 -* I DATE 1 Inta History
i G turtasias notifi 4 5 o Selaction Datails
w03 2024, 213415 L *» 966/2022. d8 por &l ministanial
lejand Redrigue, crdi de la Suprema Corte de Justicia: b} sehora Clara Elena
Guaman Martinez 1020i2022. 68 8 dos mil veiridos
Ol 03 2024, 21.34.17 1 -« 12022 i el ministenal Alojandt io Redriguez, ondinaris Suprema
Corte de Justicis
Semanca prrceal
Oct 03 2024, 2134:32 1 oificdamedanizacto o
i 292/202%, du fozta
Oct 03 2024, 2142:12 1 »
‘Semarcas en piervencien
Oct 03 2024, 213446 1 eohtzras ot R
a)cfiora Hibgres Pesda
[
et 7 2024, 21:34:54 1 L3 Region Rebstions
Ernd DuTmi] P
Ocr 032024, 213456 1 SELTENSIDNES DL LA @ (5] I8 047 fochadas 2) de diciembra del 3o das mil veint
ARETES
sarts cemarcante.
Oct 032024, 212601 1 onekiys camo sgue: @
Prrmere: Que zeaceian,
L-JUAN VARGAS
| Dct032024, 213506 1 HERNANGEZ domnicana. <
aatern,
| Oct032024,213500 1 *
Sy s s, =
O eomsnss 4 ST @ Jvexm
€ 9 @ A Norssowe 16135.1912318060/projects/Tidmajemon s A By D& @ NeCromemsibe |

& MyDrive -Google.. M Inbox (5520 - egos. [E] Gecole Calendier-Fu () Gilup [T Gtmcumcaor O ntemships [Finences [Mac 3 67

Export data
You can axport dataset in one of the following formats:

JSON
1 List of temsin raw JSON format stored inane JSOMN file. Usz to axpart both the data and the
annotations for 3 dataset. It's Latel Studio Commen Format

JSON-MIN
List of tams whana oaly from_nama’, to_nama’ vakies from the rmw JSON format ans axparted
Use to export oaly the annotations for a dataset

csv
: ralid values with the colurmn nermes specified by U values of
the "Tram_name” and "o neme’ fisids

TSV
Resuits aro stared in tab-separates tbusar file with cakimn names spacified by “fram_nama”
“to_name” wahies

CONLL2003 rsw—
Popular forn

it s o the CoNLL-2003 named snity recognition chalenge

YOLOVE 088 image sigTantaton Gbject detstion
Popuiar TT fomat iz crastad for each image file. Each 10t file containe annatations fortha

' carmespanding image file. The YOLO OBB format desionate: bounding Baxss by thair four comer
poits with coorsnates nermalized batwesn 0 end 1,50 1 1 possible to export rctsted abjects

5 Spaces @ agosmou hemE T s s Runing | S Lo @ App i Files @ Community © Settings ¢

Figure 4: exporting custom dataset

Figure 5: finetuning script on PACE

3.5 Proof of Work
Scripts in GitHub Repo

4 Next Week’s Proposal

e I'll be meeting with the NLP DR team this weekend to discuss actions steps but I have a tentative
plan based on the general NLP meeting

e As mentioned in the weekly log above, the goal for this week is to use the script shared by the NLP
mentor to faciliate the data prep with regard to labelling: label prepping script. Additionally I
will be using a formal data set prepared by the team to finetune the model which I expect will
reduce the overhead of data cleanse/prep.

e Update current documentation, e.g. NLP website

References

[BVHM24] Femke Bakker, Ruben Van Heusden, and Maarten Marx. Timeline extraction from decision
letters using ChatGPT. In Ali Hiirriyetoglu, Hristo Tanev, Surendrabikram Thapa, and
Gokge Uludogan, editors, Proceedings of the Tth Workshop on Challenges and Applications
of Automated Extraction of Socio-political Events from Text (CASE 2024), pages 24-31,
St. Julians, Malta, March 2024. Association for Computational Linguistics.

HAAG NLP Sentencias — Week 7 Report
NLP-Gen Team

Karol Gutierrez

October 4, 2024

1 Weekly Project Update

1.1 What progress did you make in the last week?
e Setup of Azure OpenAl environment to use ChatGPT LLMs from Python code.

e Scripts for processing of large PDF files (Dominican Republic Supreme Court sentencias) and
extraction of dates and their context.

e Scripts to use ChatGPT4 to generate JSON files for individual sentencias, including dates, ranges
within the document and context. This will be cleaned and used as training data to improve
models.

e Fulfill my role as Meet Manager/Documentor by working on the tasks expected for my position.
e Meetings with Dr. Alexander, Nathan and team to discuss progress on project and publication

options, as well as internal meetings with team to sync on next steps.

1.2 What are you planning on working on next?

e Generate more training data using the monthly releases of Dominican Republic Supreme Court.
e Add scripts to clean generated JSON files and ensure the information is accurate.
e Use SpaCy and the generated data to train model.
e Compare results with and without training.
e Continue fulfilling my role as Meet Manager/Documentor by working on the tasks expected for
my position (gather notes from meetings and prepare recordings).
1.3 Is anything blocking you from getting work done?
No.

2 Literature Review

Paper: Pre-trained Language Models for the Legal Domain: A Case Study on Indian Law [PMGG23].

2.1 Abstract

NLP in the legal domain has seen increasing success with the emergence of Transformer-based Pre-
trained Language Models (PLMs) pre-trained on legal text. PLMs trained over European and US legal
text are available publicly; however, legal text from other domains (countries), such as India, have a
lot of distinguishing characteristics. With the rapidly increasing volume of Legal NLP applications
in various countries, it has become necessary to pre-train such LMs over legal text of other countries

as well. In this work, we attempt to investigate pre-training in the Indian legal domain. We re-
train (continue pre-training) two popular legal PLMs, LegalBERT and CaseLawBERT, on Indian
legal data, as well as train a model from scratch with a vocabulary based on Indian legal text. We
apply these PLMs over three benchmark legal NLP tasks — Legal Statute Identification from facts,
Semantic Segmentation of Court Judgment Documents, and Court Appeal Judgment Prediction —
over both Indian and non-Indian (EU, UK) datasets. We observe that our approach not only enhances
performance on the new domain (Indian texts) but also over the original domain (European and UK
texts). We also conduct explainability experiments for a qualitative comparison of all these different
PLMs.

2.2 Summary

The paper titled ”Pre-trained Language Models for the Legal Domain: A Case Study on Indian Law”
presents a case study that investigates the development and fine-tuning of language models specifically
for Indian legal texts. It focuses on adapting existing models like Legal BERT and CaseLawBERT by
retraining them on a large corpus of Indian legal documents. The contributions of this work are:

Key Results: The model InLegalBERT (based on LegalBERT) showed significant improvements
in performance for Indian legal texts over its original version. Additionally, CustomInLawBERT
demonstrated strong performance even though it was trained on fewer steps, showcasing the importance
of custom vocabularies for legal-specific NLP tasks.

Explainability: The paper also explored model explainability by comparing attention scores from
the fine-tuned models with expert annotations to ensure the model was making decisions based on
relevant portions of legal texts.

e Pre-training with Indian Legal Texts: The study retrained two popular models—Legal BERT
and CaseLawBERT—on Indian legal data and introduced a custom model, CustomInLawBERT,
trained from scratch using a specialized vocabulary tailored to Indian legal documents.

e End-Task Applications: The models were evaluated on three specific tasks relevant to the legal
domain:

— Legal Statute Identification (LSI): Automatically identifying relevant legal statutes given
the facts of a case.

— Semantic Segmentation of Court Judgements: Classifying different sections in legal judge-
ments (e.g., facts, ruling, arguments).

— Court Judgement Prediction (CJP): Predicting the final decision of a court based on the
case’s facts and arguments.

e Key Results: The model InLegalBERT (based on Legal BERT) showed significant improvements
in performance for Indian legal texts over its original version. Additionally, CustomInLawBERT
demonstrated strong performance even though it was trained on fewer steps, showcasing the
importance of custom vocabularies for legal-specific NLP tasks.

e Explainability: The paper also explored model explainability by comparing attention scores from
the fine-tuned models with expert annotations to ensure the model was making decisions based
on relevant portions of legal texts.

2.3 Relevance

This paper is highly relevant to our project on NLP for extracting procedural history from legal
documents (sentencias). Like our work, it emphasizes the need to fine-tune models to domain-specific
legal texts. The method of pre-training models such as InLegalBERT and CustomInLawBERT using
specialized legal vocabularies is particularly applicable to our need for customizing models to extract
key procedural information from sentencias.

3 Scripts and code blocks

The code is in the private repository repository. The progress for this week is in ./karol/week7/ .

https://github.gatech.edu/calexander97/sentencias

3.1 Code developed

The following items were developed this week. The full workflow of the code is shown in Figure 1.

e I created a script to split PDF file into specific sentences, shown in Figure 2
e Cleaning of data and convert the documents into txt files, shown in Figure 3.

e Use ChatGPT 4o to send the sentencias text alongside a prompt to generate an output JSON
file for each sentence, such JSON files contain an array of dates in their original format and a
standardize one, as well as the context of the date, this is shown in Figure 4.

Large PDF file

Split and cleaning
-> txt files

Sentencia #i

\ Prompt to generate
JSON

Prompt + context t———

JSON with dates, index
and context

Figure 1: Code logic workflow to process file.

4 Documentation

The documentation is present in the README.md file in the repository. Refer to the repository to
get the most updated instructions on how to run the code. For this week, the useful readme is in
./karol/week7/readme.md

Different to previous weeks, to run the GPT code it is required to setup and environment in Azure
Open Al and set the API KEY as an environmental variable. This code also uses the following libraries.

pip install python-docx
pip install PyMuPDF
pip install openai

https://github.gatech.edu/calexander97/sentencias/

split_pdf sections(input_pdf path, output folder, list page numbers, offset=43):

= [page + o

sorted(pdf_

ge numbers)):
[i]

pdf_page_numbers[i+l] el total_pages

er, output_pdf name)

output_pdf file:

Figure 2: Code to split PDF document into sentencias.

5 Script Validation

The scripts are validated by analyzing the final JSON results. The running of the scripts is shown in
Figure 5. This script add all the resulting documents into a folder, as shown in Figure 6.

6 Results Visualization

Figure 7 shows one example of an original sentencia PDF file after the splitting process. Figure 8
shows the process after cleaning the documents. Once the txt files are processed by ChatGPT 40 and
the resulting response is parsed to extract the JSON component, this component is saved in a local
folder to be used in a later stage as training data. An example of a final generated JSON file is shown
in Figure 9 .

process_all files():

(input_folder):

(input_folder, filename)

print(f“Processing file: {filename

text = read_text_file(file path)

ted_data = extract_date

tput_folder, f'{os.path.splitext(filename)[a

output_file}™)

Figure 3: Code to generate clean txt files.

7 Proof of Work

Figure 9 shows Azure OpenAl Studio, where the deployments of the models were done. All the scripts
work end to end from the starting PDF file, as shown in the Figure 9, the final results correspond to
real dates. Further manual inspection and scripting can be used to ensure quality of the generated
JSON files, so they can be used as training data for our models.

8 Next Week’s Proposal

Refer to section 1.2 for details (avoid repetition).

References

[PMGG23] Shounak Paul, Arpan Mandal, Pawan Goyal, and Saptarshi Ghosh. Pre-trained language
models for the legal domain: A case study on indian law, 2023.

Figure 4: Code to call ChatGPT using custom prompt.

Figure 5: Execution of code processing sentencias texts

Il weekb

v @ week?

> I cleaned

& dates

section_1008-1015_cleanedj...

section_1016-1027_cleaned
[section_102-106_cleaned.json
section_1028-1032_cleane
section_1033-1042_cleanedj
L] section_1043-1051_cleaned.j
L] section_1052-1059 _cleane
section_1060-1067_cleaned,].
L] section_1068-1076_cleanedj.
L] section_107-114_cleaned.json

section_1077-1084_cleaned,}.

[section_1085-1098 cleanedj...

[section_1099-1107_cleaned;

section_1108-1117_cleaned,..

[section_1118-1128_cleanedj...

section_1129-1135_cleaned,
section_1136-1146_cleaner

) section_1147-1156_cleaned.

Figure 6: Resulting folder with JSON files

section_1008-1015_cleaned,json

section_1016-1027_cleaned,json

section_102-106_cleaned.json

section_1028-1032_cleaned,json

section_1033-1042_cleaned,json

section_1043-1051_cleaned,json

section_1052-1059_cleaned.json

section_1060-1067_cleaned,json

section_1068-1076_cleaned.json

section_107-114_cleaned.json

section_1077-1084_cleaned,json

section_1085-1098_cleaned,json

section_1099-1107_cleanedjson

section_1108-1117_cleanedjson

section_1118-1128_cleanedjson

SENTEMNCIA DEL 31 DE ENERO DE 2024, NUM. 5CI-P5-24-0001

Sentencia impugnada: Tercera Sala da la Chmara Civil v Camercial
de la Certe de Apelacién del Distrite Nacio-
nal, del 31 de marzo de 2023,

Materia: Civil.

Recurrente: Aimd Jascling Grand.

Abogada: Lic. Juan F. De Jesis M.

Recurridos: Asociacidn Cibao de Ahorros v Préstamas y

comparkes.

Abogados: Licdla, Qlga Maria Veras L.y Lic, Marda Au-
qustn Matos Belré,

lueza ponente: Filar Jiménez Qrtiz.

Decisian: Declara Caducidad.

EN NOMBRE DE LAREPUBLICA

La PRIMERA SALA DE LA SUPREMA CORTE DE JUSTICIA, competente
para conocer de los recursos de casacion en materia civil v comerdial,
regularmente constituida por los jusces Filar Jimnez Ortiz, presidente,
Justiniano Monlero Monlero, Samuel Arigs Arseno vy Vanessa Acosla
Peralta, mismbros, asistidos del secretario genaral, en la sede de |2
Suprerma Corte de Justicia, ubicada en Santo Domingo de Guzman,
Distrito Macicnal, en fecha 31 de enero de 2024, afc 180° de |a Inde-
pendencia v ano 161° de |a Restauracion, dicta la siguiente sentencia:

En pcasidn del recurso de casacién interpuesto por la sefiora Aimé
Josefina Grand, quien tiene como abogado apoderade al Ledo. Juan F
De Jesus M.; de generales que constan en el expediente.

3

wiww poderjucicial gola.do

Fron e Juiioian Must, T35S« Primeis Sai - Soeiess Comne oe Jusi

En este proceso figuran como partes recurridas a) Asociacion Cibao
de Ahorros v Préstamos, debidamente representada por su presiden-

o gizritive Tacd | oic Yamtiira Cackaficre Aonian Fiane crma shansdac

Figure 7: Original Sentencia sample file

Blame

1358 « Primera Sala » Suprema Corte de Justicia 3 Segunda Sala waw.poderjudicial.gob.do SENTENCIA DEL 31 DE ENERO DE 2024, NOM. 4-0001 Sentencia impugnada: de 1a Cémara G
civil

Ainé Josefina Grand.

Lic. Juan F. De Jesis H.

Asociacién Cibao de Ahorros y Préstasos y cospartes.

Licda. Olga Maria Veras L. y Lic. Nardo Au- gusto Matos Beltré.

clara Caducidad.

EN NOMBRE DE LA REPUBLICA La PRIMERA SALA DE LA SUPREWA CORTE DE JUSTICIA, cospetente para conocer de 1os recursos de casacidn en materia civil y comercial, regularmente constituida por los jueces Pilar Jiménez Ortiz, pre
s M.; de generales que constan en el expediente.

Boletin Judicial ndm. 1358 Primera Sala Suprema Corte de Justicia 4 www.poderjudicial .gob.do En este proceso figuran como partes recurridas a) Asociacién Cibao de Ahorros y Préstamos, debidamente rep
Contra 1a sentencia civil nim. 1303-2

entada por su
023-SSEN-00149, de fecha 31 de marzo de 2023, dictada por la Tercera Sala de la Cémara Civil y Co- mercial de la Corte de Apelacién del Distrito Nacional, cuyo dispositivo copiado text
(2018), dictada por 1a Cuarta Sala de 1a Cimara Civil y Comercial del Juzgado de Primera Instancia del Distrito Nacional, y en consecuencia confirma en todas sus partes, Supliendo motivos, por lo antes expues- tos. Cuartc
VISTOS TODOS LOS DOCUMENTOS QUE REPOSAN EN EL EXPEDIENTE: A) Constan:) el memorial de casacién depositado en fecha 2 de noviembre de 2023, mediante el cual la parte recurrente invoca Boletin Judicial nim. 1353 = Prisers
B) Este expediente fue remitido de 1a secre eral a 1a se- cretaria de esta sala en fecha 24 de noviembre de 2023. Conforme al articulo 26 de 1a Ley 2-23, del 17 © de 2023, 1a comnicacién del recurso al Mir
LA PRIMERA SALA, DESPUES DE HABER DELTBERADO: 1)

En el presente recurso de casacién figuran como recurrente 1a sefora Aimé Josefina Grand y como partes recurridas Asociacién Cil stamos, Constructora Armando Toros C. por A., José Rosado Torres y Consorc

Sobre 1as solicitudes incidentales 3) Procede en primer orden referirnos al medio de inadmisi éstanos en su memorial de defensa, en el sentido de que el pre

La recurrente mediante réplica de defensa aduce que la parte recurrida alude un medio de inadaisién, bunal Constitucional, las inadaisibilidades solo proceden cuando se violase el der

Por otro lado, el plazo sefalado por el ar- ticulo 20 pirrafo II de la Ley 2-23, sobre Recurso de Casacién, respecto de los quince (15) dias hibiles para el depdsito del acto de emplaza- miento vencia el viernes 24 de nos
En esas atenciones, procede decidir en el sentido enunciado, acogiendo por tanto el pedimento de 1a parte recurrida propuesto al respecto. 10) En virtud del articulo 54 de 1a Ley nim. 2-23, procede condenar a 1a parte rec

Por tales motivos, 1a PRINERA SALA DE LA SUPREMA CORTE DE JUSTICIA, por autoridad y mandato de 1a ley y en aplicacién de las disposiciones establecidas en 1a Co 6n de 1a Repiblica; articulos 19, 20, 21, 54, 82 Ley

FALLA: PRIMERO: DECLARA CADUCO el recurso de c interpues sentencia civil nim. 13032023 SSEN-09149, de fecha 31 de marzo de 2023, dictada por la Tercera Sala de la Cémara Civil

SEGUNDO: CONDENA a 1a parte recurrente Aimé Josefina Grand, al pago de las costas del proceso, con distraccién a favor y provecho de Boletin Judicial nim. 1358 = Primera Sala Supresa Corte de Justicia & wes.poderjudicic

Firmado: Pilar Jiménez Ortiz, Justiniano Montero Montero, Samuel Arias Arzeno y Vanessa Acosta Peralta.

César José Garcia Lucas, secretario general de 1a Suprema Corte de Justicia, CERTIFICD, que 1a sentencia que amtecede ha sido dada y Firmada por los jueces que Figuran en ella, en la fecha en ella indicada. wew.poderjudic

> | api_version

“standard_date"
original_date”

standard_date’
riginal_date’

" index

standard_date’

standard_date’

[— Swichto e oid ook Allesouces
Model deployments
==
D At
PR + Deploy model - ") Refresh £ Edit [il Delete (D Openinplayground O Reset view
B Mode casog
0 Cotumes

Model reticement date Content filter Deployment type. Fine-tune Capacity

Jan 24, 2025 700 PM Defautv2® Globalstandard 10K TPM
@ Real-time audio

May 1 M Defautv2® Globalstandard 10KTPM
G Images

I Fine-tuning

Batch jobs
Deployments
Quota
© Content fiters:
D Data fes

[m—

Figure 10: Azure OpenAl Studio

Week 7 Research Report

Thomas Orth (NLP Summarization / NLP Gen Team)
October 2024

0.1 What did you work on this week?
1. Adjust dataset based on discussions with Dr. Alexander
2. Generated Summaries using an adjusted form of Summary Chain of Thought

3. Wrote prompt for entity extraction to attempt to follow clearinghouse
guidelines concretely

4. Explored Mistral
5. Read up on AdalFlow

0.2 What are you planning on working on next?
1. Generate more summaries for validation by interview team
2. Scale Summary CoT work with chunking

3. Continue experiment with entity extraction work to create summaries

0.3 Is anything blocking you from getting work done?
1. None

1 Abstracts

e Title: Reasoning with Language Model Prompting: A Survey. Conference:
ACL 2023. Link: https://aclanthology.org/2023.acl-long.294.pdf

e Abstract: Reasoning, as an essential ability for complex problem-solving,
can provide back-end support for various real-world applications, such as
medical diagnosis, negotiation, etc. This paper provides a comprehensive
survey of cutting-edge research on reasoning with language model prompt-
ing. We introduce research works with comparisons and summaries and
provide systematic resources to help beginners. We also discuss the po-
tential reasons for emerging such reasoning abilities and highlight future
research directions.

2

Summary: This paper is a comprehensive review of different LLM prompt-
ing techniques, the challenge and limitations, and the need for robust
evaluation.

Relevance: There could be new techniques here that we should investigate.

Relevant Info

Summary Chain of Thought (CoT) is a technique in my last report to
create element driven summaries with LLMs

Llama 3.2 is a popular LLM given its performance
Ollama is a way to serve LLMs locally

Langchain is a popular library for interacting with LLMs*

Scripts

. All scripts uploaded to https://github.com/Human-Augment- Analytics/NLP-

Gen

. Scripts were run with the following file for testing: https://gatech.box

.com/s/bb2ay159jlwhow6epsq0u80xnbuldu88u

. Thomas-Orth/summary_chain_of_thought.py

e Brief Description: Run a modified version of Summary Chain of
thought on the data

e Status: Tested by running the pipeline to completion without issue
e Important Code Blocks:

(a) First block: Read in CSV file, choose document
(b) Second block: Run through prompts
(c¢) Third Block: Evaluate via manual inspection

e Screenshot of code:

https://gatech.box.com/s/bb2ay159jlwhow6epsq0u80xn6u3u88u
https://gatech.box.com/s/bb2ay159jlwhow6epsq0u80xn6u3u88u
https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/Thomas-Orth/summary_chain_of_thought.py

Figure 1: Summary CoT

4. Thomas-Orth/extract_relevant_info.py

e Brief Description: Run entity Extraction Prompts on complaint docs
e Status: Tested by running the pipeline to completion without issue
e Important Code Blocks:

(a) First block: Load CSV and choose document from dataframe
(b) Second block: Run prompts
(¢) Third Block: Evaluate results based on manual inspection

e Screenshot of code:

Figure 2: Entity extraction code

5. Flow Diagram:

https://github.com/Human-Augment-Analytics/NLP-Gen/blob/main/Thomas-Orth/extract_relevant_info.py

Run Summary

i g ary Co
If Summary CoT CoT

| Start script | Load Evaluate —»| End Script |

Document

If entity extraction Run Entity
Extraction

Figure 3: Flow diagram

6. Running scripts:

(a
(b

) Download the scripts, the csv from the box link and llm.requirements.txt
)
¢) To pull and run llama 3.2, run: ollama run llama3.2
)

)

Install ollama: https://ollama.com/download
(
(d

(e) Run: python chosen python script

Run: python -m pip install -r llm.requirements.txt

4 Documentation

1. Download CSV file, with two columns: Document and Summary
2. Update scripts to point to CSV file
3. Run scripts to output generated summaries

4. Manually evaluate summary

5 Results

5.1 Summary CoT example

Below is an example summary made by the Summary Chain of Thought tech-
nique:

A class-action lawsuit was filed on November 18, 1987, against the De-
fendants responsible for the conditions at the TCDC (Tennessee Correctional
Complex), alleging violations of various constitutional rights. The Plaintiffs,
unnamed individuals likely imprisoned at the TCDC, claim that they and their
relatives and visitors are subjected to poor living conditions, inadequate food

https://ollama.com/download

. Year: 1987
. Court: U.S. District Court for the District of Maryland
. Judge: Not specified
. Counsel: Private (ACLU, ACLU National Prison Project)
. Class Action/Legal Claims: Class action lawsuit involving individual plaintiffs
. Defendants: The Tennessee Correctional Complex and its officials
. Plaintiffs: Inmates at the Tennessee Correctional Complex and their relatives and visitors
. Legal Claims:
* Violation of First Amendment rights (free speech, association)
* Violation of Sixth Amendment rights (right to counsel, access to courts)

* Violation of Eighth Amendment rights (cruel and unusual punishment)
* Violation of Fourteenth Amendment rights (due process, equal protection)
. Injunctive Relief: Permanently enjoin Defendants from engaging in unlawful practices
. Declaratory Relief: Issued a declaratory judgment stating Defendants' policies and actions violate Plaintiffs' constitutional rights
. Attorney Fees: Awarded reasonable costs and attorneys' fees pursuant to 42 U.S.C. §1988
. Money Damages: Not specified

Figure 4: Entity extraction results

and medical care, and denial of access to courts, violating their First, Sixth,
Eighth, and Fourteenth Amendment rights. The ACLU Maryland and ACLU
National Prison Project represent the Plaintiffs in this lawsuit, seeking a declara-
tory judgment, injunctive relief, and damages for the alleged mistreatment and
poor conditions at the TCDC.

The summary contains key information and relevancy. While still missing
some entities the clearing house would like such as the court that this took place
in. But its a good first pass.

5.2 Entity extraction

Here is an example of entity extraction using LLMs:
The LLM is able to extract entities pretty well on complaints. Leveraging
this context will be great to create better summarizations

6 Proof of Results

Llama 3.2 is one of the best performing LLMs currently so its a good OSS model
choice.

Summary CoT is a paper that was published at ACL (https://arxiv.or
g/abs/2305.13412) with results showing the fact asking questions before going
right to summarization helped alot.

6.1 Known Limitations

Currently, I am feeding the document directly to the LLM. For scalability,
chunking of the document will be needed.

https://arxiv.org/abs/2305.13412
https://arxiv.org/abs/2305.13412

