
Larrabee: A Many-Core x86 Architecture for Larrabee: A Many Core x86 Architecture for
Visual Computing from Intel

Prof. Hsien-Hsin S. LeeProf. Hsien Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Tech
Disclaimer: The materials of this presentation were obtained from available
resources including In-Stat’s Microprocessor Report, Intel’s Larrabee paper
published in SIGGRAPH 2008, and certain speculations from both the
presenter and several online reviews. The opinions suggested by this slide
set are purely the presenter’s interpretation from these materials, they do not
necessarily represent the official opinions of Intel, Nvidia, or Georgia Tech.

Vision, Ambition, and Design Goals
• Intel: Software is the New Hardware !

• Intel: x86 ISA makes parallel program easier

– Better flexibility and programmability
– Support subroutine call and page faulting

Mostly software rendering pipeline except texture – Mostly software rendering pipeline, except texture
filtering

• Note that, general goal for current day GPGPU designers
(well, also Intel’s Larrabee architects)

f 2

2 2

–– ↑↑ performance per mm2

–– ↑↑ performance per watt

The Larrabee Architecture

...In-order
X86+SIMD

In-order
X86+SIMD

In-order
X86+SIMD

In-order
X86+SIMD

...n
Lo

gi
c

M
em

oryCoherent
L2$

Coherent
L2$

Coherent
L2$

Coherent
L2$...

...

xe
d

Fu
nc

tio
n

y &
 I/O

 Interf

L2$ L2$ L2$ L2$

Coherent
L2$

Coherent
L2$

Coherent
L2$

Coherent
L2$

...

Fi
x face

In-order
X86+SIMD

In-order
X86+SIMD

In-order
X86+SIMD

In-order
X86+SIMD

L2$ L2$ L2$ L2$

• Lots of x86 cores (8 to 64?)
• Fully coherence cache hierarchy

...X86+SIMD X86+SIMD X86+SIMD X86+SIMD

3

• Fully coherence cache hierarchy

3
3

Programmable Pipeline Comparison

Pi lInput
Data

Primitive Setup
& Rasterization

Frame
Buffer
Blend

Vertex
Shader

Pixel
Shader

Geometry
Shader

Conventional GPGPU pipeline (base on DirectX10)

Vertex
Sh d

Pixel
Shader

Geometry
Sh d

Primitive
Setup

Frame
Buffer

er
iz

at
io

n

Input
Shader ShaderShader Setup Blend

R
as

te
Larrabee’s fully programmable pipeline

Data

4 4

y p g p p

X86 Core
• LRB’s “in-order” core is

The original Pentium (p54c, i.e., pre-MMX)
+ 64bit extensions
+ Larger L1 caches + a shared L2
+ 4-way multi-threading
+ 16-wide VPU (Vector Processing Unit)

• Rumor has it: this is the thoroughly debugged P54C given
back by Pentagon who got the original RTL from Intel to back by Pentagon who got the original RTL from Intel to
develop their radiation hardened version (which I really doubt)

5 5

• Compatibility is the keyword

Single Larrabee Core
e

Vector
Unit Ve

ct
or

R
eg

is
te

rs

2K
B

)
ds

))

on
 D

ec
od

e R

an
d

D
$

(3
2

rt
 4

 th
re

ad

ca
l s

ub
se

t
2$

 (2
56

K
B

)

ne
tw

or
k

In
st

ru
ct

i

Scalar ar te
rs 1
I$

 (3
2K

B
)

(to
 s

up
po

O
ne

 L
oc

O
f t

he
 L

2

R
in

g

Scalar
Unit Sc

al
a

R
eg

is
t L

6 6

Dual Issue Core
• Rely on compiler to pair two instructions for

asymmetric pipes
– Same as P54C

– Primary instruction pipe (U-pipe)
•All instructions

– Secondary, more restricted pipe (V-pipe)
•ld st simple ALU Ops Brs cache manipulation ld, st, simple ALU Ops, Brs, cache manipulation

instructions, vector st

7 7

• 1GHz, 32 cores to reach 1 TeraFLOPS

Shared L2, Divided L2
• Each core has a local L2 subset

– 256KB each
– Enable parallel lookup among cores

• One core can access others’ subsets directly

• Entire L2 is coherent (no hassle like Cell DMA)

• SIGGRAPH paper shows a 4MB L2 indicating 16
cores

8 8

Cache Control Instructions
• Each core can

– Fast-access its local subset of L2 (256KB)Fast access its local subset of L2 (256KB)
– Access other’s L2 shares too

• Control for non temporal streaming data (SSE)• Control for non-temporal streaming data (SSE)
• Prefetch to L1, or L2 only
• Mark a streaming cache line for early eviction
• Render target kept in L2 (e.g., FB, ZB, SB, etc)g p (g , , , ,)

9 9

Ring Network

• Bi-directional ring networkBi directional ring network
– All cores, L2, block of FF logic are attached to
– 512-bit wide each direction
– Simpler than mesh, easy wire routing

• One clock cycle for each stop (a hop)
– Number of nodes between two parties determine latencies
– Worst case: halfway around the ring

• Ring latency is small compared to DRAM access
• When > 16 cores: multiple, hierarchical rings will be

10 10

needed (think about KSR MPP)

4-Way MT
• Four x86 contexts to support 4 hardware threads

• One thread picked per clock

• MT is especially helpful
– When compiler fails to schedule code without stallsWhen compiler fails to schedule code without stalls
– Upon L1 misses
– Can hide long vector instruction latency
– Can switch thread on every clock

11 11

Larrabee Multithread Model
d d

Fiber: Software-Managed Context (Hide long predictable Latencies)

Thread: Hardware-Managed Context (Hid short unpredictable Latencies)

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

st
ra

nd
st

ra
nd

16-Wide Vector unit

More Fibers (Typically up to 8, Depending on Latency to Cover)

More Threads (Up to 4 per Core, Share Memory via L1 and L2 Caches)

12 12

Source: MPR

VPU (1/2)
• 16-wide Integer / single-precision FP
• 8-wide double-precision FP

• Ternary operands
O f – One source can come from memory

• Free predication on every instructionFree predication on every instruction
– 16-bit predicate registers ─ one “enable” per lane

• Gather/scatter instructions
– Read/write 16 results to/from 16 different offsets

13 13

• 1/3 the area of the LRB core!!!

VPU (2/2)

ct
or

gi
st

er

U Sw
iz

zl
e

Sw
iz

zl
e

U

R
eg

is
te

rs Ve
c

R
eg

Ve
ct

or
 A

LU

Ve
ct

or
 A

LU

M
as

k
R

16
-w

id
e

V

at
e

ca
te 16

-w
id

e
V

R
ep

lic

R
ep

lic
14 14

Fixed Function Logic (1/3)
• Modern GPGPU have the following done in HW

– Texture filtering, display processing, post-shader alpha
blending, rasterization, interpolation, etc.

• LRB do all in SW except Texture Sampler Units
– Much faster than software approach (12x ~ 40x)

• Texture filtering still most commonly uses 8-bit operations
• Efficiently selecting unaligned 2x2 quad requires a

specialized pipelined gather logicp p p g g
• Filtering on VPU requires an impractical amount of RF b/w.
• On-the-fly texture decompression drastically more efficient

in dedicated hardware

15 15

in dedicated hardware

Fixed Function Logic (2/3)
• Similar to typical GPU texture logic

– 32KB texture cache per core32KB texture cache per core
– Supports all the usual operations

•DX10 compressed texture formatDX10 compressed texture format
•Mipmapping
•Anisotropic filtering

16 16

Fixed Function Logic (3/3)
• Core pass commands to the texture units through

the L2$ and receive results the same way.

• Virtual-to-Physical page translationy p g
– Report any page misses to the core
– Retry the texture filter command after the page is in

memory

• LRB Still can perform texture operations on the
cores if the performance is fast enough in software.

17 17

Simulation Data from SIGGRAPH paper

Scalable Performance for
3D games3D games

Scalable Performance for
3D game Physics

18 18

Source: SIGGRAPH08

Simulation Data from SIGGRAPH paper

Scalable RT ray tracing

Non-graphics app & kernels

19 19

Source: SIGGRAPH08

Simulation Data from SIGGRAPH paper

of LRB units needed for 60fps

20

Source: SIGGRAPH08

Profile Breakdown for Title Games

• Modern games: 70% pixel setup+shading 10% depth 10%

21

• Modern games: 70% pixel setup+shading, 10% depth, 10%
rasterization + 10% vertex shading

21Source: Tom Forsyth, Intel, SIGGRAPH08

View from Nvidia
http://www.pcper.com/images/news/A%20viewpoint%20from%20NVIDIA.pdf
(I don’t know who actually wrote this article.)

• HPC developers said
– Easier parallel computing on x86 multi-core has not proven true

Applications struggle to scale from 2 to 4 cores– Applications struggle to scale from 2 to 4 cores
– Why people are not using quad cores with 4-wide SIMD
– We’d like to know what has changed in Larrabee

• Questions (from Nvidia?)
– Will apps written for today’s Intel CPUs run unmodified on Larrabee?
– Will apps written for Larrabee run unmodified on today’s Intel multi-Will apps written for Larrabee run unmodified on today s Intel multi

core CPUs?
– The SIMD part of Larrabee is different from Intel’s CPUs- so won’t

that create compatibility problems?

22

that create compatibility problems?

22

View from Nvidia
• Is Ct the answer?
• Nvidia: CUDA has proven to run the same source code for

GPU and a quad core CPU

• The article: Parallel computing problems are not solved with • The article: Parallel computing problems are not solved with
device level instruction sets

23 23

