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made the first chapter available on the web, but it is possible (based on past experience)
that a pirated version of the complete book will eventually appear on file-sharing sites.
In the event that you are reading such a version, I have a request:

If you don’t find this book useful (in which case you probably would have returned it, if
you had bought it), or if you do find it useful but aren’t able to afford it, then no worries;
carry on. However, if you do find it useful and are able to afford the Kindle eBook
(priced below $10), then please consider purchasing it (available on Amazon). If you
don’t already have the Kindle reading app for your computer, you can download it free
from Amazon. I chose to self-publish this book so that I could keep the cost low. The
resulting eBook price of around $10, which is very inexpensive for a 250-page physics
book, is less than a movie and a bag of popcorn, with the added bonus that the book
lasts for more than two hours and has zero calories (if used properly!).

– David Morin

Special relativity is an extremely counterintuitive subject, and in this chapter we will see
how its bizarre features come about. We will build up the theory from scratch, starting
with the postulates of relativity, of which there are only two. We will be able to derive
a surprisingly large number of strange effects from these two easily stated postulates.

The postulate that most people find highly counterintuitive is that the speed of light
has the same value in any inertial (that is, non-accelerating) reference frame. This
speed, which is about 3 · 108 m/s, is much greater than the speed of everyday objects, so
most of the consequences of relativity aren’t noticeable. If we instead lived in a world
identical to ours except for the speed of light being only 50 mph, then the consequences
of relativity would be ubiquitous. We wouldn’t think twice about time dilation, length
contraction, and so on.

As mentioned in the preface, this chapter is the first of two that cover kinematics.
(Kinematics deals with lengths, times, speeds, etc., whereas dynamics deals with masses,
forces, energy, momentum, etc.) The outline of this chapter is as follows. In Section 1.1
we discuss the historical motivations that led Einstein to his theory of special relativity.
Section 1.2 covers the two postulates of relativity, from which everything in the theory
can be obtained. Section 1.3 is the heart of the chapter, where we derive the three
main consequences of the postulates (loss of simultaneity, time dilation, and length
contraction). In Section 1.4 we present four instructive examples that utilize the three
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2 Chapter 1. Kinematics, Part 1

fundamental effects. Section 1.5 covers the velocity-addition formula, which gives
the proper correction to the naive Newtonian result (simply adding the velocities). In
Chapter 2 we will continue our discussion of kinematics, covering more advanced topics.

1.1 Motivation

Although it was certainly a stroke of genius that led Einstein to his theory of relativity,
it didn’t just come out of the blue. A number of conundrums in 19th-century physics
suggested that something was amiss. Many people had made efforts to explain away
these conundrums, and at least a few steps had been taken toward the correct theory.
But Einstein was the one who finally put everything together, and he did so in a way that
had consequences far beyond the realm of the specific issues that people were trying
to understand. Indeed, his theory turned our idea of space and time on its head. But
before we get to the heart of the theory, let’s look at two of the major problems in late
19th-century physics. (A third issue, involving the addition of velocities, is presented in
Problem 1.15.) If you can’t wait to get to the postulates (and subsequently the results) of
special relativity, you can go straight to Section 1.2. The present section can be skipped
on a first reading.

1.1.1 Galilean transformations, Maxwell’s equations

Imagine standing on the ground and watching a train travel by with constant speed v in
the x direction. Let the reference frame of the ground be labeled S, and let the reference
frame of the train be labeled S′, as shown in Fig. 1.1. Consider two events that happen
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Figure 1.1

on the train. An event is defined as something that occurs with definite space and time
coordinates (as measured in a given frame). For example, a person might clap her
hands; this clap takes place at a definite time and a definite location. Technically, the
clap lasts for a nonzero time (a few hundredths of a second), and the hands extend over a
nonzero distance (a few inches). But we’ll ignore these issues and assume that the clap
can be described be unique x, y, z, and t values. Note that a given event isn’t associated
with one particular frame. The event simply happens, independent of a frame. For any
arbitrary frame we then choose to consider, we can describe the event by specifying the
coordinates as measured in that frame.

On our train, the two events might be one person clapping her hands and another
person stomping his feet. If the space and time separations between these two events
in the frame of the train are ∆x ′ and ∆t ′, what are the space and time separations, ∆x
and ∆t, in the frame of the ground? Ignoring what we’ll be learning about relativity in
this chapter, the answers are “obvious” (although, as we’ll see in Section 2.1 when we
derive the Lorentz transformations, obvious things can apparently be incorrect!). The
time separation ∆t is “clearly” the same as on the train, so we have ∆t = ∆t ′. We know
from everyday experience that nothing strange happens with time. When you see people
exiting a train station, they’re not fiddling with their watches, trying to recalibrate them
with a ground-based clock.

The spatial separation is a little more interesting, but still fairly simple. If the train
weren’t moving, then we would just have ∆x = ∆x ′. This is true because if the train
isn’t moving, then the only possible difference between the frames is the location of
the origin. But the only consequence of this difference is that every x ′ coordinate in
the train is equal to a given fixed number plus the corresponding x coordinate on the
ground. This fixed number then cancels when calculating the separation, ∆x ′ ≡ x ′2− x ′1.

However, in the general case where the train is moving, everything in the train gets
carried along at speed v during the time ∆t (which equals ∆t ′) between the two events.
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So as seen in the ground frame, the person stomping his feet ends up v∆t ′ to the right (or
left, if v is negative) of where he would be if the train weren’t moving. The total spatial
separation ∆x between the events in the ground frame is therefore the ∆x ′ separation
that would arise if the train weren’t moving, plus the v∆t ′ separation due to the motion
of the train. That is, ∆x = ∆x ′ + v∆t ′, as shown in Fig. 1.2.
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The Galilean transformations (first written down by Galileo Galilei in 1638) are therefore

∆x = ∆x ′ + v∆t ′

∆t = ∆t ′ (1.1)

Nothing interesting happens in the y and z directions (assuming the train is traveling
in the x direction), so we additionally have ∆y = ∆y′ and ∆z = ∆z′. Both of these
common values are zero for the events in Fig. 1.2, because the events occur on the x
axis. But for general locations of the events, the ∆’s will be nonzero.

A special case of Eq. (1.1) arises when the two events occur at the same place on
the train, so that ∆x ′ = 0. In this case we have ∆x = v∆t ′. This makes sense, because
the spot on the train where the events occur simply travels a distance v∆t (which equals
v∆t ′) by the time the second event occurs.

The principle of Galilean invariance says that the laws of physics are invariant under
the above Galilean transformations. Alternatively, it says that the laws of physics hold
in all inertial (non-accelerating) frames. (It was assumed prior to Einstein that these
two statements say the same thing, but we will soon see that they do not. The second
statement is the one that remains valid in relativity.) This principle is quite believable.
For example, in Galilean (nonrelativistic) physics, Newton’s second law, F = ma (or
really F = dp/dt) holds in all inertial frames, because (1) the force F is the same in all
inertial frames, and (2) the constant relative velocity vrel between any two inertial frames
implies that the acceleration of a given particle is the same in all inertial frames. Written
out explicitly, the velocities v1 and v2 in the two frames are related by v1 = v2 + vrel, so

a1 ≡
dv1

dt1
=

d(v2 + vrel)
dt1

=
dv2

dt2
+ 0 ≡ a2, (1.2)

where we have used the facts that t1 = t2 (at least in a Galilean world) and that the
derivative of a constant is zero.

Remarks:

1. Note that the Galilean transformations in Eq. (1.1) aren’t symmetric in x and t. This isn’t
necessarily a bad thing, but it turns out that it will in fact be a problem in special relativity,
where space and time are treated on a more equal footing. We’ll find in Section 2.1 that the
Galilean transformations are replaced by the Lorentz transformations, and the latter are in
fact symmetric in x and t (up to factors of the speed of light, c).
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2. Eq. (1.1) deals only with the differences in the x and t values between two events, and not
with the values of the coordinates themselves of each event. The values of the coordinates
of a single event depend on where you pick your origin, which is an arbitrary choice. The
coordinate differences between two events, however, are independent of this choice, and
this allows us to make the physically meaningful statements in Eq. (1.1). Since it makes
no sense for a physical result to depend on your arbitrary choice of origin, the Lorentz
transformations we derive in Section 2.1 will also need to involve only differences in
coordinates.

3. We’ve been talking a lot about “events,” so just to make sure we’re on the same page with
the definition of an event, we should give some examples of things that are not events. If a
train is at rest on the ground (or even if it is moving), and if you look at it at a snapshot in
time, then this doesn’t describe an event, because the train has spatial extent. There isn’t a
unique spatial coordinate that describes the train. If you instead consider a specific point
on the train at the given instant, then that does describe an event. As another example of
a non event, if you look at a pebble on the ground for a minute, then this doesn’t describe
an event, because you haven’t specified the time coordinate. If you instead consider the
pebble at a particular instant in time, then that does describe an event. (We’ll consider the
pebble to be a point object, so that the spatial coordinate is unique.) ♣

We introduced the Galilean transformations above because of their relation (more
precisely, their conflict) with Maxwell’s equations. One of the great triumphs of 19th-
century physics was the theory of electromagnetism. In 1864, James Clerk Maxwell
wrote down a set of equations that collectively described everything that was known
about the subject. These equations involve the electric and magnetic fields through their
space and time derivatives. Maxwell’s original formulation consisted of a large number
of equations, but these were later written more compactly, using vector calculus, as
four equations. We won’t worry about their specific form here, but it turns out that
if you transform the equations from one reference frame to another via the Galilean
transformations, they end up taking a different form. That is, if you’ve written down
Maxwell’s equations in one frame (where they take their standard nice-looking form),
and if you then replace the coordinates in this frame by those in another frame, using
Eq. (1.1), then the equations look different (and not so nice).

This different appearance presents a major problem. If Maxwell’s equations take a
nice form in one frame and a not-so-nice form in every other frame, then why is one
frame special? Said in another way, it can be shown that Maxwell’s equations imply
that light moves with a certain speed c. But which frame is this speed measured with
respect to? The Galilean transformations imply that if the speed is c with respect to a
given frame, then it is not c with respect to any other frame. (You need to add or subtract
the relative speed v between the frames.) The proposed special frame where Maxwell’s
equations are nice and the speed of light is c was called the frame of the ether. We’ll
talk in detail about the ether in the next subsection, but experiments showed that light
was surprisingly always measured to move with speed c in every frame, no matter which
way the frame was moving through the supposed ether. We say “supposed” because the
final conclusion was that the ether simply doesn’t exist.

There were thus various possibilities. Something was wrong with either Maxwell’s
equations, the Galilean transformations, or the way in which measurements of speed
were done (see Footnote 2 on page 8). Considering how “obvious” the Galilean trans-
formations are, the natural assumption in the late 19th century was that the problem lay
elsewhere. However, after a good deal of effort by many people to make everything
else fit with the Galilean transformations, Einstein finally showed that these were in
fact the culprit. It was well known that Maxwell’s equations were invariant under the
Lorentz transformations (in contrast with their non-invariance under the Galilean ones),
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but Einstein was the first to recognize the full meaning of these transformations. Instead
of being relevant only to electromagnetism, the Lorentz transformations replaced the
Galilean ones universally.

More precisely, in 1905 Einstein showed why the Galilean transformations are simply
a special case of the Lorentz transformations, valid (to a high degree of accuracy) only
when the speed involved is much less than the speed of light. As we’ll see in Section 2.1,
the coefficients in the Lorentz transformations depend on both the relative speed v of
the frames and the speed of light c, where the c’s appear in various denominators. Since
c is quite large (about 3 · 108 m/s) compared with everyday speeds v, the parts of the
Lorentz transformations involving c are negligible, for any typical v. The surviving
terms are the ones in the Galilean transformations in Eq. (1.1). These are the only terms
that are noticeable for everyday speeds. This is why no one prior to Einstein realized
that the correct transformations between two frames had anything to do with the speed
of light.

As he pondered the long futile fight
To make Galileo’s world right,
In a new variation
Of the old transformation,
It was Einstein who first saw the light.

In short, the reasons why Maxwell’s equations are in conflict with the Galilean
transformations are: (1) The speed of light is what determines the scale at which the
Galilean transformations break down, (2) Maxwell’s equations inherently involve the
speed of light, because light is an electromagnetic wave.

1.1.2 Michelson–Morley experiment

As mentioned above, it was known in the late 19th century, after Maxwell wrote down
his equations, that light is an electromagnetic wave and that it moves with a speed of
about 3 · 108 m/s.1 Now, every other wave that people knew about at the time needed
a medium to propagate in. Sound waves need air, ocean waves of course need water,
waves on a string of course need the string, and so on. It was therefore natural to assume
that light also needed a medium to propagate in. This proposed medium was called the
ether.

However, if light propagates in a given medium, and if the speed in this medium is
c, then the speed in a reference frame moving relative to the medium should be different
from c. Consider, for example, sound waves in air. If the speed of sound in air is vsound,
and if you run toward a sound source with speed vyou, then the speed of the sound waves
with respect to you (assuming it’s a windless day) is vsound + vyou. Equivalently, if you
are standing at rest downwind and the speed of the wind is vwind, then the speed of the
sound waves with respect to you is vsound + vwind.

Assuming that the ether really exists (although we’ll soon see that it doesn’t), a
reasonable thing to do is to try to measure one’s speed with respect to it. This can be
done as follows. We’ll frame this discussion in terms of sound waves in air. Let vs be
the speed of sound in air. Imagine two people standing on the ends of a long platform
of length L that moves at speed vp with respect to the reference frame in which the air
is at rest. One person claps, the other person claps immediately when he hears the first
clap (assume that the reaction time is negligible), and then the first person records the

1The exact value of the speed is 299,792,458 m/s. A meter is actually defined to be 1/299,792,458 of the
distance that light travels in one second in vacuum. So this speed of light is exact. There is no need for an
error bar because there is no measurement uncertainty.
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total time elapsed when she hears the second clap. What is this total time? Well, we
can’t actually give an answer without knowing which direction the platform is moving.
Is it moving parallel to its length, or perpendicular to it (or somewhere in between)?
Let’s look at these two basic cases. For both of these, we’ll view the setup and do the
calculation in the frame in which the air is at rest.

• Parallel motion: Consider first the case where the platform moves parallel to
its length. In the reference frame of the air, assume that the person at the rear is
the one who claps first; see Fig. 1.3. Then if vs is the speed of sound and vp is the

v

L

pvs

Figure 1.3 speed of the platform, it takes a time of L/(vs − vp) for the sound from the first
clap to travel forward to the front person. This is true because the sound closes
the initial gap of L at a relative speed of vs − vp, as viewed in the frame of the
air. (Alternatively, relative to the initial position of the back of the platform, the
position of the sound wave is vst, and the position of the front person is L + vpt.
Equating these gives t = L/(vs−vp).) This time is longer than the naive answer of
L/vs because the front person is moving away from the rear person, which means
that the sound has to travel farther than L.

By similar reasoning, the time for the sound from the second clap to travel
backward to the rear person is L/(vs + vp). This time is shorter than the naive
answer of L/vs because the rear person is moving toward the front person, which
means that the sound travels less than L.

Adding the forward and backward times gives a total time of

t1 =
L

vs − vp
+

L
vs + vp

=
2Lvs

v2
s − v2

p
. (1.3)

This correctly equals 2L/vs when vp = 0. In this case the platform is at rest, so
the sound simply needs to travel forward and backward a total distance of 2L at
speed vp. And the result correctly equals infinity when vp → vs. In this case the
front person is receding as fast as the sound is traveling, so the sound from the
first clap can never catch up.

• Perpendicular motion: Now consider the case where the platform moves
perpendicular to its length. In the reference frame of the air, we have the situation
shown in Fig. 1.4. The sound moves diagonally with speed vs. (The sound actually
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Figure 1.4

moves in all directions, of course, but it’s only the part of the sound wave that
moves in a particular diagonal direction that ends up hitting the other person.)
Since the “horizontal” component of the diagonal velocity is the platform’s speed
vp, the Pythagorean theorem gives the “vertical” component as

√
vs2 − vp2, as

shown in Fig. 1.5. This is the speed at which the length L of the platform is
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Figure 1.5

traversed during both the out and back parts of the trip. So the total time is

t2 =
2L√
v2

s − v2
p

. (1.4)

Again, this correctly equals 2L/vs when vp = 0, and infinity when vp → vs. The
vertical component of the velocity is zero in the latter case, because the diagonal
path is essentially horizontal.

The times in Eqs. (1.3) and (1.4) are not equal; you can quickly show that t1 ≥ t2.
It turns out that (for given values of vs and vp) of all the possible orientations of the
platform relative to the direction of motion (which we have been taking to be rightward),
the t1 in Eq. (1.3) is the largest possible time, and the t2 in Eq. (1.4) is the smallest.
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(The proof of this is somewhat tedious, but at least it is believable that if the platform is
oriented between the above two special cases, the time lies between the associated times
t1 and t2.) Therefore, if you are on a large surface that is moving with respect to the air,
and if you know the value of vs, then if you want to figure out what vp is, all you have
to do is repeat the above experiment with someone standing at various points along the
circumference of a given circle of radius L around you. (Assume that it doesn’t occur to
you to toss a little piece of paper in the air, in order to at least determine the direction of
the wind with respect to you.) If you take the largest total time observed and equate it
with t1, then Eq. (1.3) will give you vp. Alternatively, you can equate the smallest total
time with t2, and Eq. (1.4) will yield the same vp.

In the limiting case where vp ≪ vs, we can make some approximations to the above
expressions for t1 and t2. These approximations involve the Taylor-series expressions
1/(1 − ϵ ) ≈ 1 + ϵ and 1/

√
1 − ϵ ≈ 1 + ϵ/2. (See Appendix G for a discussion of Taylor

series.) These expressions yield the following approximate result for the difference
between t1 and t2 (after first rewriting t1 and t2 so that a “1” appears in the denominator):

∆t = t1 − t2 =
2L
vs

*..,
1

1 − v2
p/v

2
s
− 1√

1 − v2
p/v

2
s

+//-
≈ 2L

vs
*,
(
1 +

v2
p

v2
s

)
−

(
1 +

v2
p

2v2
s

)+-
=

Lv2
p

v3
s
. (1.5)

The difference t1 − t2 is what we’ll be concerned with in the Michelson–Morley experi-
ment, which we will now discuss.

The strategy in the above sound-in-air setup is the basic idea behind Michelson’s
and Morley’s attempt in 1887 to measure the speed of the earth through the supposed
ether. (See Handschy (1982) for the data and analysis of the experiment.) There is,
however, a major complication with light that doesn’t arise with sound. The speed of
light is so large that any time intervals that are individually measured will inevitably have
measurement errors that are far larger than the difference between t1 and t2. Therefore,
individual time measurements give essentially no information. Fortunately, there is a
way out of this impasse. The trick is to measure t1 and t2 concurrently, as opposed to
separately. More precisely, the trick is to measure only the difference t1 − t2, and not
the individual values t1 and t2. This can be done as follows.

Consider two of the above “platform” scenarios arranged at right angles with re-
spect to each other, with the same starting point. This can be arranged by having a
(monochromatic) light beam encounter a beam splitter that sends two beams off at 90◦
angles. The beams then hit mirrors and bounce back to the beam splitter where they
(partially) recombine before hitting a screen; see Fig. 1.6. The fact that light is a wave,
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beam
splittersource

screen

recombined
beam

Figure 1.6

which is what got us into this ether mess in the first place, is now what saves the day. The
wave nature of light implies that the recombined light beam produces an interference
pattern on the screen. At the center of the pattern, the beams will constructively or
destructively interfere (or something in between), depending on whether the two light
beams are in phase or out of phase when they recombine. This interference pattern
is extremely delicate. The slightest change in travel times of the beams will cause the
pattern to noticeably shift. This type of device, which measures the interference between
two light beams, is known as an interferometer.

If the whole apparatus is rotated around, so that the experiment is performed at
various angles, then the maximum amount that the interference pattern changes can be
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used to determine the speed of the earth through the ether (vp in the platform setup
above). In one extreme case, the time in a given arm is longer than the time in the other
arm by Lv2/c3. (We have changed notation in Eq. (1.5) so that vp → v is the speed of
the earth through the supposed ether, and vs → c is the speed of light.) But in the other
extreme case, the time in the given arm is shorter by Lv2/c3. So the maximum shift in
the interference pattern corresponds to a time difference of 2Lv2/c3.

However, when Michelson and Morley performed their experiment, they observed
no interference shift as the apparatus was rotated around. Their setup did in fact allow
enough precision to measure a nontrivial earth speed through the ether, if such a speed
existed. So if the ether did exist, their results implied that the speed of the earth through
it was zero. This result, although improbable, was technically fine. It might simply
have been the case that they happened to do their experiment when the relative speed
was zero. However, when they performed their experiment a few months later, when the
earth’s motion around the sun caused it to be moving in a different direction, they still
measured zero speed. It wasn’t possible for both of these results to be zero (assuming
that the ether exists), without some kind of modification to the physics known at the
time.

Many people over the years tried to explain this null result, but none of the expla-
nations were satisfactory. Some led to incorrect predictions in other setups, and some
seemed to work fine but were a bit ad hoc.2 The correct explanation, which followed
from Einstein’s 1905 theory of relativity, was that the ether simply doesn’t exist.3 In
other words, light doesn’t need a medium to propagate in. It doesn’t move with respect to
a certain special reference frame, but rather it moves with respect to whoever is looking
at it.

The findings of Michelson–Morley
Allow us to say very surely,
“If this ether is real,
Then it has no appeal,
And shows itself off rather poorly.”

Remarks:

1. We assumed above that the lengths of the two arms in the apparatus were equal. However,
in practice there is no hope of constructing lengths that are equal, up to errors that are
small compared with the wavelength of the light. But fortunately this doesn’t matter. We’re
concerned not with the difference in the travel times associated with the two arms, but
rather with the difference in these differences as the apparatus is rotated around. Using
Eqs. (1.3) and (1.4) with different lengths L1 and L2, you can show (assuming v ≪ c)
that the maximum interference shift corresponds to a time of (L1 + L2)v2/c3. This is the
generalization of the 2Lv2/c3 result we derived in Eq. (1.5) (in different notation) when
the lengths were equal. The measurement errors in L1 and L2 therefore need only be small
compared with the (macroscopic) lengths L1 and L2, as opposed to small compared with
the (microscopic) wavelength of light.

2. Assuming that the lengths of the arms are approximately equal, let’s plug in some rough
numbers to see how much the interference pattern shifts. The Michelson–Morley setup

2The most successful explanation was the Lorentz–FitzGerald contraction. These two physicists indepen-
dently proposed that lengths are contracted in the direction of the motion by precisely the right factor, namely√

1 − v2/c2, to make the travel times in the two arms of the Michelson–Morley setup equal, thus yielding the
null result. This explanation was essentially correct, although the reason why it was correct wasn’t known
until Einstein came along.

3Although we’ve presented the Michelson–Morley experiment here for pedagogical purposes, the consen-
sus among historians is that Einstein actually wasn’t influenced much by the experiment, except indirectly
through Lorentz’s work on electrodynamics. See Holton (1988).
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had arms with effective lengths of about 10 m. We’ll take v to be on the order of the speed
of the earth around the sun, which is about 3 · 104 m/s. We then obtain a maximal time
difference of t = 2Lv2/c3 ≈ 7 · 10−16 s. The large negative exponent here might make
us want to throw in the towel, thinking that the effect is hopelessly small. However, the
distance that light travels in the time t is ct = (3 · 108 m/s)(7 · 10−16 s) ≈ 2 · 10−7 m, and
this happens to be a perfectly reasonable fraction of the wavelength of visible light, which
is around λ = 6 · 10−7 m, give or take. So we have ct/λ ≈ 1/3. This maximal interference
shift of about a third of a cycle was well within the precision of the Michelson–Morley
setup. So if the ether had really existed, Michelson and Morley definitely would have been
able to measure the speed of the earth through it.

3. One proposed explanation of the observed null effect was “frame dragging.” What if the
earth drags the ether along with it, thereby always yielding the observed zero relative
speed? This frame dragging is quite plausible, because in the platform example above, the
platform drags a thin layer of air along with it. And more mundanely, a car completely
drags the air in its interior along with it. But it turns out that frame dragging is inconsistent
with stellar aberration, which is the following effect.
Depending on the direction of the earth’s instantaneous velocity as it obits around the sun,
it is an experimental fact that a given star might (depending on its location) appear at
slightly different places in the sky when viewed at two times, say, six months apart. This
is due to the fact that a telescope must be aimed at a slight angle relative to the actual
direction to the star, because as the star’s light travels down the telescope, the telescope
moves slightly in the direction of the earth’s motion. We’re assuming (correctly) here that
frame dragging does not exist.
As a concrete analogy, imagine holding a tube while running through vertically falling
rain. If you hold the tube vertically, then the raindrops that enter the tube won’t fall cleanly
through. Instead, they will hit the side of the tube, because the tube is moving sideways
while the raindrops are falling vertically. However, if you tilt the tube at just the right
angle, the raindrops will fall (vertically) cleanly through without hitting the side. At what
angle θ should the tube be tilted? If the tube travels horizontally a distance d during the
time it takes a raindrop to fall vertically a distance h, then the ratio of these distances must
equal the ratio of the speeds: d/h = vtube/vrain (see Fig. 1.7). The angle θ is then given

v

d

h

tube

(start) (end)

θ

vrain

Figure 1.7

by tan θ = d/h =⇒ tan θ = vtube/vrain. With respect to your frame as you run along, the
raindrops come down at an angle θ; they don’t come down vertically.
Returning to the case of light, vtube gets replaced with (roughly) the speed v of the earth
around the sun, and vrain gets replaced with the speed c of light. The ratio of these two
speeds is about v/c = 10−4, so the effect is small. But it is large enough to be noticeable,
and it has indeed been measured; stellar aberration does exist. At two different times of
the year, a telescope must be pointed at slightly different angles when viewing a given star.
Now, if frame dragging did exist, then the light from the star would get dragged along
with the earth and would therefore travel down a telescope that was pointed directly at
the star, in disagreement with the observed fact that the telescope must point at the slight
angle mentioned above. (Or even worse, the dragging might produce a boundary layer of
turbulence that would blur the stars.) The existence of stellar aberration therefore implies
that frame dragging doesn’t occur.

4. Note that it is the velocity of the telescope that matters in stellar aberration, and not its
position. This aberration effect should not be confused with the parallax effect, where
the direction of the actual position of an object changes, depending on the position of the
observer. For example, people at different locations on the earth see the moon at slightly
different angles (that is, they see the moon in line with different distant stars). As a more
down-to-earth example, two students sitting at different locations in a classroom see the
teacher at different angles. Although stellar parallax has been measured for nearby stars
(as the earth goes around the sun), its angular effect is much smaller than the angular effect
from stellar aberration. The former decreases with the distance to the star, whereas the
latter doesn’t. For further discussion of aberration, and of why it is only the earth’s velocity
(or rather, the change in its velocity) that matters, and not also the star’s velocity (since
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you might think, based on the fact that we’re studying relativity here, that it is the relative
velocity that matters), see Eisner (1966). ♣

1.2 The postulates
Let’s now start from scratch and see what the theory of special relativity is all about.
We’ll take the route that Einstein took and use two postulates as the foundation of
the theory. We’ll start with the “relativity postulate” (also called the Principle of
Relativity). This postulate is quite believable, so you might just take it for granted and
forget to consider it. But like any other postulate, it is crucial. It can be stated in various
ways, but we’ll write it simply as:

• Postulate 1: All inertial (non-accelerating) frames are “equivalent.”

This postulate says that a given inertial frame is no better than any other; there is no
preferred reference frame. That is, it makes no sense to say that something is moving. It
makes sense only to say that one thing is moving with respect to another. This is where
the “relativity” in “special relativity” comes from. There is no absolute inertial frame;
the motion of any frame is defined only relative to other frames.

This postulate also says that if the laws of physics hold in one inertial frame (and
presumably they do hold in the frame in which I now sit), then they hold in all others.
(Technically, the earth is spinning while revolving around the sun, and there are also
little vibrations in the floor beneath my chair, etc., so I’m not really in an inertial frame.
But it’s close enough for me.) The postulate also says that if we have two frames S and
S′, then S should see things in S′ in exactly the same way as S′ sees things in S, because
we can just switch the labels of S and S′. (We’ll get our money’s worth out of this
statement in the next few sections.) It also says that empty space is homogeneous (that
is, all points look the same), because we can pick any point to be, say, the origin of a
coordinate system. It also says that empty space is isotropic (that is, all directions look
the same), because we can pick any axis to be, say, the x axis of a coordinate system.

Unlike the second postulate below (the speed-of-light postulate), this first one is
entirely reasonable. We’ve gotten used to having no special places in the universe. We
gave up having the earth as the center, so let’s not give any other point a chance, either.

Copernicus gave his reply
To those who had pledged to deny.
“All your addictions
To ancient convictions
Won’t bring back your place in the sky.”

The first postulate is nothing more than the familiar principle of Galilean invariance,
assuming that this principle is written in the “The laws of physics hold in all inertial
frames” form, and not in the form that explicitly mentions the Galilean transformations
in Eq. (1.1), which are inconsistent with the second postulate below.

Everything we’ve said here about the first postulate refers to empty space. If we
have a chunk of mass, then there is certainly a difference between the position of the
mass and a point a meter away. To incorporate mass into the theory, we would have to
delve into the subject of general relativity. But we won’t have anything to say about that
in this chapter. We will deal only with empty space, containing perhaps a few observant
souls sailing along in rockets or floating aimlessly on little spheres. Although that might
sound boring at first, it will turn out to be anything but.

The second postulate of special relativity is the “speed-of-light” postulate. This one
is much less intuitive than the relativity postulate.
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• Postulate 2: The speed of light in vacuum has the same value c (approximately
3 · 108 m/s) in any inertial frame.

This statement certainly isn’t obvious, or even believable. But on the bright side, at least
it’s easy to understand what the postulate says, even if you think it’s too silly to be true.
It says the following. Consider a train moving along the ground with constant velocity.
Someone on the train shines a light from one point on the train to another. The speed
of the light with respect to the train is c. Then the above postulate says that a person on
the ground also sees the light move at speed c.

This is a rather bizarre statement. It doesn’t hold for everyday objects. If a baseball
is thrown forward with a given speed on a train, then the speed of the baseball is different
in the ground frame. An observer on the ground must add the velocity of the ball (with
respect to the train) to the velocity of the train (with respect to the ground) in order to
obtain the velocity of the ball with respect to the ground. Strictly speaking, this isn’t
quite true, as the velocity-addition formula in Section 1.5 shows. But it’s true enough
for the point we’re making here.

The truth of the speed-of-light postulate cannot be demonstrated from first princi-
ples. No statement with any physical content in physics (that is, one that isn’t purely
mathematical, such as, “two apples plus two apples gives four apples”) can be proven.
In the end, we must rely on experiment. And indeed, all of the consequences of the
speed-of-light postulate have been verified countless times during the past century. As
discussed in the previous section, the most well-known of the early experiments on the
speed of light was the one performed by Michelson and Morley. The zero interference
shift they always observed implied that the vp speed in Eq. (1.5) was always zero. This
in turn implies that no matter what (inertial) frame you are in, you are always at rest
with respect to a frame in which the speed of light is c. In other words, the speed of
light is the same in any inertial frame.

In more recent years, the consequences of the second postulate have been verified
continually in high-energy particle accelerators, where elementary particles reach speeds
very close to c. The collection of all the data from numerous experiments over the years
allows us to conclude with near certainty that our starting assumption of an invariant
speed of light is correct (or is at least the limiting case of a more correct theory).

Remark: Given the first postulate, you might wonder if we even need the second. If all inertial
frames are equivalent, shouldn’t the speed of light be the same in any frame? Well, no. For all
we know, light might behave like a baseball. A baseball certainly doesn’t have the same speed in
all inertial frames, and this doesn’t ruin the equivalence of the frames.

It turns out (see Section 2.7) that nearly all of special relativity can be derived by invoking
only the first postulate. The second postulate simply fills in the last bit of necessary information
by stating that something has the same finite speed in every frame. It’s actually not important
that this thing is light. It could be mashed potatoes or something else, and the theory would
still come out the same. (Well, the thing has to be massless, as we’ll see in Chapter 3, so we’d
need to have massless potatoes, but whatever.) The second postulate can therefore be stated more
minimalistically as, “There is something that has the same speed in any inertial frame.” It just so
happens that in our universe this thing is what allows us to see.

To go a step further, it’s not even necessary for there to exist something that has the same
speed in any frame. The theory will still come out the same if we write the second postulate as,
“There is a limiting speed of an object in any frame.” (See Section 2.7 for a discussion of this.)
There is no need to have something that actually travels at this speed. It’s conceivable to have a
theory that contains no massless objects, in which case everything travels slower than the limiting
speed. ♣

Let’s now see what we can deduce from the above two postulates. There are many
different ways to arrive at the various kinematical consequences. Our road map for
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the initial part of the journey (through Section 2.2) is shown in Fig. 1.8. Additional
kinematics topics are covered in Sections 2.3 through 2.7.

Section 2.1.1

Section 2.1.3

Section 1.3

Section 1.5 Section 2.2

Appendix D

The two postulates

Velocity addition

Lorentz transformationsFundamental effects

Figure 1.8

1.3 The fundamental effects

The most striking effects of the two postulates of relativity are (1) the loss of simultaneity
(equivalently, the rear-clock-ahead effect), (2) time dilation, and (3) length contraction.
In this section, we’ll discuss these three effects by using some time-honored concrete
setups. In Chapter 2, we’ll use these three effects to derive the Lorentz transformations.

1.3.1 Loss of simultaneity

The basic effect

Consider the following setup. In person A’s reference frame, a light source is placed
midway between two receivers, a distance ℓ from each (see Fig. 1.9). The light source

c c

l l

A

B
v

Figure 1.9

emits a flash. In A’s reference frame, the light hits the two receivers at the same time,
ℓ/c seconds after the flash. So if Event 1 is “light hitting the left receiver” and Event 2
is “light hitting the right receiver,” then the two events are simultaneous in A’s frame.

Now consider another observer, B, who travels to the left at speed v. In B’s reference
frame, does the light hit the receivers at the same time? That is, are Events 1 and 2
simultaneous in B’s frame? We will show that surprisingly they are not.

In B’s reference frame, the situation looks like that in Fig. 1.10. If you want, you

c cv v

B

A l' l'

Figure 1.10

can think of A as being on a train, and B as standing on the ground. With respect to
B, the receivers (along with everything else in A’s frame) move to the right with speed
v. Additionally, with respect to B (and this is where the strangeness of relativity comes
into play), the light travels in both directions at speed c, as indicated in the figure. Why
is this the case? Because the speed-of-light postulate says so!

Note that everyday objects do not behave this way. Consider, for example, a train
(A’s frame) moving at 30 mph with respect to the ground (B’s frame). If A stands in
the middle of the train and throws two balls forward and backward, each with speed 50
mph with respect to the train, then the speeds of the two balls with respect to the ground
are 50 − 30 = 20 mph (backward) and 50 + 30 = 80 mph (forward). (We’re ignoring
the minuscule corrections from the velocity-addition formula discussed in Section 1.5.)
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These two speeds are different. In contrast with everyday objects like these balls, light
has the bizarre property that its speed is always c (when viewed in an arbitrary inertial
frame), independent of the speed of the source. Strange, but true.

Returning to our setup with the light beams and receivers, we can say that because
B sees both light beams move with speed c, the relative speed (as viewed by B) of the
light and the left receiver is c + v, and the relative speed (as viewed by B) of the light
and the right receiver is c − v.

Remark: Yes, it is legal to simply add or subtract these speeds to obtain the relative speeds as
viewed by B. The reasoning here is the same as in the discussion of Fig. 1.3 in Section 1.1.2, where
we obtained relative speeds of vs ± vp. As a concrete example, if the v here equals 2 · 108 m/s,
then in one second the left receiver moves 2 · 108 m to the right, while the left ray of light moves
3 · 108 m to the left. This means that they are now 5 · 108 m closer than they were a second ago.
In other words, the relative speed (as measured by B) is 5 · 108 m/s, which is c + v here. This is
the rate at which the gap between the light and the left receiver closes. So in addition to calling it
the “relative” speed, you can also call it the “gap-closing” speed. Note that the above reasoning
implies that it is perfectly legal for the relative speed of two things, as measured by a third, to take
any value up to 2c.

Likewise, the relative speed between the light and the right receiver is c − v. The v and c in
these results are measured with respect to the same person, namely B, so our intuition involving
simple addition and subtraction works fine. Even though we’re dealing with a relativistic speed v

here, we don’t need to use the velocity-addition formula from Section 1.5, which is relevant in a
different setting. This remark is included just in case you’ve seen the velocity-addition formula
and think it’s relevant in this setup. But if it didn’t occur to you, then never mind.

Note that the speed of the right photon4 is not c−v. (And likewise the speed of the left photon
is not c + v.) The photon moves at speed c, as always. It is the relative speed (as measured by B)
of the photon and the front of the train that is c − v. No thing is actually moving with this speed
in our setup. This speed is just the rate at which the gap closes. And a gap isn’t an actual moving
thing. ♣

Let ℓ′ be the distance from the light source to each of the receivers, as measured by
B.5 Then in B’s frame, the gap between the light beam and the left receiver starts with
length ℓ′ and subsequently decreases at a rate c + v. The time for the light to hit the left
receiver is therefore ℓ′/(c+ v). Similar reasoning holds for the right receiver along with
the relative speed of c − v. The times tL and tR at which the light hits the left and right
receivers are therefore given by

tL =
ℓ′

c + v
and tR =

ℓ′

c − v . (1.6)

These two times are not equal if v , 0. (The one exception is when ℓ′ = 0, in which case
the two events happen at the same place and same time in all frames.) Since tL < tR, we
see that in B’s frame, the light hits the left receiver before it hits the right receiver. We
have therefore arrived at the desired conclusion that the two events (light hitting back,
and light hitting front) are not simultaneous in B’s frame.

The moral of this is that it makes no sense to say that one event happens at the same
time as another, unless you also state which frame you’re dealing with. Simultaneity
depends on the frame in which the observations are made.

4Photons are what light is made of. So “speed of the photon” means the same thing as “speed of the light
beam.” Sometimes it’s easier to talk in terms of photons.

5We’ll see in Section 1.3.3 that ℓ′ is not equal to the ℓ in A’s frame, due to length contraction. But
this won’t be important for what we’re doing here. The only fact we need for now is that the light source is
equidistant from the receivers, as measured by B. This is true because space is homogeneous, which implies
that any length-contraction factor we eventually arrive at must be the same everywhere. More on this in
Section 1.3.3.
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Of the many effects, miscellaneous,
The loss of events, simultaneous,
Allows B to claim
There’s no pause in A’s frame,

Remarks:

1. The strangeness of the tL < tR loss-of-simultaneity result can be traced to the strangeness
of the speed-of-light postulate. We entered the bizarre world of relativity when we wrote
the c’s above the photons in Fig. 1.10. The tL < tR result is a direct consequence of the
nonintuitive fact that light moves with the same speed c in every inertial frame.

2. The invariance of the speed of light led us to the fact that the relative speeds between
the photons and the left and right receivers are c + v and c − v. If we were talking about
baseballs instead of light beams, then the relative speeds wouldn’t take these general forms.
If vb is the speed at which the baseballs are thrown in A’s frame, then as we noted above
in the case where v = 30 mph and vb = 50 mph, B sees the balls move with speeds
of (essentially, ignoring the tiny corrections due to the velocity-addition formula) vb − v

to the left (assuming vb > v) and vb + v to the right. These are not equal (in contrast
with what happens with light). By the same “gap-closing” reasoning we used above, the
relative speeds (as viewed by B) between the balls and the left and right receivers are then
(vb−v)+v = vb and (vb+v)−v = vb. These are equal, so B sees the balls hit the receivers
at the same time, as we know very well from everyday experience.

3. As explained in the remark prior to Eq. (1.6), it is indeed legal to obtain the times in
Eq. (1.6) by simply dividing ℓ′ by the relative speeds, c + v and c − v. The gaps start
with length ℓ′ and then decrease at these rates. But if you don’t trust this, you can use the
following reasoning. In B’s frame, the position of the right photon (relative to the initial
position of the light source) simply equals ct, and the position of the right receiver (which
has a head start of ℓ′) equals ℓ′+ vt. The photon hits the receiver when these two positions
are equal. Equating them gives

ct = ℓ′ + vt =⇒ tR =
ℓ′

c − v . (1.7)

Similar reasoning with the left photon gives tL = ℓ′/(c + v).

4. There is always a difference between the time that an event happens and the time that
someone sees the event happen, because light takes time to travel from the event to the
observer. What we calculated above were the times tL and tR at which the events actually
happen in B’s frame. (These times are independent of where B is standing at rest in the
frame.) If we wanted to, we could calculate the times at which B sees the events occur.
(These times do depend on where B is standing at rest in the frame.) But such times
are rarely important, so in general we won’t be concerned with them. They can easily
be calculated by adding on a (distance)/c time for the photons to travel to B’s eye. Of
course, if B actually did the above experiment to find tL and tR, she would do it by writing
down the times at which she sees the events occur, and then subtracting off the relevant
(distance)/c times, to find when the events actually happened.
To sum up, the tL , tR result in Eq. (1.6) is due to the fact that the events truly occur at
different times in B’s frame. The tL , tR result has nothing to do with the time it takes
light to travel to B’s eye. ♣

Where this last line is not so extraneous.

The “rear clock ahead” effect

We showed in Eq. (1.6) that tL is not equal to tR, that is, the light hits the receivers at
different times in B’s frame. Let’s now be quantitative and determine the degree to which
two events that are simultaneous in one frame are not simultaneous in another frame.
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Given the times tL and tR that we found in Eq. (1.6), the simplest quantitative number
that we can produce, as a measure of the non-simultaneity, is the difference tR− tL. This
tells us how unsimultaneous the events are in B’s frame (the ground frame), given that
they are simultaneous in A’s frame (the train frame). The interpretation of the resulting
expression for tR− tL is the task of Problem 1.1 (which relies on time dilation and length
contraction, discussed below). But let’s take a slightly different route here, which will
end up being a little more useful. This route will lead us to the rear-clock-ahead effect,
which is the standard quantitative statement of the loss of simultaneity.

Consider a setup where two clocks are positioned at the ends of a train of length L
(as measured in its own frame). The clocks are synchronized in the train frame. That is,
they have the same reading at any given instant, as observed in the train frame, as you
would naturally expect. (Throughout this book, we will always assume that clocks are
synchronized in the frame in which they are at rest.) The train travels past you at speed
v. It turns out that if you observe the clocks at simultaneous times in your frame, the
readings will not be the same. You will observe the rear clock showing a higher reading
than the front clock, as indicated in Fig. 1.11.

v

L

Figure 1.11

We’ll explain why this is true momentarily, but first let us note that a nonzero
difference in the readings is certainly a manifestation of the loss of simultaneity. To see
why, consider a given instant in your (ground) frame when the rear and front clocks read,
say, 12:01 and 12:00. (We’ll find that the actual difference depends on L and v, but let’s
just assume it’s one minute here, for concreteness.) Assume that you hit both clocks
simultaneously (in your ground frame) with paintballs when they show these readings.
Then in the train frame, the front clock gets hit when it reads 12:00, and then a minute
later the rear clock gets hit when it reads 12:01. The simultaneous hits in your frame
are therefore not simultaneous in the train frame. We have used the fact that the reading
on a clock when a paintball hits it is frame independent. This is true because you can
imagine that a clock breaks when a ball hits it, so that it remains stuck at a certain value.
Everyone has to agree on what this value is.

Let’s now find the exact difference in the readings on the two train clocks in Fig. 1.11.
To do this, we will (as we did above in Fig. 1.9) put a light source on the train. But
we’ll now position it so that the light hits the clocks at the ends of the train at the same
time in your (ground) frame. As in the discussion of Fig. 1.10, the relative speeds of
the photons and the clocks are c + v and c − v (as viewed in your frame). We therefore
need to divide the train into lengths in this ratio, in your frame, if we want the light
to hit the ends at the same time. Now, because length contraction (discussed below in
Section 1.3.3) is independent of position, the ratio in the train frame must also be c + v
to c − v. You can then quickly show that two numbers that are in this ratio, and that add
up to L, are L(c + v)/2c and L(c − v)/2c. (Mathematically, you’re solving the system
of equations, x/y = (c + v)/(c − v) and x + y = L.) Dividing the train into these two
lengths (in the train frame, as shown in Fig. 1.12) causes the light to hit the ends of the L(c+v)

2c

L(c-v)__________
2c

Figure 1.12

train simultaneously in the ground frame.
Let’s now examine what happens during the process in the train frame. Compared

with the forward-moving light, Fig. 1.12 tells us that the backward-moving light must
travel an extra distance of L(c+v)/2c−L(c−v)/2c = Lv/c. The light travels at speed c
(as always), so the extra time is Lv/c2. The rear clock therefore reads Lv/c2 more when
it is hit by the backward photon, compared with what the front clock reads when it is hit
by the forward photon. (Remember that the clocks are synchronized in the train frame.)
This difference in readings has a frame-independent value, because the readings on the
clocks when the photons hit them are frame independent, by the same reasoning as with
the paintballs above.

Finally, let’s switch back to your (ground) frame. Let the instant you look at the
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clocks be the instant the photons hit them. (That’s why we constructed the setup with
the hittings being simultaneous in your frame.) Then from the previous paragraph, we
conclude that you observe the rear clock reading more than the front clock by an amount
Lv/c2:

The rear clock is ahead by Lv/c2. (1.8)
This result is important enough to spell out in full and put in a box:

Rear-clock-ahead: If a train with length L moves with speed v relative to you,
then you observe the rear clock reading Lv/c2 more than the front clock, at any
given instant.

This statement corresponds to Fig. 1.13. For concreteness, we have chosen the front

0Lv

c2
__ v

Figure 1.13

clock to read zero. But if the front clock reads, say, 9:47, then the rear clock reads 9:47
plus Lv/c2. There is of course no need to have an actual train in the setup. In general,
all we need are two clocks separated by some distance L and moving with the same
speed v. But we’ll often talk in terms of trains, since they’re easy to visualize.

Note that the L in the Lv/c2 result is the length of the train in its own frame, and not
the shortened length that you observe in your frame (see Section 1.3.3). Appendix B
gives a number of other derivations of Eq. (1.8), although they rely on material we
haven’t covered yet.

Example (Clapping first): Two people stand a distance L apart along an east-west road.
They clap simultaneously in the ground frame. In the frame of a car driving eastward along
the road, which person claps first?

Solution: The eastern person claps first, for the following reason. Without loss of
generality, let’s assume that clocks on the two people read zero when the claps happen.
Then a snapshot in the ground frame at the instant the claps happen is shown in Fig. 1.14.

v

L

0 0

(ground frame) 

*clap* *clap*

car

Figure 1.14

We’ve drawn the car in the middle as it travels past, but its exact location is irrelevant.
Now consider a snapshot in the car frame at the instant the eastern (right) person claps.
This person’s clock reads zero when he claps, because that is a frame-independent fact.
Now, we can imagine that the two people are on a westward-traveling train, which means
that the western person is the front person. By the rear-clock-ahead effect, the western
(left) person’s clock is behind by Lv/c2. So it reads only −Lv/c2, as shown in Fig. 1.15.

0-Lv
c2
__

vv

(car frame) 

car

*clap*

Figure 1.15

(As we will see many times throughout this chapter, drawing pictures is extremely helpful
when solving relativity problems!) Since this clock hasn’t hit zero, the western person
hasn’t clapped yet. The eastern person therefore claps first, as we claimed.

Remark: In the car frame, the distance between the two people is actually less than L
(as we have indicated in Fig. 1.15), due to the length-contraction result we’ll derive in
Section 1.3.3. But this doesn’t affect the result that the eastern person claps first. Similarly,
the time-dilation result that we’ll derive in Section 1.3.2 is relevant if we want to determine
exactly how long the car observer needs to wait for the western person to clap. (It will turn
out to be longer than Lv/c2.) We’ll talk about these matters shortly. ♣

Remarks:
1. The Lv/c2 result has nothing to do with the fact that the rear clock passes you at a later

time than the front clock passes you. The train could already be past you, or it could even
be moving directly toward or away from you. The rear clock will still be ahead by Lv/c2,
as observed in your frame.
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2. The Lv/c2 result does not say that you see the rear clock ticking at a faster rate than the
front clock. They run at the same rate. (They both have the same time-dilation factor
relative to you; see Section 1.3.2.) The rear clock is simply always a fixed time ahead of
the front clock, as observed in your frame.

3. In the train setup (with the off-centered light source) that led to Eq. (1.8), the fact that the
rear clock is ahead of the front clock in the ground frame means that in the train frame the
light hits the rear clock after it hits the front clock.

4. The L in Eq. (1.8) is the separation between the clocks in the longitudinal direction, that
is, the direction of the velocity of the train (or more generally, the velocity of the clocks,
if we don’t have a train). The height in the train doesn’t matter; all clocks along a given
line perpendicular to the train’s velocity have the same reading at any given instant in the
ground frame.

5. For everyday speeds v, the Lv/c2 effect is extremely small. If v = 30 m/s (about 67 mph)
and if L = 100 m, then Lv/c2 ≈ 3 · 10−14 s. This is completely negligible on an everyday
scale.

6. What if we have a train that doesn’t contain the above setup with a light source and two
light beams? That is, what if the given events have nothing to do with light? The Lv/c2

result still holds, because we could have built the light setup if we wanted to (arranging for
the light-hitting-end events to coincide with the given events). It doesn’t matter if the light
setup actually exists.

7. It’s easy to forget which of the clocks is the one that is ahead. But a helpful mnemonic for
remembering “rear clock ahead” is that both the first and fourth letters in each word form
the same acronym, “rca,” which is an anagram for “car,” which is sort of like a train. Sure.
♣

1.3.2 Time dilation

We showed above that if two clocks are separated by a distance L in the horizontal (that
is, longitudinal) direction on a train, and if the train is moving with respect to you, then
you observe different readings on the clocks, at any given instant in your frame. Note
that this result relates the readings on two different clocks at a given instant in your
frame. It says nothing about the rate at which a single clock runs in your frame. This is
what we will now address.

We will demonstrate that if a given clock is moving with respect to you, then you
will observe the clock running slowly. That is, if you use a stopwatch to measure how
long it takes a given train clock to tick off 10 seconds, your stopwatch might read 20
seconds. The exact time on your watch depends on the speed v of the train, as we’ll
see shortly. But in any case, your clock will always read more than 10 seconds in this
setup. (Or it will read exactly 10 seconds if v = 0 and the train is sitting at rest.) This
effect is called time dilation. The name is appropriate, because the word “dilate” means
to become larger. Since the moving clock runs slow (as viewed by you), a time T that
ticks off on it takes more than a time T on your watch.

We will derive this time-dilation result by presenting a classic example of a light
beam traveling in the vertical (that is, transverse) direction on a train. Let there be a
light source on the floor of the train, and let there be a mirror on the ceiling, which is
a height h above the floor. Let observer A be at rest on the train, and let observer B be
at rest on the ground. The speed of the train with respect to the ground is v.6 A flash
of light is emitted upward. The light travels up to the mirror, bounces off it, and then

6Technically, the words “with respect to . . . ” should always be included when talking about speeds,
because there is no absolute reference frame, and hence no absolute speed. But in the future, when it is clear
what we mean (as in the case of a train moving with respect to the ground), we’ll occasionally be sloppy and
drop the “with respect to . . . .”
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heads back down. Assume that right after the light is emitted, we replace the source
with a mirror on the floor, so that the light keeps bouncing up and down indefinitely.

In A’s frame, the train is at rest, so the path of the light is simple. It just goes straight
up and straight down, as shown in Fig. 1.16. The light travels at speed c, so it takes

h

A

mirror

Figure 1.16

a time of h/c to reach the ceiling and then a time of h/c to return to the floor. The
roundtrip time in A’s frame is therefore

tA =
2h
c
. (1.9)

There’s nothing fancy going on here. All we have used is the fact that rate times time
equals distance.

Now consider the setup in B’s frame, where the train moves at speed v. In this
frame, the path of the light is diagonal, as shown in Fig. 1.17. It is indeed diagonal,

c c

v vB

mirror

Figure 1.17

because in addition to moving upward, the light also gets carried rightward along with
the train. You can imagine that the light travels up and down a vertical tube on the train.
Since the light remains in the tube in the train frame (let’s imagine that it’s a laser beam
that doesn’t spread out), it also remains in the tube in the ground frame. (“The light
remains in the tube” is a frame-independent statement. We could have a setup where a
paint bomb explodes if the light touches the side of the tube. All observers must agree
on whether the train is covered in paint.) Therefore, since in the ground frame the tube
moves rightward along with the train, the light must also move rightward.

The crucial fact that we will now invoke is that the speed of light in B’s frame is still
c. Why? Because the speed-of-light postulate says so! The light therefore travels along
its diagonally upward path in Fig. 1.17 at speed c. Since the horizontal component of the
light’s velocity is v, the vertical component must be

√
c2 − v2, as shown in Fig. 1.18. The
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Figure 1.18

horizontal component is in fact v, because the light always remains in the hypothetical
vertical tube mentioned above, and this tube moves horizontally with speed v.

The Pythagorean theorem is indeed valid in Fig. 1.18, because it is valid for distances,
and because speeds are just distances divided by time. Note that the vertical component
of the light’s velocity is not c, as would be the case if light behaved like a baseball. If
you throw a baseball with speed vb vertically on train, then its velocity with respect to
the ground is shown in Fig. 1.19; the vertical speed remains vb. The difference between
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Figure 1.19

this picture and the one in Fig. 1.18 is that for a baseball, the vertical speed is the thing
that remains the same when shifting to the ground frame, and this leads to a larger total
speed. But for light, it is the total speed that remains the same, and this leads to a smaller
vertical speed. As with the c’s in Fig. 1.10, we entered the bizarre world of relativity
when we wrote the c’s next to the diagonal paths in Fig. 1.17.

Having established that the vertical speed in B’s frame is
√

c2 − v2, it follows that
the time it takes the light to travel upward a height h to reach the mirror is h/

√
c2 − v2.

Likewise for the downward trip. The roundtrip time is therefore

tB =
2h

√
c2 − v2

. (1.10)

In this reasoning, we have assumed that the height of the train in B’s frame is still h.
Although we’ll see in Section 1.3.3 that there is length contraction along the direction
of motion, there is none in the direction perpendicular to the motion; we’ll show this at
the end of Section 1.3.3. So the height is indeed still h in B’s frame.

Dividing Eq. (1.10) by Eq. (1.9) gives

tB
tA
=

c
√

c2 − v2
=

1√
1 − v2/c2

. (1.11)
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If we define γ by

γ ≡ 1√
1 − v2/c2

(1.12)

then we arrive at
tB = γtA (time dilation) (1.13)

The γ factor here is ubiquitous in special relativity. We’ll occasionally add a subscript
with the associated velocity v (like γv) if a setup involves more than one velocity (and
hence γ factor), to avoid any confusion. In these cases we’ll sometimes just use whatever
fraction of c the speed is, as the subscript. For example, the γ factor associated with the
speed c/2 is γ1/2 = 2/

√
3.

Note that γ is always greater than or equal to 1. This means that the roundtrip time
in the above setup is longer in B’s frame than in A’s frame. The one exception occurs
when v = 0 =⇒ γ = 1, in which case the two times are equal. But in this case A is at
rest with respect to B, so they are both in the same frame, which isn’t very interesting.

What are the implications of Eq. (1.13)? For concreteness, let v/c = 3/5, which
yields γ = 5/4. (The numbers work out nicely here, because 3-4-5 is a Pythagorean
triple.) We may then say the following. If A is standing at rest on the train next to
the light source, and if B is standing on the ground, and if A claps his hands at tA = 4
second intervals according to his watch, then B observes A’s claps happening at tB = 5
second intervals according to her watch. (As usual, it is understood that B subtracts
off the time it takes the light to travel to her eye, to determine when the claps actually
happen in her frame.) This is true because both A and B must agree on the number
of roundtrips the light beam completes between claps. If we assume, for convenience,
that a roundtrip takes one second in A’s frame (yes, that would be a tall train), then
Eq. (1.13) tells us that the four roundtrips between successive claps take five seconds in
B’s frame. B therefore sees A’s clock running slow, by a factor 4/5.

We just made the claim that both A and B must agree on the number of roundtrips
between successive claps. However, since A and B disagree on so many things (whether
two events are simultaneous, the rate at which clocks tick, and the length of things, as
we’ll see below), you might be wondering if there’s anything they agree on. Yes, there
are still frame-independent statements we can hang on to. We noted on page 15 that the
reading on a clock when a paintball hits it is frame independent. As another example, if
a bucket of paint flies past you and dumps paint on your head, then everyone agrees that
you are covered with paint. Likewise, if A is standing next to the light clock and claps
when the light reaches the floor, then everyone agrees on this. If the light is actually a
strong laser pulse, and if A’s clapping motion happens to bring his hands over the mirror
right when the pulse gets there, then everyone agrees that his hands get burned by the
laser.

What if we have a train that doesn’t contain one of our special light clocks? It doesn’t
matter. We could have built one if we wanted to, so the same results concerning the
claps must still hold. Therefore, light clock or no light clock, B observes A moving
strangely slowly. From B’s point of view, A’s heart beats slowly, his blinks are lethargic,
and his sips of coffee are slow enough to suggest that he needs another cup.

The effects of dilation of time
Are magical, strange, and sublime.
In your frame, this verse,
Which you’ll see is not terse,
Can be read in the same amount of time it takes someone

else in another frame to read a similar sort of rhyme.
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Our assumption that A is at rest on the train was critical in the above derivation. If A
is moving with respect to the train, then Eq. (1.13) doesn’t hold, because we cannot say
that both A and B must agree on the number of roundtrips the light beam takes between
claps, because there is now an issue with simultaneity. More precisely, if A is at rest on
the train right next to the light source, then there is no issue with simultaneity, because
the distance L in Eq. (1.8) is zero. And if A is at rest at a fixed distance from the source,
then consider a person A′ at rest on the train right next to the source. The distance
L between A and A′ is nonzero, so from the rear-clock-ahead effect, B sees their two
clocks differ by Lv/c2. But this difference is constant, so B sees A’s clock tick at the
same rate as A′’s clock. Basically, since A and A′ represent the same reference frame,
there is again no issue with simultaneity. (More precisely, there is a loss of simultaneity,
but it has no consequence here, because it is constant.) Equivalently, we can just build a
second light clock next to A, and it will have the same speed v (and thus yield the same
γ factor) as the original clock.

However, if A is moving with respect to the train, then we have a problem. If A′

is again at rest on the train next to the source, then the distance L between A and A′ is
changing, so B can’t use the reasoning in the previous paragraph to conclude that A’s
and A′’s clocks tick at the same rate. And in fact they do not, because as above, we can
build another light clock and have A hold it. In this case, A’s speed is what goes into
the γ factor in Eq. (1.12), and this speed is different from A′’s speed (which is the speed
of the train).

Remarks:

1. The speed v needs to be fairly large in order for the γ factor in Eq. (1.12) to differ appreciably
from 1. If v = c/10 (which is still quite fast), we only have γ1/10 ≈ 1.005. A few other
values are: γ1/2 ≈ 1.15, γ9/10 ≈ 2.3, and γ99/100 ≈ 7.

2. The time-dilation result in Eq. (1.13) is a bit strange, no doubt, but there doesn’t seem to
be anything downright incorrect about it until we look at the situation from A’s point of
view. A sees B flying by at a speed v in the other direction. The ground frame is no more
fundamental than the train frame, so the same reasoning we used above also applies to A’s
frame. Equivalently, we can just switch all the A and B labels in the above derivation. The
time-dilation factor, γ, doesn’t depend on the sign of v, so A sees the same time-dilation
factor that B sees. That is, A sees B’s clock running slow. But how can this be? Are we
claiming that A’s clock is slower than B’s, and also that B’s clock is slower than A’s? Well
. . . yes and no.
Remember that the above time-dilation reasoning applies only to a situation where some-
thing is motionless in the appropriate frame. In the second situation (where A sees B flying
by), the statement tA = γtB holds only for two events (say, two ticks on B’s clock) that
happen at the same place in B’s frame. But two such events are certainly not at the same
place in A’s frame, so the tB = γtA result in Eq. (1.13) does not hold. The conditions
of being motionless in each frame can never both hold in a given setup (unless v = 0, in
which case γ = 1 and tA = tB). So the answer to the question at the end of the previous
paragraph is “yes” if you ask the questions in the appropriate frames, and “no” if you think
the answer should be frame independent.

3. Concerning the fact that A sees B’s clock run slow, and B sees A’s clock run slow, consider
the following statement. “This is a contradiction. It is essentially the same as saying, ‘I
have two apples on a table. The left one is bigger than the right one, and the right one is
bigger than the left one.’ ” How would you respond to this statement?
Well, it is not a contradiction. Observers A and B are using different coordinates to measure
time. The times measured in each of their frames are quite different things. The seemingly
contradictory time-dilation result is really no stranger than having two people run away
from each other into the distance, and having them both say that the other person looks
smaller. In short, we are not comparing apples and apples. We are comparing apples and
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oranges. A more correct analogy would be the following. An apple and an orange sit on
a table. The apple says to the orange, “You are a much uglier apple than I am,” and the
orange says to the apple, “You are a much uglier orange than I am.”

4. One might view the statement, “A sees B’s clock running slow, and also B sees A’s clock
running slow,” as somewhat unsettling. But in fact it would be a complete disaster for the
theory if A and B viewed each other in different ways. A critical ingredient in the theory
of relativity is that A sees B in exactly the same way that B sees A.

5. In everything we’ve done so far, we’ve assumed that A and B are in inertial frames, because
these are the frames that the postulates of special relativity deal with. However, it turns out
that the time-dilation result in Eq. (1.13) holds even if A is accelerating, as long as B isn’t.
In other words, if you are looking at a clock that is undergoing a complicated accelerated
motion, then to figure out how fast it is ticking in your frame at a given instant, all you
need to know is its speed at that instant; its acceleration is irrelevant. (This has plenty
of experimental verification. Perhaps the quickest theoretical argument involves using a
Minkowski diagram; see Section 2.4 and the third remark in the solution to Problem 2.12.)
If, however, you are accelerating, then all bets are off, and it isn’t valid for you to use the
time-dilation result when looking at a clock. But it’s still possible to get a handle on such
situations, as we’ll see in Chapter 5. Problem 2.12 also deals with this issue. ♣

In the second remark above, we noted that the time-dilation result in Eq. (1.13) holds
in setups where two events happen at the same place in one of the frames. The γ factor
in Eq. (1.13) appears on the side of the equation associated with the frame in which the
two events happen at the same place. An equivalent (and simpler) way of stating how
to properly use time dilation is: If you look at a moving clock, you observe it running
slowly. This has the “happen at the same place” requirement built into it, because two
ticks on a clock certainly happen at the same place in the clock’s frame, since they both
happen at the clock. (Well, the hands on an analog clock necessarily move a little bit,
but let’s ignore that.)

To summarize, we can state the time-dilation result with this equation:

tobserved = γtproper (time dilation) (1.14)

The proper time is the time that elapses between two ticks on a given clock in the
frame of the clock. (More generally, the proper time is the time between two events, as
measured in the frame where the events happen at the same place.) The observed time
in Eq. (1.14) is the time that elapses between the two ticks, as measured in the frame of
an observer who is looking at the clock. We can also state the time-dilation result with
these words:

Time dilation: If you look at a clock moving with speed v relative to you, then
you observe the clock running slowly by a factor γ ≡ 1/

√
1 − v2/c2.

When relating the times in different frames, it is easy to get confused about where to
put the γ factor. The safest way to proceed is to (1) start with the fact that if you look at
a moving clock, it runs slow, then (2) identify which time is larger/smaller, and then (3)
put the γ factor (which is always larger than 1) where it needs to be so that the relative
size of the times is correct. For example, let’s say that during a time T that elapses on
your watch, you want to determine how much time elapses on a clock that is flying past
you. Since you see the clock running slow, the time on it must be less than T , which
means that the answer is T/γ; we must divide by γ.

A common trap to fall into when applying time dilation is the following. (Every
physics student is bound to make this error at least once.) Let’s say that at a given
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moment, you look at a clock flying by (say, a clock at the back of a train). And then a
little later you look at a different clock (say, a clock at the front of the train). You take
the difference in the readings and then multiply this difference by γ (because you see
the train clocks run slow), to find the time elapsed on your watch in the ground frame.
This strategy is incorrect, because it uses the readings on two different clocks. (The
Lv/c2 rear-clock-ahead result is what messes things up. This is evident in the examples
in Section 1.4.) To apply time dilation correctly, you must take the difference in the
readings on a single clock. Remember, all that time dilation says is, “If you look at a
moving clock, you observe it running slowly.” The word “clock” here is singular.

Note well that it is elapsed times that get dilated, and not readings on clocks. If
you look at a clock on a moving train and observe that it has a reading of t1, then there
isn’t much you can do with that. But if you then look at the same clock later on and
observe that it has a reading of t2, then you can say something. You can say that the time
that elapses on your own clock between your two observations (during which a time of
t2 − t1 elapses on the train clock) equals γ(t2 − t1), because you see the train clock run
slow. Since time dilation deals only with elapsed times and not with actual readings, we
should technically be writing ∆t’s instead of t’s in Eq. (1.14), that is,

∆tobserved = γ∆tproper. (1.15)

But we’ll usually drop the ∆’s, for simplicity.
Let’s now do two classic examples involving time dilation.

Example 1 (Twin paradox): Twin A stays on the earth, while twin B flies quickly to a
distant star and back (see Fig. 1.20). After B returns, are the twins the same age? If not,earth star

A B

Figure 1.20
who is younger?

Solution: From A’s point of view, B’s clock (and heartbeat, cell aging, and everything else)
is running slow by a factor γ on both the outward and return parts of the trip. Therefore,
B is younger than A when they meet up again. This is the answer, and that’s that. So if
getting the right answer is all we care about, then we can pack up and go home. But our
reasoning leaves one large point unaddressed. The “paradox” part of this example’s title
comes from the following alternative reasoning. Someone might say that in B’s frame, A’s
clock is running slow by a factor γ, so A should be younger than B when they meet up
again.
It’s definitely true that when the two twins are standing next to each other after B’s journey
concludes (that is, when they are eventually in the same frame), we can’t have B younger
than A, and also A younger than B. So what is wrong with the reasoning at the end of the
preceding paragraph? The error lies in the fact that B doesn’t remain in a single inertial
frame. Her inertial frame for the outward trip is different from her inertial frame for the
return trip. The derivation of our time-dilation result requires a single inertial frame.
Said in a different way, B accelerates when she turns around, and our time-dilation result
holds only from the point of view of an inertial observer. The symmetry in the problem is
broken by the acceleration. If both A and B are blindfolded, they can still tell who is doing
the traveling, because B will feel the acceleration at the turnaround. Constant velocity
cannot be felt, but acceleration can be. (However, see Chapter 5 on general relativity.
Gravity complicates things.) For the entire outward and return parts of the trip, B does
observe A’s clock running slow, but enough strangeness occurs during the turning-around
period (from B’s point of view) to make A end up older.
The above paragraphs show what is wrong with the “A is younger” reasoning, but they don’t
show how to modify it quantitatively to obtain the correct answer. There are many different
ways of doing this, and you can tackle some of them in the problems; see Exercises 1.30
and 2.32, Problems 1.21 and 2.11, and various problems in Chapter 5. Also, Appendix C
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gives a list of all the possible resolutions to the twin paradox that I can think of, although
some rely on material we haven’t covered yet.

Example 2 (Muon decay): Elementary particles called muons (which are identical to
electrons, except that they are about 200 times as massive, and they decay) are created
in the upper atmosphere when cosmic rays (energetic protons, mostly) collide with air
molecules. The muons have an average lifetime of about 2 · 10−6 seconds (this is the
proper lifetime, that is, the lifetime as measured in the frame of the muon). They then
decay into other particles (electrons and neutrinos). The muons move at nearly the speed of
light. Assume for simplicity that a particular muon is created at a height of 20 km, moves
straight downward, has speed v = (0.9999)c, decays in exactly T = 2 · 10−6 seconds, and
doesn’t collide with anything on the way down.7 Will the muon reach the earth before it
(the muon!) decays?

Solution: The naive thing to say is that the distance traveled by the muon is d = vT ≈
(3 · 108 m/s)(2 · 10−6 s) = 600 m, and that this is less than 20 km, so the muon doesn’t
reach the earth. This reasoning is incorrect, because of time dilation. We must remember
that in the earth frame the muon lives longer by a factor of γ, which is γ = 1/

√
1 − v2/c2 ≈

70 here. (You can imagine that the muon has a little clock, and when the clock hits
T = 2 · 10−6 seconds, the muon decays.) So the actual lifetime in the earth frame is
γT = (70)(2 · 10−6 s) = 1.4 · 10−4 s. The correct distance traveled in the earth frame is
therefore v(γT ). This is γ ≈ 70 times the vT ≈ 600 m distance we found above, so we
end up with 40 km. Hence, the muon travels the 20 km, with room to spare. The real-life
fact that we actually do detect muons reaching the surface of the earth in the predicted
abundances is one of the many experimental tests that support special relativity. The naive
d = vT reasoning would predict that we shouldn’t see any (or at most a very small number,
if we had based our calculation on more realistic assumptions).

1.3.3 Length contraction

Having discussed the loss-of-simultaneity (rear-clock-ahead) and time-dilation effects,
we now come to the third of the fundamental effects of special relativity, namely length
contraction. We will derive this effect by again looking at how a light beam travels in
a train, except that now we will shine the light in the longitudinal (horizontal) direction
instead of the transverse (vertical) direction. There is actually a much quicker derivation
of length contraction than the one we will give here; see the third remark below. But
we’ll work through the present derivation because the calculation is instructive.

Consider the following setup. Person A is at rest on a train that he measures to
have length LA, and person B is at rest on the ground. The train moves at speed v with
respect to the ground. A light source is located at the back of the train, and a mirror is
located at the front. The source emits a flash of light that heads to the mirror, bounces
off, then heads back to the source. By looking at how long this process takes in each of
the two reference frames, we can determine the length of the train as measured by B.
In A’s frame (see Fig. 1.21), the light travels a total distance of 2LA at speed c, so the

LA

A

A's frame

Figure 1.21

roundtrip time is simply

tA =
2LA

c
. (1.16)

7In the real world, the muons are created at various heights, move in different directions, have different
speeds, decay in lifetimes that vary according to a standard half-life formula, and may very well bump into air
molecules. So technically we’ve got everything wrong here. But that’s no matter. Our assumptions are good
enough for the present purpose!
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Things are a little more complicated in B’s frame; see Fig. 1.22. Let the length of
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Figure 1.22

the train as measured by B be LB. For all we know at this point, LB might be equal to
LA, but we’ll soon find that it is not. During the first part of the trip, the relative speed
(as measured by B) of the light and the mirror at the front of the train is c − v. Since
the initial gap between the light and the mirror is LB, the time it takes to close this gap
down to zero is LB/(c − v). This is the same type of reasoning we used on various
occasions in Section 1.3.1.

Similarly, during the second part of the trip, the relative speed (as measured by B)
of the light and the back of the train is c + v. Since the initial gap between the light
and the back of the train is again LB, the time it takes to close this gap down to zero is
LB/(c + v). The total roundtrip time in B’s frame is therefore

tB =
LB

c − v +
LB

c + v
=

2cLB

c2 − v2 =
2LB/c

1 − v2/c2 = γ
2 2LB

c
. (1.17)

But we also know from Eq. (1.13) that

tB = γtA. (1.18)

This is a valid statement, because the two events we are concerned with (light leaving
back, and light returning to back) happen at the same place in the train frame (A’s
frame), so it is legal to use the time-dilation result in Eq. (1.13). The γ factor goes on
the side of the equation associated with the frame in which the two events happen at the
same place, which is A’s frame here. Equivalently, just imagine a clock ticking at the
back of the train; B sees this clock run slow.

Substituting the results for tA and tB from Eqs. (1.16) and (1.17) into Eq. (1.18), we
find

γ2 2LB

c
= γ · 2LA

c
=⇒ LB =

LA

γ
(length contraction) (1.19)

Note that we could not have used this setup to derive length contraction if we had not
already derived time dilation in Eq. (1.13).

Since γ ≥ 1, we see that B measures the train to be shorter than A measures (or
equal, if v = 0). The term proper length is used to describe the length of an object in its
rest frame. So LA is the proper length of the train, and the length LB in any other frame is
less than or equal to LA. This length contraction is often called the Lorentz–FitzGerald
contraction, for the reason given in Footnote 2.

Relativistic limericks have the attraction
Of being shrunk by a Lorentz contraction.
But for readers, unwary,
The results may be scary,
When a fraction . . .

Remarks:

1. The length-contraction result in Eq. (1.19) holds for lengths in the direction of the relative
velocity between the two frames (the longitudinal direction). There is no length contraction
in the perpendicular direction (the transverse direction), as we’ll show at the end of this
section.

2. As with time dilation, length contraction is a bit strange, but there doesn’t seem to be
anything actually paradoxical about it, until we look at things from A’s point of view. To
make a nice symmetrical situation, let’s say B is standing on an identical train, which is at
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rest with respect to the ground. Then A sees B flying by at speed v in the other direction.
Neither train is any more fundamental than the other, so the same reasoning we used above
also applies here. (Just switch all the A and B labels in the derivation.) We conclude that
A sees the same length-contraction factor that B sees. That is, A measures B’s train to be
short. But how can this be? Are we claiming that A’s train is shorter than B’s, and also
that B’s train is shorter than A’s? Is the actual setup the one shown in Fig. 1.23, or is it the
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Figure 1.23

one shown in Fig. 1.24? Well . . . it depends.
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B

Figure 1.24

As with time dilation, it makes no sense to say what the length of a train really is. It makes
sense only to say what the length is in a given frame. The situation doesn’t really look like
one thing in particular. The look depends on the frame in which the looking is being done.
Let’s be a little more specific. How do you measure a length? You write down the position
coordinates of the ends of something measured simultaneously, and then you take the
difference between these coordinates. But the word “simultaneously” here should send up
all sorts of red flags. Simultaneous events in one frame are not simultaneous in another.
Stated more precisely, here is what we are claiming: Let B write down simultaneous
coordinates of the ends of A’s train, and also simultaneous coordinates of the ends of her
own train. Then the difference between the former is smaller than the difference between
the latter. Likewise, let A write down simultaneous coordinates of the ends of B’s train, and
also simultaneous coordinates of the ends of his own train. Then the difference between
the former is smaller than the difference between the latter. There is no contradiction here,
because the times at which A and B are writing down the coordinates don’t have much
to do with each other, due to the loss of simultaneity. We’ll be quantitative about this in
the second example in Section 1.4. As with time dilation, we are comparing apples and
oranges.

3. As we mentioned at the beginning of this section, there is a quick argument that demon-
strates why time dilation implies length contraction, and vice versa. Let A stand on the
ground, next to a stick with (proper) length L. Let B fly past the stick at speed v; see
Fig. 1.25. In A’s frame, it simply takes B a time of L/v to traverse the length of the stick.
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Figure 1.25

Therefore (assuming that we have demonstrated the time-dilation result), since A sees B’s
clock run slow, a watch on B’s wrist will advance by a time of only L/γv while he traverses
the length of the stick.
How does B view the situation? He sees A and the stick fly by at speed v. The time
between the two ends passing him is L/γv, because we found above that this is the time
elapsed on his watch. (This is a frame-independent value. Imagine a switch that starts his
watch when he coincides with one end of the stick, and stops it when he coincides with the
other end.) To obtain the length of the stick in his frame, B simply multiplies the speed
of the stick times the time. So he measures the length to be (L/γv)v = L/γ. This is the
desired length contraction. The same argument in reverse shows conversely that length
contraction implies time dilation. In short, any theory that has one of these effects must
have the other.

4. As mentioned in Footnote 5, the length-contraction factor γ is independent of the position
on the train. That is, all parts of the train are contracted by the same factor. This follows
from the fact that all points in space are equivalent. Equivalently, we could put a large
number of small replicas of the above source-mirror system along the length of the train.
They would all produce the same value of γ (because they all have the same v), independent
of the position on the train.

5. If you still want to ask, “Is length contraction actually real?” then consider the following
hypothetical undertaking. Imagine a sheet of paper moving sideways past the Mona Lisa,
skimming the surface of the painting. A standard sheet of paper is plenty large enough
to cover her face, so if the paper is moving slowly, and if you take a photograph at the
appropriate time, then in the photo her entire face will be covered by the paper. However, if
the sheet is flying by sufficiently fast, and if you take a photograph at the appropriate time,
then in the photo you’ll see a thin vertical strip of paper covering only a small fraction of
her face. So you’ll still see her smiling at you. ♣
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To summarize, we can state the length-contraction result with this equation:

Lobserved =
Lproper

γ
(length contraction) (1.20)

As mentioned above, the proper length is the length measured in the frame of the stick
(or whatever). The observed length is the length measured in any other frame. We can
also state the length-contraction result with these words:

Length contraction: If you look at a stick moving longitudinally with speed v

relative to you, then you observe the stick to be short by a factor 1/γ =
√

1 − v2/c2.

As with time dilation, when relating distances in different frames, it is easy to get
confused about where to put the γ factor. The safest way to proceed is to (1) start with
the fact that if you look at a moving stick, it is short, then (2) identify which length
is longer/shorter, and then (3) put the γ factor (which is always larger than 1) where
it needs to be so that the relative size of the lengths is correct. For example, let’s say
that you want to determine the proper length of a moving train that has length L in your
frame. Since you see the train as length contracted, its proper length must be longer
than L (because that length is contracted down to the L that you observe). So the proper
length is γL; we must multiply by γ.

Example 1 (Passing trains): Two trains, A and B, each have proper length L and move
in the same direction. A’s speed is 4c/5, and B’s speed is 3c/5. A starts behind B; see
Fig. 1.26. How long, as measured by person C on the ground, does it take for A to overtake

4c/5
A

C

B
3c/5

Figure 1.26

B? By this we mean the time between the front of A passing the back of B, and the back
of A passing the front of B.

Solution: Relative to C on the ground, the γ factors associated with A and B are 5/3 and
5/4, respectively. Therefore, their lengths in the ground frame are 3L/5 and 4L/5. The
overtaking begins when the back of A is a distance 7L/5 (the sum of the lengths of the
trains) behind the front B. The overtaking ends when the back of A reaches the front of B.
So we need the initial gap of 7L/5 to decrease to zero. The gap decreases at a rate of c/5
(the difference of the speeds in the ground frame). The overtaking therefore takes a time
in the ground frame equal to

tC =
7L/5
c/5

=
7L
c
. (1.21)

Example 2 (Muon decay, again): Consider the “Muon decay” example in Section 1.3.2.
From the muon’s point of view, it lives for a time of T = 2 · 10−6 seconds, and the earth
is speeding toward it at v = (0.9999)c. How, then, does the earth (which travels only
d = vT ≈ 600 m before the muon decays) reach the muon?

Solution: The important point here is that in the muon’s frame, the distance to the earth is
contracted by a factor γ ≈ 70. Therefore, the earth starts only (20 km)/70 ≈ 300 m away.
(You can imagine that the muons are created next to the top of a hypothetical tower with
height 20 km. This tower is at rest in the earth frame, so it is length contracted in the muon
frame.) Since the earth can travel a distance of 600 m during the muon’s lifetime, the earth
collides with the muon, with room to spare.
As stated in the third remark above, time dilation and length contraction are intimately
related. We can’t have one without the other. In the earth’s frame, we saw in the example
in Section 1.3.2 that the muon’s arrival at the earth is explained by time dilation. In the
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muon’s frame, we just saw in the present example that the earth’s arrival at the muon is
explained by length contraction.

Observe that for muons created,
The dilation of time is related
To Einstein’s insistence
Of shrunken-down distance
In the frame where decays aren’t belated.

Example 3 (Two distances): In the ground frame, two people stand a distance L apart,
and they clap simultaneously in the ground frame; see Fig. 1.27. A train moves to the right

L

(clap) (clap)

v

Figure 1.27

at speed v. In the train frame, what is the distance between the people, and what is the
distance between the clapping events?

Solution: The train sees the proper distance L between the people as length contracted,
so the people are only L/γ apart in the train frame.
Let the claps somehow make marks on the train. These marks are L apart in the ground
frame, so they must be γL apart in the train frame, because from the ground’s point of
view, this distance is what is length contracted down to the distance L in the ground frame.
The events are therefore γL apart in the train frame.
The non equality of the above two answers (L/γ and γL) is a consequence of the loss of
simultaneity. In the train frame, as the people fly by to the left, the right person claps first.
The people then travel leftward for some time before the left person claps. In the train
frame, the distance between the events is therefore greater than the distance between the
people. We’ll be quantitative about this in the second example in Section 1.4, where we
explain how the L/γ and γL distances are consistent with each other.

No transverse length contraction

We have mentioned a few times that there is no length contraction in the direction
perpendicular to the relative velocity of two frames (that is, the transverse direction).
We’ll now show why this is true, with the following setup. Consider two meter sticks,
A and B, that move past each other as shown in Fig. 1.28. Stick A has paint brushes on

A B

Figure 1.28

its ends. If the paint brushes touch B, they leave marks on B. We can use this setup to
show that in the frame of one stick, the other stick still has a length of one meter.

The key fact that we need to invoke is the first postulate of relativity, which says
that all inertial frames are equivalent. In particular, the frames of the two sticks are
equivalent. This implies that if A sees B shorter than (or longer than, or equal to) itself,
then B also sees A shorter than (or longer than, or equal to) itself. The contraction
factor must be the same when going each way between the frames. At first glance, this
might seem backwards. After all, everyday life is full of statements such as, “If Alice
is taller than Sue, then Sue is shorter than Alice,” where the word “taller” is replaced
with “smaller” (its opposite). But we’re dealing with an entirely different thing here.
We’re talking about rules that hold in different reference frames. It would be a complete
disaster for the theory if different frames had different rules. If the rule in one frame
were “moving sticks are long” and the rule in another frame were “moving sticks are
short,” then this would be a violation of the fact that all inertial frames are equivalent.

Let’s assume (in search of a contradiction) that A sees B shortened. Then B won’t
extend out to the ends of A, so there will be no paint marks on B; see the top picture
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in Fig. 1.29. But in this case, B must also see A shortened, so there will be marks on

A B

A B

(A's frame)

(B's frame)

Figure 1.29

B; see the bottom picture in Fig. 1.29. This is a contradiction, because the existence
or nonexistence of marks on B is a frame-independent fact. Everyone must agree on
whether or not there are marks on B. Likewise, if we assume that A sees B lengthened,
we also reach a contradiction. We are therefore left with the only other possibility,
namely that each stick sees the other stick as exactly one meter long. There is therefore
no transverse length contraction.

Remark: Having used the above scenario to show that there is no transverse length contraction,
you might wonder why we can’t use the same kind of reasoning to show that there is no longitudinal
length contraction. We had better not be able to use it, because we showed in Eq. (1.19) that
longitudinal length contraction does exist. To see why we can’t use the same kind of reasoning, first
note that if the sticks are aligned longitudinally, then the paint brushes on A will each simply leave
a streak along the entire length of B, independent of whether or not there is length contraction.
This particular setup therefore can’t be used to conclude anything about length contraction.

A possible improvement in the setup is to replace the paint brushes with paint bombs, so that
they deposit paint only at a single instant. At first glance this seems to accomplish the task of
producing a contradiction, because if the rule is that moving sticks are short, then the top picture
in Fig. 1.30 shows no marks on B, whereas the bottom picture shows two marks. However, these
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Figure 1.30

two pictures don’t describe the same scenario, because in the top picture the bombs explode
simultaneously in A’s frame, whereas in the bottom picture they explode simultaneously in B’s
frame. These two scenarios are inconsistent with each other, due to the loss of simultaneity.
We can have one or the other picture, but not both. There is therefore no contradiction. Of
course, this lack of a contradiction doesn’t prove that longitudinal length contraction does in fact
exist. But our goal here was only to show that the above type of reasoning can’t be used to
show that longitudinal length contraction doesn’t exist. If you want to make some quantitative
statements about how the loss of simultaneity relates to longitudinal length contraction, see the
second example in Section 1.4 below.

In the above transverse case, there was no issue with simultaneity, because there was no extent
in the longitudinal direction, which meant that the L in Lv/c2 was zero. So we did in fact end up
with a contradiction that ruled out transverse length contraction. ♣

1.3.4 A few other important topics

We have completed our treatment of the three fundamental effects, but let’s discuss a
few other important things before moving on.

Lattice of clocks and meter sticks

In everything we’ve done so far, we’ve taken the route of having observers sitting in
various frames, making various measurements. But as mentioned earlier, this can cause
some ambiguity, because you might think that the time when light reaches the observer
is important, whereas what we are generally concerned with is the time when something
actually happens.

A way to avoid this ambiguity is to remove the observers and define each frame by
filling up space with a large rigid lattice of meter sticks and synchronized clocks, all at
rest in the given frame. Different frames are defined by different lattices; assume that
the lattices of different frames can somehow pass freely through each other. All of the
meter sticks in a given frame are at rest with respect to all the others, so we don’t have
to worry about issues of length contraction within each frame. Likewise, we don’t have
to worry about time dilation within each frame. However, with respect to a given frame,
the lattice of a different frame is squashed in the direction of its motion, because all
the meter sticks in that direction are contracted. Likewise, all the clocks in the moving
lattice run slow.
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To measure the length of an object in a given frame, we just need to determine
where the ends are (at simultaneous times, as measured in that frame) with respect to
the lattice. As far as the synchronization of the clocks within each frame goes, this can
be accomplished by putting a light source midway between any two clocks and sending
out signals, and then setting the clocks to a certain value when the signals hit them.
Alternatively, a more straightforward method of synchronization is to start with all the
clocks synchronized right next to each other, and then move them very slowly to their
final positions. Any time-dilation effects can be made arbitrarily small by moving the
clocks sufficiently slowly. This is true because the time-dilation factor γ is second order
in v, whereas the time it takes a clock to reach its final position is only first order in 1/v;
see Problem 1.3.

This lattice way of looking at things emphasizes that observers are not important,
and that a frame is defined simply as a lattice of space and time coordinates. Anything
that happens (an “event”) is automatically assigned a space and time coordinate in every
frame, independent of any observer. Just record the spatial coordinates of the lattice
point where the event is located, along with the reading on the clock at that point. You
can assume that the lattice spacing is arbitrarily small, constructed with, say, millimeter
sticks instead of meter sticks.

Frame independence

The three fundamental effects that we derived above tell us that many “truths” from
everyday life must be thrown out the window. We can no longer count on two people in
different frames agreeing on matters of simultaneity, time, or length. In fact, so much
has been thrown out the window, that you might be wondering if there’s anything two
people in different frames can agree on.

Fortunately, there are still some things you can hang on to, that is, things that
are frame independent. We have encountered many examples of frame-independent
statements in the above sections, and we have presented various arguments for why
these statements were in fact frame independent. Let’s revisit one example that came
up – the reading on a clock when a ball hits it. All observers, no matter what frame they
are in, must agree on what this reading is. If one person says noon, then everyone says
noon. There are two ways to see why this is the case.

First, you can imagine that the ball breaks the clock, so that the clock is stuck on
whatever value it had when the ball hit it. Everyone will agree on what this broken value
is, because the clock can be arranged to eventually sit at rest next to any given person.
Second, the two events, “ball hitting clock” and “clock reading noon (or whatever),”
happen at the same location in any frame, namely, at the clock. (We’ll assume that the
clock has negligible spatial extent.) The two events are therefore separated by a distance
of L = 0, which means that the Lv/c2 rear-clock-ahead effect is zero. In other words,
we don’t have to worry about any issues involving the loss of simultaneity. In short,
the two events are really just one event, the “ball hitting clock and clock reading noon”
event, described by specific space and time coordinates. Note that we are talking here
about the reading on the clock, and not the time elapsed on it. An elapsed time is the
difference between two readings.

What other kinds of frame-independent statements can we make? Well, if a paint
bomb explodes and leaves a mark on an object at the location of a dent that was already
there, then everyone agrees that there is a mark, and that it is located at the dent.
Another example is: If a person departs from one clock when it reads T1 and arrives at
another clock when it reads T2, then the difference in these readings, T2 − T1, is frame
independent. This is true because each reading is frame independent. Note that we are
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not saying that the time elapsed between these two events (person departing from one
clock, person arriving at the other) is frame independent. The time elapsed does depend
on the observer’s frame (there will be a time-dilation factor involved), because the time
elapsed in a given frame is the difference in readings on the clock of the observer (who
is at rest in the given frame), and not on the two given clocks. Apples and oranges.

Draw pictures, and stick to a frame

When solving problems using the fundamental effects, a very important strategy is to
draw a picture of the setup in whatever frame you have chosen to work in. You should
draw a picture at every moment when something of importance happens, as we did
above in Fig. 1.22, for example. Once we drew those pictures, it was reasonably clear
what we needed to do. But without the pictures, we almost certainly would have gotten
confused. This problem-solving strategy is so important that we’ll display it in a box:

DRAW PICTURES!

When drawing pictures at different times in a process, it is most informative to
draw one picture above the other, with the x-axis origins of the two (or more) pictures
vertically aligned. This way, objects that are at rest in the given frame are vertically
aligned. See, for example, Figs. 1.32 and 1.34 below.

The importance of drawing pictures in relativity is analogous to the importance of
drawing free-body diagrams when using F = ma in mechanics problems. In both cases,
the problem is usually easy once you draw the picture/diagram, but often hopeless if
you don’t (except in very simple cases).

A related strategy is to plant yourself in a frame and stay there. The only thoughts
running through your head should be what you observe. That is, don’t try to use
reasoning like, “Well, the person I’m looking at in this other frame sees such-and-such.”
This will almost certainly cause an error somewhere along the way, because you will
inevitably end up writing down an equation that combines quantities that are measured
in different frames, which is a no-no. Or you might end up using time dilation backwards
by putting the γ factor in the wrong place. The strategy of drawing pictures helps you
avoid this kind of error, because when drawing a picture you necessarily have to pick a
frame.

Of course, you might want to solve another part of the problem by working in another
frame, or you might want to redo the whole problem in another frame. That’s fine, but
once you decide which frame you’re going to use for a given line of reasoning, make sure
you put yourself there and stay there. If you are drawing a picture in a train frame, then
be the train. If you are drawing a picture in a ball frame, then be the ball. Sticking to a
single frame is another problem-solving strategy that is so important that we’ll display
it in a box:

CHOOSE A FRAME AND STICK WITH IT!

“Seeing” things

We mentioned above in the fourth remark on page 14 that there is always a difference
between the time an event happens and the time someone sees the event happen, because
light takes time to travel from the event to the observer. We will generally be concerned
with the former and not the latter. You can avoid the issue of “seeing” if you use the
lattice of clocks and meter sticks introduced above. The time associated with an event
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is the time on the clock at the location of the event. With a lattice setup, we never have
to worry about the travel time of light.

In this chapter, we will often be a little sloppy and use language such as, “What time
does B see event Q happen?” But we don’t really mean, “When do B’s eyes register
that Q happened?” Instead, we mean, “What time does B know that event Q happened
in her frame?” If we ever want to use “see” in the former sense, we will explicitly say
so. Two such examples are the “Rotated square” setup in Problem 1.4 and the Doppler
effect in Section 2.5.

1.4 Four instructive examples
We’ll now present four examples that integrate everything we’ve done so far. Each
of these examples involves all three of the fundamental effects we’ve discussed: rear
clock ahead, time dilation, and length contraction. The first two examples address the
paradoxical issues with time dilation and length contraction.

You should try to solve each of these problems on your own before looking at the
solution. If you can’t solve it right away, set it aside for a while and come back to it
later. It will still be there when you come back. In the end, you’ll find that these four
problems are all quite similar. There are only three fundamental effects, so there are
only so many ways to combine them!

Example 1 (Explaining time dilation): Two planets, A and B, are at rest with respect to
each other, a distance L apart, with synchronized clocks. A spaceship flies with speed v

past planet A toward planet B. Right when it passes A, it synchronizes its clock with A’s;
they both set their clocks to zero. The spaceship eventually flies past B and compares its
clock with B’s. We know, from working in the planets’ frame, that when the spaceship
reaches B, B’s clock simply reads L/v. Additionally, the spaceship’s clock reads L/γv,
because it runs slow by a factor of γ when viewed in the planets’ frame. See Fig. 1.31.
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How would someone on the spaceship quantitatively explain why B’s clock reads L/v
(which is more than its own L/γv) when the spaceship and B coincide, considering that
the spaceship sees B’s clock running slow? Shouldn’t a spaceship person conclude that
B’s clock reads only (L/γv)/γ = L/γ2v?

Solution: First note that if you want to work entirely in the spaceship’s frame and not
obtain the above L/γv result by using time dilation from the planets’ point of view, you can
use the fact that the spaceship says the distance between the planets is L/γ due to length
contraction. Since the planets travel at speed v, the process therefore takes a time of L/γv
on the spaceships’s clock.
The resolution to the apparent paradox is the “head start” that B’s clock has over A’s clock,
as seen in the spaceship frame. From Eq. (1.8), we know that in the spaceship frame, B’s
clock reads Lv/c2 more than A’s, because B is the rear person as they move leftward past
the spaceship. See Fig. 1.32.
Therefore, what a person on the spaceship says is: “My clock advances by L/γv during
the whole process. I see B’s clock running slow by a factor γ, so I see B’s clock advance
by only (L/γv)/γ = L/γ2v. However, B’s clock started not at zero but at Lv/c2. The final
reading on B’s clock when it reaches me is its initial reading of Lv/c2 plus the elapsed
time of L/γ2v, which gives

Lv
c2 +

L
γ2v
=

L
v

(
v2

c2 +
1
γ2

)
=

L
v

(
v2

c2 +

(
1 − v2

c2

))
=

L
v
, (1.22)

as we wanted to show.” The final reading on A’s clock is only L/γ2v, but that isn’t relevant
here.
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Note that in the sentence preceding Eq. (1.22), we used the phrase “on B’s clock when it
reaches me,” as opposed to “on B’s clock when I reach it.” That latter would be incorrect,
because we are working in the spaceship frame, where the spaceship is (of course) at rest;
the two spaceships are vertically aligned in Fig. 1.32. Since the spaceship isn’t moving, it
therefore can’t do any “reaching.” B, however, is moving, so it can reach the spaceship.

Example 2 (Explaining length contraction): Two paint bombs lie on a train platform,
a distance L apart. As a train moves rightward at speed v, the paint bombs explode
simultaneously (in the platform frame) and leave marks on the train; see Fig. 1.33. Due to
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Figure 1.33

the length contraction of the train, we know that the marks on the train are a distance γL
apart when viewed in the train frame, because this distance is what is length-contracted
down to the given distance L in the platform frame.
How would someone on the train quantitatively explain why the marks are a distance γL
apart, considering that in the train frame the paint bombs are only a distance L/γ apart
due to length contraction? (This example is the quantitative treatment of Example 3 on
page 27.

Solution: The resolution to the apparent paradox is that the explosions do not occur
simultaneously in the train frame. As the platform rushes past the train, the “rear” (right)
paint bomb explodes before the “front” (left) one explodes.8 The front one then gets to
travel farther by the time it explodes and leaves its mark. The distance between the marks is
therefore larger than the L/γ distance that you might naively expect. Let’s be quantitative
about this, to show that it all works out.

8Since we’ll be working in the train frame here, we’ll use the words “rear” and “front” in the way that
someone on the train uses them as she watches the platform rush by. That is, if the train is heading east with
respect to the platform, then from the point of view of the train, the platform is heading west. So the western
paint bomb on the platform is the front one, and the eastern paint bomb is the rear one. They therefore have
the opposite orientation compared with the way that someone on the platform labels the rear and front of the
train. Using the same orientation would entail writing the phrase “front clock ahead” below, which would
make me cringe.
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For concreteness, let the two paint bombs contain clocks that read zero when they explode
(they are synchronized in the platform frame), as shown above in Fig. 1.33. Then in the
train frame, the front bomb’s clock reads only −Lv/c2 when the rear bomb explodes at
the instant it reads zero; see Fig. 1.34. This is the rear-clock-ahead result from Eq. (1.8).
The front bomb’s clock must therefore advance by a time of Lv/c2 before it explodes,
because it is a frame-independent fact that it explodes when it reads zero. However, the
train sees the bombs’ clocks running slow by a factor γ, so in the train frame the front
bomb explodes a time γLv/c2 after the rear bomb explodes. (Note that it is the elapsed
time of 0 − (−Lv/c2) that gets dilated, and not the reading of Lv/c2. Elapsed times get
dilated, not readings.) During the time of γLv/c2 in the train frame, the platform moves a
distance (γLv/c2)v = γLv2/c2 relative to the train, as shown in Fig. 1.34.

(end)

(start)

(train frame)

v

0

L/γ

v

0

L/γ γLv2/c2

γL

-Lv/c2

Lv/c2

Figure 1.34

Therefore, what a person on the train says is: “Due to length contraction, the distance
between the paint bombs is L/γ. The front (left) bomb is therefore a distance L/γ ahead of
the rear (right) bomb when the latter explodes. The front bomb then travels an additional
distance of γLv2/c2 by the time it explodes, at which point it is a distance of
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= γL (1.23)

ahead of the rear bomb’s mark, as we wanted to show.”

Example 3 (A passing stick): A stick with proper length L moves past you at speed v,
as shown in Fig. 1.35. There is a time interval between the front end coinciding with you

v

Figure 1.35
and the back end coinciding with you. What is this time interval in:

(a) your frame? (Calculate this by working in your frame.)

(b) your frame? (Work in the stick’s frame.)

(c) the stick’s frame? (Work in your frame. This is the tricky one.)

(d) the stick’s frame? (Work in the stick’s frame.)

Solution:

(a) The stick has length L/γ in your frame, and it moves with speed v. Therefore, the
time taken in your frame to cover the distance L/γ is (L/γ)/v = L/γv.
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(b) The stick sees you fly by at speed v. The stick has length L in its own frame, so the
time elapsed in the stick frame is L/v. During this time, the stick sees the watch on
your wrist run slow by a factor γ. Therefore, a time of only (L/v)/γ = L/γv elapses
on your watch, in agreement with part (a).

Logically, the two solutions in parts (a) and (b) differ in that one uses length con-
traction while the other uses time dilation. Mathematically, they differ simply in the
order in which the divisions by γ and v occur.

(c) Due to the rear-clock-ahead effect, you see the rear clock on the stick showing a time
of Lv/c2 more than the front clock. If we assume for concreteness that the front
clock on the stick reads zero when it passes you, then at this same instant (in your
frame), the rear clock on the stick reads Lv/c2; see Fig. 1.36. In addition to this

vLv/c2 0

Figure 1.36
initial reading on the rear clock, more time will of course elapse on it by the time
it reaches you. As we found in part (a), the time in your frame is L/γv, because
the stick has length L/γ in your frame and travels at speed v. But the stick’s clocks
run slow, so a time of only (L/γv)/γ = L/γ2v elapses on the rear clock by the time
it reaches you. The final reading on the rear clock when it passes you is its initial
reading plus the time elapsed on it, which gives

Lv
c2 +

L
γ2v
=

L
v

(
v2

c2 +
1
γ2

)
=

L
v

(
v2

c2 +

(
1 − v2

c2

))
=

L
v
. (1.24)

(This is the same calculation as in Eq. (1.22).) Since the two clocks are synchronized
(that is, they show the same time at any given instant) in the stick frame, the difference
between the initial reading on the front clock (which is zero) and the final reading on
the rear clock (which we just found to be L/v) is the time elapsed in the stick frame.
So the time elapsed is L/v, in agreement with the quick calculation that follows in
part (d).

(d) The stick sees you fly by at speed v. The stick has length L in its own frame, so the
time elapsed in the stick frame is simply L/v. (Of course, we already knew this from
solving part (b).)

Example 4 (Photon on a train): A train with proper length L has clocks at the front and
back. A photon is fired from the back to the front. Working in the train frame, we can
easily say that if the photon leaves the back of the train when a clock there reads zero, then
it arrives at the front when a clock there reads L/c.

Now consider this setup in the ground frame, where the train travels by at speed v. Rederive
the above frame-independent result (namely, if the photon leaves the back of the train when
a clock there reads zero, then it arrives at the front when a clock there reads L/c) by
working only in the ground frame.

Solution: In the ground frame the train has length L/γ, so the photon starts the process
a distance L/γ behind the front of the train. It must close this gap at a relative speed of
c − v, because the front of the train is receding at speed v. (Simple subtraction of these
speeds is valid because they are both measured with respect to the ground, and we are
looking for the relative speed as viewed by the ground.) The time elapsed in the ground
frame is therefore (L/γ)/(c − v). But the ground frame sees the train clocks run slow, so
only (L/γ2)/(c − v) elapses on any given train clock.

As viewed in the ground frame, when the photon is released next to the back clock when it
reads zero, the front clock reads −Lv/c2 due to the rear-clock-ahead effect. Fig. 1.37 shows

c

v

-Lv/c2

L/γ

0

Figure 1.37

the initial picture. The reading on the front clock when the photon hits it is the initial reading
of −Lv/c2 plus the time elapsed on it, which we found above to be (L/γ2)/(c − v). The
final reading on the front clock is therefore



1.5. Velocity addition 35

− Lv
c2 +

L
γ2(c − v)

= − Lv
c2 +

L
(
1 − v2

c2

)
c
(
1 − v

c

) = − Lv
c2 +

L
c

(
1 +

v

c

)
=

L
c
, (1.25)

as desired.

At this point, you might want to look at the “Qualitative relativity questions” in
Appendix A, just to make sure there aren’t any misconceptions lingering in your mind.
The first half of the collection (through Question 25) deals with material we’ve covered
so far.

1.5 Velocity addition
It’s now time to derive the velocity-addition formula, which we have mentioned a few
times in this chapter. If you want, you can consider the formula to be a fourth fundamental
effect, in addition to rear clock ahead, time dilation, and length contraction.

Consider the following setup. A ball moves at speed u with respect to a train, and the
train moves at speed v with respect to the ground (in the same direction as the motion
of the ball; see Fig. 1.38). What is the speed V of the ball with respect to the ground?

u v

Figure 1.38

The result is the desired velocity-addition formula.
In the nonrelativistic limit (that is, when u and v are small compared with c), V

is simply equal to u + v, as we know very well from everyday experience (although
technically this result isn’t exactly correct, as we’ll see below). But the simple u + v

answer can’t be correct for larger speeds, because if, for example, u and v are both equal
to (0.9)c, then u + v = (1.8)c. This is certainly incorrect, because it is larger than c.
The fact of the matter is that it is impossible for an object (or at least any object we can
interact with) to move faster than c. There are various ways to demonstrate this. One is
that it would require an infinite amount of energy to accelerate an object up to speed c.
We’ll see why in Chapter 3.

To find the correct general expression for V (that is, to derive the velocity-addition
formula), let’s consider a concrete setup where we look at the time it takes a ball to travel
from the back of a train to the front. Let the train have proper length L. Our strategy for
finding V will be to generate two different expressions for the time of this process in the
ground frame. Equating these two expressions will allow us to solve for V . The setup
is shown in Fig. 1.39. We’ve put the ball outside the train to emphasize that the speed
V is with respect to the ground.

V

L/γ

V

v v

Figure 1.39

The first expression for the time (for the ball to go from the back of the train to the
front) in the ground frame is found by noting that (a) the initial gap between the ball and
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the front of the train is L/γ due to length contraction, and (b) this gap is closed at a rate
V − v, because this is the relative speed of the ball and the front of the train, as viewed in
the ground frame. As we’ve seen a number of times in this chapter, it is legal to simply
subtract these speeds, because they are both measured with respect to the same frame
(the ground frame). The time in the ground frame for the ball to reach the front of the
train is therefore

tg =
L/γ

V − v , (1.26)

where V is not yet known. The γ factor here is associated with the speed v of the train
(that is, not with V or u).

The second expression for the time in the ground frame is found by looking at a
particular clock on the train and using time dilation. Assume that a clock at the back
of the train reads zero when the ball is thrown. Then by working in the frame of the
train, we quickly see that a clock at the front reads L/u when the ball gets there. (No
relativity needed for this.) Now look at things in the ground frame. The readings we
just mentioned are frame independent, so the starting and ending readings in the ground
frame must be the ones shown in Fig. 1.40. At the start, the rear clock reads zero (frame
independent), so the front clock reads −Lv/c2, due to the rear-clock-ahead effect. And
at the finish, the front clock reads L/u (frame independent), so the rear clock reads
L/u + Lv/c2, due to the rear-clock-ahead effect.

V

L/γ

V

v v

0 L/u-Lv/c2 Lv/c2L/u +

Figure 1.40

Looking at the rear clock (the front clock works just as well), we see that the time
elapsed on this clock is L/u + Lv/c2. Since we are looking at a single clock, it is legal
to use time dilation, which tells us that the time elapsed on the ground is longer by a
factor γ. (Again, this γ factor is associated with the speed v of the train.) So our second
expression for the time in the ground frame is

tg = γ

(
L
u
+

Lv
c2

)
. (1.27)

Note that we cannot say that since the time elapsed on the train is L/u, the time
elapsed on the ground should be γ(L/u). This is incorrect because in the ground frame,
L/u isn’t the time elapsed on a single clock. Fig. 1.40 tells us that L/u is the final
reading on the front clock minus the initial reading on the rear clock. It isn’t legal to
use time dilation when comparing the readings on two different clocks. In the above
correct reasoning, we compared the readings on a single clock (either the front clock or
the rear clock).
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Now all we have to do is equate the two times in Eqs. (1.26) and (1.27) and then
solve for V . There’s a little algebra involved, but it isn’t so bad. We have

L/γ
V − v = γ

(
L
u
+

Lv
c2

)
=⇒ 1

γ2
1

1
u
+

v

c2

= V − v

=⇒ V =
1 − v2

c2

1
u
+

v

c2

+ v =
1 +

v

u
1
u
+

v

c2

=⇒ V =
u + v

1 +
uv
c2

(velocity-addition formula) (1.28)

This is the longitudinal velocity-addition formula, relevant when adding velocities that
are parallel to each other. There is also a transverse velocity-addition formula, relevant
when the two given velocities are perpendicular. We’ll derive that in Section 2.2.2.
Note that we used all three of the fundamental effects (rear clock ahead, time dilation,
and length contraction) in the above derivation.

Given a velocity v, the letter β is used to denote the ratio of v to c. That is, β ≡ v/c.
Sometimes a subscript is added, as in βv or β1, if there is ambiguity about which speed
is being referred to. In terms of β’s, the velocity-addition formula for the speeds v1 and
v2 takes the form,

β =
β1 + β2

1 + β1 β2
. (1.29)

This expression is often simpler to work with than Eq. (1.28), because there are no c’s
to clutter things up. Alternatively, we will often simply drop the c’s in calculations, to
keep things from getting too messy. Eq. (1.28) then becomes V = (u + v)/(1 + uv).
The c’s can always be put back in at the end, by figuring out where they need to go in
order to make the units correct (which is usually easy to see). Equivalently, you can just
pretend that V , u, and v are actually βV , βu , and βv .

Two other derivations of Eq. (1.28) are given in Exercises 1.47 and 1.48. They are
similar to the above derivation, in the following way. There are (at least) three different
methods for finding the time (for the ball to travel from the back of the train to the front)
in the ground frame: (1) the front of the train has an initial head start over the ball, and
we can find the time it takes the ball to close this gap down to zero, (2) we can apply
time dilation to a given train clock, or (3) we can apply time dilation to the ball’s clock.
The above derivation used the first and second of these, Exercise 1.47 uses the first and
third, and Exercise 1.48 uses the second and third.

Let’s look at some of the properties of the V in Eq. (1.28).

• V is symmetric in u and v. We’ll explain why when we discuss Fig. 1.41 below.

• If u and v are small compared with c, then V ≈ u + v, because the uv/c2 term in
the denominator is negligible. This result makes sense, because we know very
well that V equals u + v for everyday speeds.

• If u = c or v = c, then we obtain V = c. This is correct, because anything that
moves with speed c in one frame moves with speed c in another.

• The maximum (or minimum) of V in the square region defined by the two in-
equalities, −c ≤ u ≤ c and −c ≤ v ≤ c, equals c (or −c). This is due to the
fact that the partial derivatives ∂V/∂u and ∂V/∂v are never zero in the interior
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of the region (or anywhere, for that matter), as you can verify. The extrema must
therefore occur on the boundary, and you can show that V always takes on the
value of c or −c there. (There are two exceptions at the two u = −v = ±c corners
of the region, where V takes on the undefined value of 0/0.)

The last of these bullet points tells us that if we take any two velocities that are
less than c and add them according to Eq. (1.28), then we will obtain a velocity that is
again less than c. If you don’t want to rely on partial derivatives, you can alternatively
demonstrate this fact with the following inequalities:

u + v
1 + uv/c2 < c ⇐⇒ u + v < c + uv/c ⇐⇒ u(1 − v/c) < c − v

⇐⇒ u <
c − v

(c − v)/c
⇐⇒ u < c. (1.30)

Assuming that c − v isn’t zero (because otherwise we would have divided by zero), all
of the above steps are reversible. So if we start with both u < c and v < c, then we
end up with (u + v)/(1 + uv/c2) < c. This means that no matter how much you keep
accelerating an object (that is, no matter how many times you give the object a speed u
with respect to the frame moving at speed v that it was just in), you can’t bring the speed
up to c. As mentioned earlier, this also follows from energy considerations, as we’ll see
in Chapter 3.

For a bullet, a train, and a gun,
Adding the speeds can be fun.
Take a trip down the path
Paved with Einstein’s new math,
Where a half plus a half isn’t one.

In addition to applying to the above “ball on train on ground” setup, there is an-
other common scenario where the velocity-addition formula applies. Consider the two
scenarios shown in Fig. 1.41. The first is the original “ball on train on ground” setup.

vA

A

B

B

(Scenario 1)

(Scenario 2)

(ball) (ground)

(train)

C

C

1

v1

v2

v2

Figure 1.41

These two scenarios are actually identical. The only difference is that the first one is
shown in C’s frame, while the second one is shown in B’s frame. They are indeed
identical, because in the first scenario B sees A approach him rightward at speed v1 (in
agreement with the second scenario). Similarly, in the first scenario, B sees C approach
him leftward at speed v2 (again in agreement with the second scenario). Basically, in
the second scenario, A is the ball, B is the train, and C is the ground. Therefore, if the
goal is to find the velocity of A with respect to C in the second scenario, then since
we showed above that the velocity-addition formula applies in the first scenario, we
conclude that it also applies to the second scenario.

We noted above that the V in Eq. (1.28) is symmetric in u and v, or equivalently
in v1 and v2 in the present notation. This is clear in the second scenario in Fig. 1.41,
because switching v1 and v2 is equivalent to switching A and C, and because the speed
of A as viewed by C is the same as the speed of C as viewed by A (see the first remark
below). Therefore, since the two scenarios in Fig. 1.41 are equivalent, V must also be
symmetric in u and v in the original setup in Fig. 1.38.

In the second scenario in Fig. 1.41 (as in the first), the velocity-addition formula tells
us the answer to the question, “What is the relative speed of A and C, as viewed by C?”
The answer is (v1 + v2)/(1 + v1v2/c2). However, the formula does not apply if we ask
the more mundane question, “What is the relative speed of A and C, as viewed by B?”
The answer to this is simply v1 + v2. In short, if the two velocities are given with respect
to the same observer, B, and if you are asking for the relative velocity as measured by B,
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then you just have to add the velocities. But if you are asking for the relative velocity as
measured by A or C, then you have to use the velocity-addition formula. Equivalently,
in the first scenario in Fig. 1.41, it makes no sense to naively add velocities that are
measured with respect to different observers. Doing so would involve adding things that
are measured in different coordinate systems, which is meaningless. Taking the velocity
of A with respect to B and adding it to the velocity of B with respect to C, hoping to
obtain the velocity of A with respect to C, is invalid.

We see that relativistically the question, “What is the relative speed of A and C?”
is ambiguous. We have to finish it with “. . . as measured by such and such a person.”
Nonrelativistically, though, there is no ambiguity. The answer is simply v1 + v2 in any
frame.

Note that the v1 + v2 relative speed of A and C, as viewed by B, in Fig. 1.41 can
certainly be greater than c. If I see a ball heading toward me at (0.9)c from the right,
and another one heading toward me at (0.9)c from the left, then the relative speed of the
balls in my frame is (1.8)c. In the frame of one of the balls, however, Eq. (1.28) gives
the relative speed as (1.8/1.81)c ≈ (.9945)c. This is correctly less than c, because
you (or one of the balls, in this case) can never see another object (the other ball) move
with a speed greater than c. This restriction doesn’t rule out the above result of (1.8)c,
because this is simply the rate at which the gap between the balls is closing. A gap isn’t
an actual object, so there is nothing wrong with the length of the gap decreasing at a
rate faster than c. In the extreme, if one photon heads rightward and another one heads
leftward, then as measured by you, their relative speed is 2c. That is the rate at which
the gap between them is closing in your frame.

Remarks:

1. If two people, A and B, are moving with respect to each other in one dimension, why is
the speed of B as viewed by A equal to the speed of A as viewed by B? This equality
seems quite reasonable, of course, but how do we prove it rigorously from basic principles
(that is, ignoring what we’ve derived about velocity addition)? The proof follows directly
from the first postulate of relativity – that all inertial frames are equivalent (which implies
that there is no preferred location or direction in space). Let’s assume that the relative
speed measured by the left person is larger than the relative speed measured by the right
person. This implies that there is a preferred direction in space; apparently people on the
left always measure a larger speed. This violates the first postulate. Likewise if the left
person measures a smaller speed. The two speeds must therefore be equal.

2. Strictly speaking, the signs in the numerator and denominator in Eq. (1.28) are always plus
signs, assuming that v1 and v2 are the signed velocities of the objects in the first scenario in
Fig. 1.41. However, in practice it is often more convenient to let v1 and v2 be speeds (which
are always positive). In this case, the same sign appears in the numerator and denominator
in Eq. (1.28), and the correct choice of sign is determined by the sign you would use in
the simple nonrelativistic case. For example, the nonrelativistic speed of A with respect to
C in the first scenario in Fig. 1.41 is simply the sum of the speeds, v1 + v2, which means
we must use positive signs in Eq. (1.28). If the ball is instead thrown backward on the
train, then the nonrelativistic speed of A with respect to C is the difference of the speeds,
−v1 + v2 (or | − v1 + v2 | if this quantity is negative), which means we must use negative
signs in Eq. (1.28). In any case, the numerator in the relativistic case is always the naive
nonrelativistic answer. If you get confused about the signs, it’s best to just plug is some
actual numbers for v1 and v2, to see what’s going on.

3. For everyday speeds, the nonrelativistic and relativistic results for the speed of A as viewed
by C in Fig. 1.41 are essentially the same. If v1 = 50 m/s and v2 = 30 m/s, then the
nonrelativistic result is simply v1 + v2 = 80 m/s, while Eq. (1.28) gives the relativistic
result as (80 m/s)(1−1.67 ·10−14). The nonrelativistic result is therefore incorrect by less
than 2 parts in 1014. That’s plenty good for me.
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4. The sum v1 + v2 doubles as the answer to two different questions concerning Fig. 1.41. It
is the approximate (nonrelativistic) answer to the question, “What is the relative speed of
A and C, as viewed by C?” It is also the exact (relativistic or nonrelativistic) answer to the
question, “What is the relative speed of A and C, as viewed by B?” ♣

Let’s now do two examples. The second one has a little bit of everything we’ve done
so far – rear clock ahead, time dilation, length contraction, and velocity addition.

Example 1 (Passing trains, again): Consider again the scenario in the “Passing trains”
example in Section 1.3.3.

(a) How long, as viewed by A and as viewed by B, does it take for A to overtake B?

(b) Let event E1 be “the front of A passing the back of B”, and let event E2 be “the back
of A passing the front of B.” Person D walks at constant speed from the back of B
to the front (see Fig. 1.42), such that he coincides with both events, E1 and E2. How

A

C

BD
3c/5

4c/5

Figure 1.42

long does the “overtaking” process take, as viewed by D?

Solution:

(a) First consider B’s point of view. From the velocity-addition formula, B sees A move
with speed

u =

4c
5
− 3c

5

1 − 4
5
· 3

5

=
5c
13
. (1.31)

This expression involves minus signs because the naive nonrelativistic relative speed
involves subtracting the speeds. The γ factor associated with the speed u is γ5/13 =
13/12, as you can check. Therefore, B sees A’s train contracted to a length 12L/13.
During the overtaking, A must travel a distance equal to the sum of the lengths of the
trains in B’s frame (see Fig. 1.43), which is L + 12L/13 = 25L/13. Since A moves

A

B

A

5c/13 5c/13

start

(B's frame)

end

Figure 1.43

with speed 5c/13, the total time in B’s frame is

tB =
25L/13
5c/13

=
5L
c
. (1.32)

The exact same reasoning holds from A’s point of view, so we have tA = tB = 5L/c.

(b) Look at things in D’s frame. D is at rest, and the two trains move with equal and
opposite speeds v (to be determined), because this causes the second event E2 to
be correctly be located at D; see Fig. 1.44. Our setup is equivalent to the second
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B
v

v

D

start

end

Figure 1.44

scenario in Fig. 1.41, so the speed of A as viewed by B is the relativistic addition
of v with itself. But from part (a), we know that this relative speed equals 5c/13.
Therefore (with β ≡ v/c),

v + v

1 + v2/c2 =
5c
13
=⇒ 5β2 − 26β + 5 = 0

=⇒ (5β − 1)(β − 5) = 0 =⇒ β =
1
5
, (1.33)

which gives v = c/5. We have ignored the unphysical solution, β = 5 =⇒ v = 5c,
because v can’t exceed c. The γ factor associated with v = c/5 is γ1/5 = 5/2

√
6.

So D sees both trains contracted to a length 2
√

6L/5. During the process, each train
must travel a distance equal to its length (as shown in Fig. 1.44) because both events,
E1 and E2, take place right at D. The time in D’s frame is therefore

tD =
2
√

6L/5
c/5

=
2
√

6L
c
. (1.34)

Remarks: There are a few double checks we can perform. The speed of D with
respect to the ground can be obtained either via B’s frame by relativistically adding
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3c/5 and c/5, or via A’s frame by relativistically subtracting c/5 from 4c/5. You can
check that these methods give the same answer (as they must), namely 5c/7. (The
v = c/5 speed can actually be determined by demanding that these methods give the
same answer, instead of by Eq. (1.33).) The γ factor between the ground and D is
therefore γ5/7 = 7/2

√
6. We can then use time dilation to say that someone on the

ground sees the overtaking take a time of (7/2
√

6)tD . (We can say this because both
events happen right at D.) Using the tD from Eq. (1.34), this gives a ground-frame
time of 7L/c, in agreement with our earlier result in Eq. (1.21). Likewise, since the
γ factor between D and either train is γ1/5 = 5/2

√
6, the time of the overtaking as

viewed by either A or B is (5/2
√

6)tD = 5L/c, in agreement with Eq. (1.32).
Note that we cannot use simple time dilation to relate the time on the ground to the
time on either train, because the two events don’t happen at the same place in either
of the train frames (or in the ground frame). But since both events happen at the
same place in D’s frame, namely right at D, it is legal to use time dilation to go
from D’s frame to any other frame. And when doing so, the relevant γ factor always
appears in front of tD . ♣

Example 2 (Clock readings on trains):

(a) Two trains each have proper length L and travel on parallel tracks. They both move
with speed v with respect to the ground, one rightward and one leftward. You notice
that clocks at the fronts of the trains both read zero when the fronts coincide, as
shown in Fig. 1.45. What do clocks at the backs of the trains read when the backs
eventually coincide? Answer this by working in the ground frame.

A

B
v

v
0

0

Figure 1.45

(b) Again find the readings on the two clocks at the backs of the trains when the backs
coincide, but now by working in the frame of train B. To keep things from getting
messy, you can let v take on the particular value of c/2 for this part.

Solution:

(a) At the given initial instant in the ground frame, a ground observer sees both of the
rear clocks reading Lv/c2, due to the rear-clock-ahead effect. The backs of the trains
eventually coincide at the same location the fronts coincided, after each train has
traveled a distance L/γ; this is the contracted length of each train in the ground
frame. The time elapsed in the ground frame is therefore (L/γ)/v. But the ground
observer sees the train clocks (in particular, the rear clocks) running slow by a factor
γ. So the time elapsed on each rear clock is (L/γv)/γ. The final reading on each
rear clock is its initial reading of Lv/c2 plus the elapsed time of L/γ2v. The final
reading is therefore (as we’ve seen a few times in other examples)

Lv
c2 +

L
γ2v
=

Lv
c2 +

(
1 − v2

c2

)
L
v
=

L
v
. (1.35)

Remark: A quick way to see why this result is so simple is the following. Imagine a
person standing at rest on the ground, at the initial location of the fronts of the trains.
Since the person is at rest, the backs of the trains will be located at the person when
they eventually coincide. Therefore, in the frame of one of the trains, the person
simply travels the length L of the train (by the time the backs and the person all
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coincide), at speed v (because that is the relative speed of the ground and a train).
So the time in the train frame is L/v. This elapsed time is the desired reading on
the back clock, because the clock started at zero in the train frame, since clocks on a
given train are synchronized in that train’s frame. ♣

(b) The given setup is equivalent to the second scenario in Fig. 1.41, so the speed V of
one train as viewed by the other is the relativistic addition of v ≡ c/2 with itself:

V =

c
2
+

c
2

1 +
1
2
· 1

2

=
4c
5
. (1.36)

Since γ4/5 = 5/3, the contracted length of A in B’s frame is 3L/5. The setup in B’s
frame is therefore shown in Fig. 1.46 (ignore A’s rear clock for now).
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Figure 1.46

Let’s first find the final reading on B’s rear (right) clock when A’s rear (left) clock
reaches it. (B’s right clock starts at zero, as shown, because B’s clocks are synchro-
nized in B’s frame.) This is obtained by noting that A must travel a distance equal
to the sum of the lengths of the trains. It does this at speed 4c/5, so the final reading
on B’s right clock is

0 +
3L/5 + L

4c/5
=

2L
c
. (1.37)

This agrees with the result in part (a) when v = c/2, as it must, because the reading
is frame independent.
To find the final reading on A’s left clock, we must remember that it starts the
process reading LV/c2 = 4L/5c, due to the rear-clock-ahead effect. It then advances
by (2L/c)/γ4/5, due to time dilation and due to the fact that 2L/c is the time that
elapses in B’s frame. (B sees A’s clocks run slow, so we must divide by γ.) The
final reading on A’s left clock is therefore

4L
5c
+

3
5
· 2L

c
=

2L
c
. (1.38)

Again this agrees with the result in part (a) when v = c/2. Note that while there is a
symmetry between A’s and B’s rear clocks in the ground frame in part (a), there is no
such symmetry between the clocks here in B’s frame. The calculation for A’s clock
here is therefore different from the calculation for B’s clock (although we know from
part (a) that the readings must end up the same).

General problem-solving strategies

We’ll end this chapter by collecting all of our problem-solving strategies in one place.
We’ll encounter additional kinematics strategies in Chapter 2, but for the types of
problems we’ve solved in this chapter, things generally boil down to the following
ingredients. If you look back at the examples we’ve done, you can verify that these
strategies pretty much have everything covered. You should therefore keep this checklist
on the tip of your mind.
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1. Loss of simultaneity (rear clock ahead): As viewed in the ground frame,
the rear clock on a train reads Lv/c2 more than the front clock.

2. Time dilation: If you look at a moving clock, it runs slow by a factor γ.

3. Length contraction: If you look at a stick moving longitudinally, it is short by
a factor γ.

4. Velocity-addition formula: This gives the speed of A as viewed by C in the
two scenarios in Fig. 1.41.

5. Gap-closing speed: v1 + v2 (or v1 − v2, depending on directions and sign con-
ventions) is the relative speed of A and C, as viewed by B in the second scenario
(and in the first) in Fig. 1.41.

6. Frame-independent statements: If information is given in one frame, but you
want to work out the problem in another frame, you need to identify which
statements remain true in the new frame.

7. Draw pictures and stick to a frame! Drawing pictures in a given frame helps
you properly implement the above strategies. You should draw a picture whenever
anything of importance happens, labeling all speeds, lengths, clock readings, etc.

1.6 Summary
In this chapter we learned about the basics of special relativity. In particular, we learned:

• A few puzzles in 19th-century physics suggested that something was amiss. These
puzzles included the inconsistency of the Galilean transformations with Maxwell’s
equations, and the null result of Michelson and Morley in their search for the
ether. Einstein’s theory of relativity solved these puzzles by showing that the
Lorentz transformations replace the Galilean transformations, and that light waves
propagate without the need for an ether medium.

• The theory of special relativity rests on two postulates:

1. All inertial (non-accelerating) frames are equivalent; there is no preferred
reference frame.

2. The speed of light in vacuum has the same value in any inertial frame.

• The above postulates lead to many counterintuitive effects, the most fundamental
of which are:

1. Loss of simultaneity (rear-clock-ahead): As viewed in the ground frame, the
rear clock on a train reads Lv/c2 more than the front clock, where L is the
proper length of the train.

2. Time dilation: If you look at a moving clock, it runs slow by a factor γ:

tobserved = γtproper. (1.39)

More generally, if you are considering the time between two events, the γ
goes on the side of the equation associated with the frame in which the
two events happen at the same place (which is automatically the case for
two ticks on a clock). The time in this frame is by definition the proper
time. Remember that it is elapsed times that get dilated, and not readings
on clocks.



44 Chapter 1. Kinematics, Part 1

3. Length contraction: If you look at a stick moving longitudinally, it is short
by a factor γ:

Lobserved =
Lproper

γ
. (1.40)

The proper length of an object is the length as measured in the frame in
which the object is at rest. In any frame, the length of an object is defined
to be the distance between the ends, measured simultaneously in that frame.
There is no transverse length contraction.

• A reference frame can be defined by a lattice of meter sticks and clocks. The
coordinates of an event are the spatial coordinates of the lattice point where the
event is located, along with the reading on the clock at that point.

• The velocity-addition formula,

V =
u + v

1 +
uv
c2

, (1.41)

gives the speed of A as viewed by C in the two scenarios in Fig. 1.41 (with
u ↔ v1 and v ↔ v2). When written in terms of β’s, the formula takes the form in
Eq. (1.29).
The velocity addition formula does not apply when finding the relative speed of A
and C, as viewed by B, in the second scenario (and also in the first) in Fig. 1.41.
This gap-closing speed is simply v1 + v2.

• The various problem-solving strategies we have used throughout this chapter are
listed just before this summary.

1.7 Problems
Section 1.3: The fundamental effects
1.1. Consistency with Lv/c2 *

Show that the tR−tL difference of the times in Eq. (1.6) (where ℓ′ is half the length
of the train in the ground frame) is consistent with the Lv/c2 rear-clock-ahead
result (where L is the proper length of the train).

1.2. Here and there *
A train with proper length L travels past you at speed v. A person on the train
stands at the front, next to a clock that reads zero. At this moment (as measured
by you), a clock at the back of the train reads Lv/c2, due to the rear-clock-ahead
effect. How would you respond to the following statement:
“In the train frame, the person at the front of the train can leave the front right
after the clock there reads zero, and then run to the back and get there right before
the clock there reads Lv/c2. You (on the ground) will therefore see the person
simultaneously at both the front and the back of the train when the clocks there
read zero and Lv/c2, respectively.”

1.3. Synchronizing clocks *
Two synchronized clocks, A and B, are at rest in a given frame, a distance L apart.
A third clock, C, is initially located right next to A. All three clocks have initial
readings of zero, and then C is moved very slowly (with speed v ≪ c) from A to
B. Show that its final reading can be made arbitrarily close to B’s, by making v

be sufficiently small. (The Taylor series
√

1 − ϵ ≈ 1 − ϵ/2 will come in handy.)
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1.4. Rotated square **
A square with sides of proper length L flies past you at speed v, in a direction
parallel to two of its sides. You stand in the plane of the square. When you see
the square at its nearest point to you (see Fig. 1.47), show that it looks to you like

v
L

Figure 1.47

it is rotated instead of contracted, and find the apparent angle of rotation. Assume
that L is small compared with the distance between you and the square. (This
setup is one of the few cases where we are actually concerned with the time it
takes light to travel to your eye.)

1.5. Deriving length contraction **
The derivation of length contraction in Section 1.3.3 relied on time dilation. This
problem gives a derivation that is independent of time dilation.
Assume that the rule for (longitudinal) length contraction is: “If a stick with
proper length L moves at speed v with respect to you, then its length in your frame
is avL.” (The subscript v signifies the possible dependence of a on v.) Your
eventual goal is to show that av = 1/γv , but for all you know at the moment, av
might be larger than, less than, or equal to 1. A critical point here is that the first
postulate of relativity says that all inertial frames are equivalent. So the same avL
rule must apply to everyone.
Consider the following setup. A train with proper length L moves with speed v.
When the back of the train passes a tree, a photon is fired from the back toward the
front. It arrives at the front when the front passes a house. What is the distance
between the tree and the house (in the ground frame)?
Now look at things in the train frame. Using the tree-house proper distance you
just found, write down the relation that expresses the fact that the house meets the
front of the train at the same time the photon does. This will allow you to solve
for av .

1.6. Pole in barn *
A pole with proper length L moves rightward with speed v through a barn, also
with proper length L. Assume that initially the door at the left end of the barn
is open and the door at the right end is closed. Just after the left end of the pole
enters the barn, the left door closes. And just before the right end of the pole
leaves the barn, the right door opens. How would you respond to the following
question: “Is the pole ever completely inside the barn (with both doors closed)?”

1.7. Train in a tunnel **
A train and a tunnel both have proper length L. The train moves toward the tunnel
at speed v. A bomb is located at the front of the train. The bomb is designed to
explode when the front of the train passes the far end of the tunnel. A deactivation
sensor is located at the back of the train. When the back of the train passes the
near end of the tunnel, the sensor sends a signal to the bomb, telling it to disarm
itself. Does the bomb explode?

1.8. Bouncing stick **
A stick, oriented horizontally, falls and bounces off the ground. Qualitatively,
what does this setup look like in the frame of someone running by at speed v?

1.9. Seeing behind the board **
A ruler is positioned perpendicular to a wall, and you stand at rest with respect to
the ruler and the wall. A board with proper length L moves to the right with speed
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v. It travels in front of the ruler, so that it obscures part of the ruler from your
view. The board eventually hits the wall. Which of the following two reasonings
is correct (and what is wrong with the incorrect one)?

In your reference frame, the board is shorter than L, due to length contraction.
Therefore, right before it hits the wall, you are able to see a mark on the ruler that
is less than L units from the wall; see Fig. 1.48(a).

v

v

v

v

L

L/γ

(board frame)

(a)

(b)

(your frame)

ruler

board

Figure 1.48

In the board’s frame, the marks on the ruler are closer together, due to length
contraction. Therefore, the closest mark to the wall that you will ever be able to
see on the ruler is greater than L units; see Fig. 1.48(b).

1.10. Cookie cutter **
Cookie dough (chocolate chip, of course) lies on a conveyor belt that moves with
speed v. A horizontal circular cookie cutter stamps out cookies as the dough
rushes by beneath it. When you buy these cookies in a store, what shape are they?
That is, are they squashed in the direction of the belt, stretched in that direction,
or circular?

1.11. Getting shorter **
Two balls move with speed v along a line toward two people standing along the
same line. The proper distance between the balls is γL, and the proper distance
between the people is L. Due to length contraction, the people measure the
distance between the balls to be L, so the balls pass the people simultaneously (as
measured by the people), as shown in Fig. 1.49. Assume that the people’s clocksv v

Figure 1.49

both read zero at this time. If the people catch the balls, then the resulting proper
distance between the balls becomes L, which is shorter than the initial proper
distance of γL. Your task: By working in the frame in which the balls are initially
at rest, explain how the proper distance between the balls decreases from γL to
L. Do this in the following way.

(a) Draw the beginning and ending pictures for the process. Indicate the read-
ings on both clocks in the two pictures, and label all relevant lengths.

(b) Using the distances labeled in your pictures, how far do the people travel?
Using the times labeled in your pictures, how far do the people travel? Show
that these two methods give the same result.

(c) Explain in words how the proper distance between the balls decreases.

1.12. Transforming the length *
A stick moves rightward with speed 3c/5 with respect to the ground. The length
of the stick in the ground frame is L. You move rightward with speed c/2 with
respect to the ground. What is the length of the stick in your frame?

1.13. Magnetic force ***
This problem demonstrates how the magnetic force arises from the combination
of the electric force and length contraction. The interpretation of this problem
(discussed in the solution) requires a familiarity with basic concepts of electricity
and magnetism, although the problem itself does not.

Consider a current-carrying straight wire. The wire is neutral, that is, it has the
same number of negatively charged electrons and positively charged protons in
any given volume, on average. (If it weren’t neutral, it would attract or repel
electrons, thereby producing neutrality.) In any current-carrying wire, the current
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is caused by electrons moving along the wire; the protons are bolted down. So
we have the situation shown in Fig. 1.50. (Ignore the charge q for a moment.) In

v0

λ0

-λ0

electrons 

(moving)

protons 

(at rest)

v

q

Figure 1.50

reality, the electrons and protons are distributed throughout the wire, but we have
drawn them separated for clarity. The equal and opposite charge densities ±λ0
(charge per meter) are indicated. The electrons’ speed is v0.

Now consider an electric charge q near the wire. If the charge q is at rest, then
since the wire is neutral, q will feel no force. But let’s assume that the charge q
is moving to the right with speed v, as shown in Fig. 1.50. What are the charge
densities of the protons and electrons in q’s rest frame? What then is the net
charge density of the wire in q’s frame?

You will find that the charge density is nonzero, which means that the wire exerts
a force on q in q’s frame (and hence also in the original frame). Returning to
the original frame, we conclude that an electric charge q that is at rest near a
neutral current-carrying wire feels no force, whereas a charge q that is moving
near a neutral current-carrying wire does feel a force. This force is known as the
magnetic force. We will discuss it in the solution.

Section 1.5: Velocity addition

1.14. Pythagorean triples *
Let (a, b, h) be a Pythagorean triple. (We’ll use h to denote the hypotenuse,
instead of c, for obvious reasons.) Consider the relativistic addition or subtraction
of two speeds with β values of β1 = a/h and β2 = b/h. (β ≡ v/c is a speed’s
fraction of the speed of light.) Show that the numerator and denominator of the
result are the leg and hypotenuse of another Pythagorean triple, and find the other
leg. What is the associated γ factor?

1.15. Fizeau experiment **
The second postulate of relativity says that the speed of light in vacuum is always
c (in an inertial frame). However, the speed of light in a medium (such as water)
is given by c/n, where n is the index of refraction of the medium. For water, n is
about 4/3.

Imagine aiming a beam of light rightward into a pipe of water moving rightward
with speed v. Naively, the speed of the light with respect to the ground should
be c/n + v. Find the correct speed by using the velocity-addition formula. Then
in the case where v ≪ c (certainly a valid approximation in the case of moving
water), show that to leading order in v, the speed takes the form of c/n + Av.
What is the value of A?

1.16. Equal speeds *
A and B travel at 4c/5 and 3c/5 with respect to the ground, as shown in Fig. 1.51.

4c/5

A C B

3c/5?

Figure 1.51

How fast should C travel so that she sees A and B approaching her at the same
speed? What is this speed?

1.17. More equal speeds **
A travels at speed v with respect to the ground, and B is at rest, as shown in
Fig. 1.52. How fast should C travel so that she sees A and B approaching her

v

A C B

?

Figure 1.52
at the same speed? In the ground frame (B’s frame), what is the ratio of the
distances CB and AC? (Assume that A and C arrive at B at the same time.) The
answer to this is nice and clean. Can you think of a simple intuitive explanation
for the result?



48 Chapter 1. Kinematics, Part 1

1.18. Many velocity additions **
An object moves at speed v1/c ≡ β1 with respect to S1 (we’ll call the β’s “speeds”
here), which moves at speed β2 with respect to S2, which moves at speed β3 with
respect to S3, and so on, until finally SN−1 moves at speed βN with respect to SN

(see Fig. 1.53). Show by mathematical induction that the speed β(N ) of the object
v1

v2

v3

v4

v5

S1

S2

S3

S4

S5.....

.....

Figure 1.53

with respect to SN can be written as

β(N ) =
P+N − P−N
P+N + P−N

, where P+N ≡
N∏
i=1

(1+ βi) and P−N ≡
N∏
i=1

(1− βi). (1.42)

1.19. Velocity addition from scratch ***
A ball moves at speed v1 with respect to a train. The train moves at speed
v2 with respect to the ground. What is the speed of the ball with respect to
the ground? Solve this problem (that is, derive the velocity-addition formula,
V = (v1 + v2)/(1 + v1v2/c2)) in the following way. (Don’t use time dilation,
length contraction, etc. Use only the two postulates of relativity.)

Let the ball be thrown from the back of the train. At the same instant, a photon
is released next to it; see Fig. 1.54. The photon heads to the front of the train,

v2

v1

Figure 1.54

bounces off a mirror, heads back, and eventually runs into the ball. In both the
train frame and the ground frame, calculate the fraction of the way along the train
where the meeting occurs, and then equate these fractions.

1.20. Time dilation and Lv/c2 ***
A person walks very slowly at speed u from the back of a train of proper length
L to the front. The time-dilation effect in the train frame can be made arbitrarily
small by picking u to be sufficiently small, because the effect is second order in
u, while the travel time is only first order in 1/u. (See Problem 1.3.) Therefore,
if the person’s watch agrees with a clock at the back of the train when he starts,
then it also (essentially) agrees with a clock at the front when he finishes.

Now consider this setup in the ground frame, where the train moves at speed
v. The rear clock reads Lv/c2 more than the front, so in view of the preceding
paragraph, the time gained by the person’s watch during the process must be
Lv/c2 less than the time gained by the front clock (because they agree in the end).
By working in the ground frame, explain why this is the case.9 Since we are
assuming u is small, you may assume u ≪ c.

1.21. Modified twin paradox ***
Consider the following variation of the twin paradox. A, B, and C each have a
clock. In A’s reference frame, B flies past A with speed v to the right, as shown
in Fig. 1.55. When B passes A, they both set their clocks to zero. Also, in A’sA

B C
vv

Figure 1.55
reference frame, C starts far to the right and moves to the left with speed v. When
B and C pass each other, C sets his clock to read the same as B’s. Finally, when

9If you line up a collection of these train systems around the circumference of a circular rotating platform,
then the present result implies the following fact. Let person A be at rest on the platform at a point on the
circumference, and let person B start at A and walk arbitrarily slowly around the circumference. Then when
B returns to A, B’s clock will read less than A’s. This is true because the above reasoning shows (as you will
figure out) that an inertial observer sees B’s clock running slower than A’s. This result, that you can walk
arbitrarily slowly in a particular reference frame and have your clock lose synchronization with other clocks,
is a consequence of the fact that in some accelerating reference frames it is impossible to produce a consistent
method (that is, one without a discontinuity) of clock synchronization. See Cranor et al. (2000) for more
details.



1.8. Exercises 49

C passes A, they compare the readings on their clocks. At this moment, let A’s
clock read TA, and let C’s clock read TC .

(a) Working in A’s frame, show that TC = TA/γ, where γ = 1/
√

1 − v2/c2.

(b) Working in B’s frame, show again that TC = TA/γ.

(c) Working in C’s frame, show again that TC = TA/γ.

1.8 Exercises

Section 1.3: The fundamental effects

1.22. Effectively speed c *
A rocket flies between two planets that are one light-year apart. What should the
rocket’s speed be so that the time elapsed on the captain’s watch is one year?

1.23. A passing train *
A train with length 15 cs moves at speed 3c/5. (1 cs is one “light-second.” It
equals (1)(3 · 108 m/s)(1 s) = 3 · 108 m.) How much time does it take to pass a
person standing on the ground, as measured by that person? Solve this by working
in the frame of the person, and then again by working in the frame of the train.

1.24. Simultaneous waves *
Alice flies past Bob at speed v. Right when she passes, they both set their watches
to zero. When Alice’s watch shows a time T , she waves to Bob. Bob then waves
to Alice simultaneously (as measured by him) with Alice’s wave (so this is before
he actually sees her wave). Alice then waves to Bob simultaneously (as measured
by her) with Bob’s wave. Bob then waves to Alice simultaneously (as measured
by him) with Alice’s second wave. And so on. What are the readings on Alice’s
watch for all the times she waves? And likewise for Bob?

1.25. Overtaking a train **
Train A has proper length L. Train B moves past A (on a parallel track, facing
the same direction) with relative speed 4c/5 (as measured by either train; so each
one sees the other move at 4c/5). The length of B is such that A says that the
fronts of the trains coincide at exactly the same time as the backs coincide. What
is the time difference between the fronts coinciding and the backs coinciding, as
measured by B? Solve this in two ways: (a) by using length contraction, and (b)
by using the rear-clock-ahead effect (among other things).

1.26. Walking on a train **
A train with proper length L and speed 3c/5 approaches a tunnel with length L.
At the moment the front of the train enters the tunnel, a person leaves from the
front of the train and walks (briskly) toward the back. She arrives at the back of
the train right when it (the back) leaves the tunnel.

(a) How much time does this take in the ground frame?

(b) What is the person’s speed with respect to the ground?

(c) How much time elapses on the person’s watch?



50 Chapter 1. Kinematics, Part 1

1.27. Diagonal stick **
In frame S′ a stick with proper length L is at rest and is tilted at 30◦. Frame S′

moves to the right at speed 4c/5 with respect to the ground. See Fig. 1.56.

4c/5

L

30

S'

Figure 1.56

(a) In the ground frame, what is the horizontal span of the stick?

(b) You stand far away from the stick (below it in the picture). When you see the
stick at its closest point to you, what is the apparent horizontal span of the
stick? That is, what would a photograph show, taken from a distant camera?

1.28. Triplets **
Triplet A stays on the earth. Triplet B travels at speed 4c/5 to a planet (a distance
L away) and back. Triplet C travels out to the planet at speed 3c/4, and then
returns at the necessary speed to arrive back exactly when B does. How much
does each triplet age during this process? Who is youngest?

1.29. Seeing the light **
A and B leave from a common point (with their clocks both reading zero) and travel
in opposite directions with relative speed v (that is, each sees the other move with
speed v). When B’s clock reads T , he sends out a light signal. When A receives
the signal, what time does her clock read? Answer this by doing the calculation
entirely in (a) A’s frame, and then (b) B’s frame. (This problem is basically a
derivation of the longitudinal Doppler effect, discussed in Section 2.5.1. It is one
of the few cases where we’re actually concerned with the time is takes light to
reach someone’s eye.)

1.30. Twin paradox and Lv/c2 **
In the twin-paradox example near the end of Section 1.3.2, we noted that B (the
traveler) is in different inertial frames for the outward and return trips. In B’s
frame during the outward trip (as the universe flies past B, from B’s point of view),
the star clock is the rear clock. But in B’s (new) frame during the return trip, the
earth clock is the rear clock. During B’s turnaround, the earth clock therefore
goes from being Lv/c2 behind the star clock, to being Lv/c2 ahead of it (where
L is the earth-star proper distance). The earth clock must therefore quickly whip
ahead by 2Lv/c2 during the turnaround, from B’s (briefly noninertial) point of
view. Explain quantitatively, by working in B’s frame(s), how B puts everything
together to conclude that at the end of the trip, the earth clock has advanced more
than B’s clock, by a factor γ.

1.31. Backward photon **
A train with proper length L has clocks at the front and back. A photon is fired
from the front to the back. Working in the train frame, we can easily say that if the
photon leaves the front of the train when a clock there reads zero, then it arrives
at the back when a clock there reads L/c.

Now consider this setup in the ground frame, where the train travels by at speed
v. Rederive the above frame-independent result (namely, if the photon leaves the
front of the train when a clock there reads zero, then it arrives at the back when a
clock there reads L/c) by working only in the ground frame.

1.32. Pole’s clocks in barn **
Consider the pole-in-barn setup from Problem 1.6. In the solution to that problem,
we stated that in the barn frame, the pole’s right clock (when the right ends of the
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pole and barn coincide) reads less than the pole’s left clock (when the left ends
coincide), even though the right event happens after the left event. Demonstrate
this by explicitly calculating the reading on the right clock when the right ends
coincide. (Assume for simplicity that the left clock reads zero when the left ends
coincide.) Do this by working in (a) the pole frame, and (b) the barn frame.

1.33. Twice simultaneous **
A train with proper length L moves at speed v with respect to the ground. When
the front of the train passes a tree on the ground, a ball is simultaneously (as
measured in the ground frame) thrown from the back of the train toward the front,
with speed u with respect to the train. What should u be so that the ball hits the
front simultaneously (as measured in the train frame) with the tree passing the
back of the train? Show that in order for a solution for u to exist, we must have
v/c < (

√
5 − 1)/2, which happens to be the inverse of the golden ratio.

1.34. People clapping **
Two people stand a distance L apart along an east-west road. They clap their
hands simultaneously in the ground frame. You are driving eastward along this
road at speed 4c/5. You notice that you are next to the western person at the same
instant (as measured in your frame) that the eastern person claps. Later on, you
notice that you are next to a tree at the same instant (as measured in your frame)
that the western person claps. Where is the tree along the road? (Describe its
location in the ground frame.)

1.35. Photon, tree, and house **

(a) A train with proper length L moves at speed v with respect to the ground.
At the instant the back of the train passes a tree, someone at the back of the
train shines a photon toward the front. The photon happens to hit the front of
the train at the instant the front passes a house. As measured in the ground
frame, how far apart are the tree and the house? Solve this by working in
the ground frame.

(b) Now look at the setup from the point of view of the train frame. Using your
result for the tree-house distance from part (a), verify that the house meets
the front of the train at the same instant the photon meets it.

1.36. Four clock readings **
A train has proper length L. In the frame of the train, a photon is fired from the
back of the train to the front. Assume that a clock at the back reads zero when the
photon is fired. Then a clock at the front of course reads L/c when the photon
arrives there.

Now consider the setup in the ground frame, where the train moves to the right
at speed 3c/5. In this frame, it is observed that the train enters a tunnel when
the photon is fired, and the train leaves the tunnel when the photon arrives at the
front, as shown in Fig. 1.57.

(a) What is the (proper) length of the tunnel?
(b) What are the four Ri readings on the train clocks at the two instants shown?
(c) As observed in the ground frame, verify that the time elapsed on a given

train clock is related to the time elapsed on a ground clock by the appropriate
γ factor. (So you will need to first determine the ground time via a method
other than time dilation.)
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(d) Now return to the train frame. Draw a reasonably accurate picture of
what things look like at the instant the photon is fired. Label all distances
necessary to describe the location of the tunnel.

R2 R3 R4R1

train (start) tunnel

(ground frame)

 proper 
length L

train (end)

3c/5 3c/5

l = ?

Figure 1.57

1.37. Tunnel fraction **
A person runs with speed v toward a tunnel of length L. A light source is located
at the far end of the tunnel. At the instant the person enters the tunnel, the
light source simultaneously (as measured in the tunnel frame) emits a photon
that travels down the tunnel toward the person. When the person and the photon
eventually meet, the person’s location is a fraction f along the tunnel. What is
f ? Solve this by working in the tunnel frame, and then again by working in the
person’s frame.

1.38. Through the hole? ***
A stick with proper length L moves at speed v in the direction of its length. It
passes over a infinitesimally thin sheet that has a hole of diameter L cut in it. As
the stick passes over the hole, the sheet is raised so that the stick passes through
the hole and ends up underneath the sheet. Well, maybe . . .
In the lab frame, the stick’s length is contracted to L/γ, so it appears to easily
make it through the hole. But in the stick frame, the hole is contracted to L/γ,
so it appears that the stick does not make it through the hole (or rather, the hole
doesn’t make it around the stick, since the hole is what is moving in the stick
frame). So the question is: Does the stick end up on the other side of the sheet or
not?

1.39. Short train in a tunnel **
Consider the scenario in Problem 1.7, with the only change being that the train
now has length rL, where r is some numerical factor. What is the largest value of
r , in terms of v, for which it is possible for the bomb not to explode? Verify that
you obtain the same answer working in the train frame and in the tunnel frame.

1.40. Charge density **
Consider the setup in Problem 1.13. If the electrons’ speed is v0 = 4c/5 and the
charge q’s speed is v = 3c/5, what is the charge density of the wire in q’s rest
frame? Solve this from scratch; that is, don’t just invoke the result in Eq. (1.59)
(although you can of course check your answer with that result; likewise for any
intermediate steps).

Section 1.5: Velocity addition

1.41. γ’s for relativistic addition *
Show that the relativistic addition (or subtraction) of the velocities u and v has a
γ factor given by γ = γuγv (1 ± uv), or γuγv (1 ± uv/c2) with the c’s.
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1.42. Equal speeds *
A travels at speed 4c/5 toward B, who is at rest. C is between A and B. How fast
should C travel so that she sees both A and B approaching her at the same speed?
(This problem is a special case of Problem 1.17. Solve this one from scratch, but
feel free to check you answer with the one from Problem 1.17.)

1.43. Running away *
A and B both start at the origin and simultaneously head off in opposite directions,
each with speed 3c/5 with respect to the ground. A moves to the right, and B
moves to the left. Consider a mark on the ground at x = L. As viewed in the
ground frame, A and B are a distance 2L apart when A passes this mark. As
viewed by A, how far away is B when A coincides with the mark?

1.44. Again simultaneous **
A train with proper length L moves at speed v with respect to the ground. When
the front of the train passes a tree on the ground, a ball is simultaneously (as
measured in the ground frame) thrown from the back of the train toward the front,
with speed u with respect to the train. What should u be so that the ball hits the
front simultaneously (as measured again in the ground frame) with the back of
the train passing the tree? What is the maximum value of v for which a solution
for u exists?

1.45. Overlapping trains **
An observer on the ground sees two trains, A and B, both with proper length L,
move in opposite directions at speed v with respect to the ground. She notices
that at the instant the trains overlap, clocks at the front of A and rear of B both
read zero, as shown in Fig. 1.58. From the rear-clock-ahead effect, she therefore

Lv

c2
__

Lv

c2
__

v

v

A

B
-

0

0

(ground frame) 

Figure 1.58

also notices that clocks at the rear of A and front of B read Lv/c2 and −Lv/c2,
respectively. Now imagine riding along on A. When the rear of B passes the front
of your train (A), clocks at both of these places read zero (a frame-independent
statement). Explain, by working only in the frame of A, why clocks at the back
of A and the front of B read Lv/c2 and −Lv/c2, respectively, when these points
coincide.

1.46. Running on a train **
A train with proper length L moves at speed v1 with respect to the ground. A
passenger runs from the back of the train to the front at speed v2 with respect to
the train. How much time does this take, as viewed by someone on the ground?
Solve this in two different ways:

(a) Find the relative speed of the passenger and the train (as viewed by someone
on the ground), and then find the time it takes for the passenger to erase the
initial head start that the front of the train had.

(b) Find the time elapsed on the passenger’s clock (by working in whatever
frame you want), and then use time dilation to get the time elapsed on a
ground clock.

1.47. Velocity addition **
The fact that the previous exercise can be solved in two different ways suggests
a method of deriving the velocity-addition formula: A train with proper length
L moves at speed v1 with respect to the ground. A ball is thrown from the back
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of the train to the front at speed v2 with respect to the train. Let the speed of the
ball with respect to the ground be V . Calculate the time of the ball’s journey, as
measured by an observer on the ground, in the two different ways described in the
previous exercise, and then equate the results to solve for V in terms of v1 and v2.
(This gets rather messy. And yes, you have to solve a quadratic.)

1.48. Velocity addition again **
A train with proper length L moves at speed v with respect to the ground. A ball
is thrown from the back of the train to the front at speed u with respect to the train.

(a) Find the time of the process in the ground frame by looking at how much a
clock at rest in the train frame advances (for example, a clock at the front of
the train), and then applying time dilation to this one clock.

(b) Find the time of the process in the ground frame by applying time dilation
to the ball’s clock. Your answer will contain the unknown speed V of the
ball with respect to the ground.

(c) Equate your results from parts (a) and (b) to show that γV = γuγv (1+uv/c2).
Then solve for V to produce the velocity-addition formula.

1.49. Bullets on a train **
A train moves at speed v. Bullets are successively fired at speed u (relative to the
train) from the back of the train to the front. A new bullet is fired at the instant
(as measured in the train frame) the previous bullet hits the front. In the frame of
the ground, what fraction of the way along the train is a given bullet, at the instant
(as measured in the ground frame) the next bullet is fired? What is the maximum
number of bullets that are in flight at a given instant, in the ground frame?

1.9 Solutions
1.1. Consistency with Lv/c2

In the setup that led to Eq. (1.6), the two events (light hitting rear and light hitting front)
were simultaneous in the train frame, because the light source was located at the center of
the train. The difference tR − tL is the time difference between these events, as measured
in the ground frame. From Eq. (1.6) we have

tR − tL =
ℓ′

c − v −
ℓ′

c + v
=

2ℓ′v
c2 − v2 =

2ℓ′v
c2(1 − v2/c2)

=
2γ2ℓ′v

c2 . (1.43)

Now, 2ℓ′ is the total length of the train, as measured in the ground frame. But due to length
contraction, this length is shorter than the train’s proper length L, by a factor γ. That is,
2ℓ′ = L/γ. Substituting this into Eq. (1.43) gives

tR − tL =
γLv
c2 . (1.44)

This is consistent with the rear-clock-ahead result of Lv/c2, for the following reason. Since
the events are simultaneous in the train frame, clocks at the front and rear of the train have
the same reading when the photons hit. Assume for concreteness that this reading is zero.
Then as viewed in the ground frame, at the instant the rear event occurs, the situation is
shown in Fig. 1.59. The rear clock reads zero (a frame-independent statement), and the

v

-Lv/c20

Figure 1.59

front clock reads −Lv/c2 due to the rear-clock-ahead effect. The ground observer must
then wait for the front clock to advance to zero, at which point the front event occurs (again
a frame-independent statement). But the front clock (along with every other clock on the
train) runs slow due to time dilation. So it takes a time (in the ground frame) of γLv/c2

to advance its reading by Lv/c2 to zero. This elapsed time of γLv/c2 in the ground frame
agrees with the tR − tL result in Eq. (1.44).
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1.2. Here and there
If the setup is to be possible, then in the train frame the person must run the length L of the
train in a time Lv/c2 (or slightly less). His speed with respect to the train must therefore
be at least L/(Lv/c2) = c2/v. But c2/v = c(c/v) > c, which is an impossible speed. So
it is not possible for the person to perform the stated task. You will therefore not see him
simultaneously at both the front and the back. This is good, because we could produce
all sorts of paradoxes if someone were actually at two places at once in a given frame.
Imagine a brick wall being constructed between the “two” people, and a bucket of paint
being dropped on one of them.

1.3. Synchronizing clocks
In the frame of A and B, it takes a time of L/v for C to travel from A to B. During this
time, C runs slow by a factor γ, so only L/γv elapses on C during the journey. Therefore,
when C reaches B, the reading on C is L/γv, and the reading on B is L/v. If v is small
(more precisely, if v ≪ c), we can use

√
1 − ϵ ≈ 1 − ϵ/2 to approximate C’s reading as

L
γv
=

L
v

√
1 − v2

c2 ≈
L
v

(
1 − v2

2c2

)
=

L
v
− Lv

2c2 . (1.45)

The difference between C’s and B’s readings is therefore Lv/2c2. This goes to zero as
v → 0, as desired. We see that even though the total time L/v in A’s and B’s frame goes
to infinity as v → 0, the Lv/2c2 difference between C’s and B’s readings goes to zero.
This is due to the fact that L/v has only one power of v in the denominator, whereas the γ
factor depends quadratically on v. If the γ factor were instead equal to 1/

√
1 − v/c, then

the difference in the readings would take on the fixed value of L/2c in the v → 0 limit.
1.4. Rotated square

Fig. 1.60 shows the square at the instant (in your frame) when it is closest to you. Its length
v

L

L/γ

Figure 1.60

is contracted along the direction of motion, so it takes the shape of a rectangle with sides
L and L/γ. This is what the shape is in your frame (where is-ness is defined by where all
the points of an object are at simultaneous times). But what does the square look like to
you? That is, what is the nature of the photons hitting your eye at a given instant?
Photons from the far side of the square have to travel an extra distance L to get to your eye,
compared with photons from the near side. This is true because we’re assuming that you
are far from the square, which means that the paths to you from the various points on the
square are all essentially parallel. If you were instead close to the square, then we would
have to use the Pythagorean theorem to obtain the distances, and things would be much
more difficult and messy.
The photons from the far side need an extra time L/c of flight, compared with the photons
from the near side. During this time L/c, the square moves a distance v(L/c) ≡ L β
sideways, where β ≡ v/c. Therefore, referring to Fig. 1.61, a photon emitted at point A

A

B

LLβ

L

1- β2

Figure 1.61

reaches your eye at the same time as a photon emitted from point B, as do all the photons
emitted from the near side, of course, and as do (as you can verify) all the photons emitted
from the trailing (left) side, between A and B. This means that the trailing side of the
square spans a distance L β across your field of vision, while the near side spans a distance
L/γ = L

√
1 − β2. But this is exactly what a rotated square of side L looks like, as shown

in Fig. 1.62. From the figure, we see that the angle of rotation is given by sin θ = β, or

θ

θ L
L

LLβ

Lβ

1- β2

Figure 1.62

equivalently cos θ =
√

1 − β2. So for v ≪ c the square is only slightly rotated, while for
v → c the rotation angle approaches 90◦. For the case of a circle instead of a square, see
Hollenbach (1976).

1.5. Deriving length contraction
In the ground frame, the given rule tells us that the length of the train is aL. (We’ll drop
the subscript v for convenience.) So the front of the train has a head start of aL over the
photon. The photon closes this gap at a relative speed of c − v, as measured in the ground
frame. The time of the process is therefore t = aL/(c − v). During this time, the photon
travels a distance ct = caL/(c − v). This then is the tree-house distance in the ground
frame.
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Now consider the setup in the train frame. The starting and ending pictures are shown in
Fig. 1.63.

v v

a

L

acL

(start)

(end)

(train frame)

photon 
emitted

___
c-v( )

Figure 1.63

The photon is emitted when the tree coincides with the back of the train (a frame-
independent statement). The train has length L (its proper length), and the tree-house
distance is a

(
acL/(c − v)

)
. This is true because our rule states that if an object is mov-

ing, the observed length equals a times the proper length, which we found above to be
acL/(c − v) for the tree-house separation. The initial distance between the house and the
front of the train is therefore a2cL/(c − v) − L (subtracting off the train’s length). The
house covers this distance at speed v. The photon covers the length L of the train at speed
c. Since the house and the photon arrive at the front of the train at the same time, we must
therefore have

a2cL
c − v − L

v
=

L
c
=⇒ a2

1 − v

c

− 1 =
v

c
=⇒ a2 = 1 − v2

c2

=⇒ a =

√
1 − v2

c2 ≡
1
γ
, (1.46)

as desired.

1.6. Pole in barn
The proper answer to the question is: The question cannot be answered without more
information. More precisely, the question is frame dependent; it must be finished with the
qualifier, “. . . in the barn frame,” or “. . . in the pole frame.” The question is indeed frame
dependent, because in the barn frame the pole is length contracted down to L/γ. So the
pole certainly fits inside the barn; see Fig. 1.64. (For the purpose of drawing the figure,L/γ

L/γ

L

v

(barn frame)

(pole frame)

Figure 1.64

we have chosen γ to be a slightly larger than 3.) But in the pole frame the barn is length
contracted down to L/γ. So the pole certainly doesn’t fit in the barn.
In retrospect, it is no surprise that the question is frame dependent, because the qualifier
“with both doors closed” is shorthand for “with both doors closed simultaneously.” And as
soon as we start talking about simultaneity, we know that frame dependence will come into
play, because events that are simultaneous in one frame are not simultaneous in another.
We purposely didn’t include the word “simultaneously” in the statement of the problem,
in order to not give too much of a hint.

Remark: Fig. 1.64 makes it clear that the order of the two events, “left ends coinciding”
and “right ends coinciding,” is reversed in the two frames. In the barn frame the left ends
coincide first, whereas in the pole frame the right ends coincide first. There is nothing
wrong with the order of events in one frame being different from the order in another.
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However, for this to be possible, the two events must be so-called spacelike separated.
We’ll discuss this term in Section 2.3.
Consider two clocks at the ends of the pole (synchronized in the pole frame). Assume
that the left clock reads zero when it coincides with the left end of the barn. Then from
the pole-frame view in Fig. 1.64, it is clear that the right clock has a negative reading
when it coincides with the right end of the barn, because the right event happens before
the left event (and because the pole clocks are synchronized in the pole frame; this fact is
important.) These readings of zero (on the left clock when the left ends coincide) and a
negative value (on the right clock when the right ends coincide) are frame independent, so
they must be the same in the barn frame. In other words, in the barn frame the pole’s right
clock must read less than the left clock (at the two events at hand), even though the right
event happens after the left event. The task of Exercise 1.32 is to explain explicitly why
this is true, and to calculate the actual reading on the right clock. ♣

1.7. Train in a tunnel
Yes, the bomb explodes. This is clear in the frame of the train; see Fig. 1.65. In this frame,

v
L/γ

L

tunneltrain

sensor bomb

(train frame)

Figure 1.65

the train has length L, and the tunnel speeds past it. The tunnel is length contracted down
to L/γ. Therefore, the far end of the tunnel passes the front of the train before the near end
passes the back. So the bomb explodes.
We can, however, also look at things in the frame of the tunnel; see Fig. 1.66. Here

L

v

(tunnel frame)

L/γ

Figure 1.66

the tunnel has length L, and the train is length contracted down to L/γ. Therefore, the
deactivation device gets triggered before the front of the train passes the far end of the
tunnel. So you might think that the bomb does not explode. However, all observers
must agree on whether or not the bomb explodes; the explosion (or lack thereof) is frame
independent. So we appear to have a paradox.
The resolution to this paradox is that the deactivation device cannot instantaneously tell the
bomb to deactivate itself; the signal can’t travel faster than the speed of light. (If signals
could travel faster than c, we would be able to generate setups that violate causality. We’ll
talk about this in Section 2.3.) It therefore takes a nonzero time for the signal to travel
the length of the train (or actually a longer distance, since the train is moving) from the
sensor to the bomb. And it turns out that this transmission time makes it impossible for
the deactivation signal to get to the bomb before the bomb gets to the far end of the tunnel,
no matter how fast the train is moving. The bomb therefore explodes. Let’s quantitatively
demonstrate this.
The signal has the best chance of winning the “race” if it has speed c, so let’s assume this
is the case. The time it takes the signal to reach the bomb is (L/γ)/(c − v), because the
train has length L/γ in the ground frame, and because the relative speed of the light and
the bomb is c − v in the ground frame. The time it takes the bomb to get to the far end of
the tunnel is (L − L/γ)/v, because the bomb is already a distance L/γ through the tunnel,
and because it is moving at speed v. So if the bomb is not to explode, the former of these
times must be less than the latter. With β ≡ v/c, this gives

L/γ
c − v <

(L − L/γ)
v

⇐⇒ 1
γ

(
1

1 − β +
1
β

)
<

1
β

⇐⇒
√

1 − β2 · 1
(1 − β) β

<
1
β
⇐⇒

√
1 − β2 < 1 − β

⇐⇒
√

1 + β <
√

1 − β. (1.47)

This is never true. Therefore, the signal always arrives too late, and the bomb always
explodes, consistent with the conclusion in the train frame.

1.8. Bouncing stick
Assume that a series of clocks are lined up along the stick, and assume that in the ground
frame they all read zero when the stick bounces. In the frame of someone running leftward
at speed v, the stick is moving rightward (and vertically). The rear (left) clock on the stick
is ahead of all the other clocks, so it will reach zero and bounce off the ground first. (It is
a frame-independent fact that a clock reads zero when it bounces off the ground.) Clocks
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along the stick will successively reach zero and the stick will bounce at those points, until
finally the clock at the front (right) end reads zero and that end bounces. Snapshots of the
stick therefore look like the ones shown in Fig. 1.67.

v

Figure 1.67

There is nothing wrong with the stick having a sharp bend in it. The stick doesn’t break in
the ground frame, so it doesn’t break in the person’s frame, either. The sharp bend doesn’t
imply any severe forces in the stick. The molecules in the stick think everything is perfectly
normal; they have no clue that someone in running by to the left and that the stick is bent
in this person’s frame.

Remark: If we want to get quantitative, we can calculate the angle the stick makes with
respect to the horizontal, in the person’s frame. Although the above reasoning involved
clocks that were at rest in the stick frame, it will be easier in the following reasoning to
work with a set of clocks that are at rest in the ground frame.
Let’s work in the ground frame for a moment. Assume that the two ends of the stick slide
down two vertical rails. If the proper length of the stick is L, then the rails are a distance
L apart, because there is no transverse length contraction. Imagine that a large number
of clocks are attached to the two rails, to make two towers of clocks (at rest in the ground
frame). Let all of the clocks in the towers read zero when the two ends of the stick (along
with the rest of the stick) bounce off the ground simultaneously in the ground frame. For
future reference, note that at a time Lv/c2 (as measured in the ground frame) before the
stick bounces (that is, when all of the clocks in the towers read −Lv/c2), the stick is at
a height u(Lv/c2) above the ground, where u is the stick’s (vertical) speed in the ground
frame. (Assume that this speed is essentially constant; ignore the vertical acceleration near
the ground.)
Now go back to the person’s frame. When the back end of the stick hits the ground, all of
the clocks in the back vertical tower read zero (a frame-independent statement), and all of
the clocks in the front vertical tower read −Lv/c2, due to the rear-clock-ahead effect. But
from the preceding paragraph, we know that the front of the stick is at a height u(Lv/c2)
above the ground (in the ground frame and hence also in the person’s frame, since there
is no transverse length contraction) when it is next to a tower clock that reads −Lv/c2.
The horizontal distance between the ends is L/γv , because this is the length-contracted
distance between the two rails. The angle that the stick makes with the horizontal in the
person’s frame is therefore given by

tan θ =
Luv/c2

L/γv
=
γvuv

c2 . ♣ (1.48)

1.9. Seeing behind the board
First note that the reasonings can’t both be correct, because the closest mark you can see
has a frame-independent value. It can’t depend on which frame we arbitrarily choose to
do the calculation in.
The first reasoning is the correct one. You will be able to see a mark on the ruler that is
less than L units from the wall. You will actually be able to see a mark even closer to the
wall than L/γ, as we’ll show below.
The error in the second reasoning (in the board’s frame) is that the second picture in
Fig. 1.48 is not what you see. This second picture shows where things are at simultaneous
times in the board’s frame, which are not simultaneous times in your frame. Alternatively,
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the error is the implicit assumption that signals travel instantaneously; but in fact the back
(left) end of the board cannot know that the front (right) end has been hit by the wall
until a nonzero time has passed. During this time, the ruler (and the wall and you) travels
farther to the left, allowing you to see more of the ruler. Let’s be quantitative about this
and calculate (in both frames) the closest mark to the wall that you can see.

Your frame: In your reference frame, the board has length L/γ. Therefore, when the
board hits the wall, you can see a mark a distance L/γ from the wall. You will, however,
be able to see a mark even closer to the wall, because the back end of the board will keep
moving forward, since it doesn’t know yet that the front end has hit the wall. The stopping
signal (shock wave, etc.) takes time to travel.
Let’s assume that the stopping signal travels along the board at speed c. (We could instead
work with a general speed u, but the speed c is simpler, and it yields an upper bound on the
closest mark you can see.) Where will the signal reach the back end of the board? Starting
from the time the board hits the wall, the signal travels backward from the wall at speed c,
while the back end of the board travels forward at speed v (from a point L/γ away from
the wall). The relative speed (as viewed by you) of the signal and the back end is c + v.
This is the rate at which the initial gap of L/γ is closed. Therefore, the signal hits the
back end after a time (L/γ)/(c + v). During this time, the signal has traveled a distance
c · (L/γ)/(c + v) from the wall. This is where the back end stops. The closest point to the
wall that you can see on the ruler is therefore the mark with the value (with β ≡ v/c)

c(L/γ)
c + v

=
L

γ(1 + β)
=

L
√

1 − β2

1 + β
= L

√
1 − β
1 + β

. (1.49)

Board frame: In the board’s reference frame, the wall is initially moving leftward with
speed v. After the wall hits the right end of the board, the signal moves to the left with
speed c, while the wall keeps moving to the left with speed v (because the wall/earth is
much more massive than the board). Where is the wall when the signal reaches the left
end of the board (at which point the left end starts moving leftward along with the ruler)?
The wall travels v/c as fast as the signal, so it travels a distance Lv/c in the time that the
signal travels the distance L. This means that the wall is L(1− v/c) away from the left end
of the board when the signal reaches the left end. This distance in the board’s frame (or
rather, in the board’s original frame) corresponds to a distance γL(1 − v/c) on the ruler,
because the (moving) ruler is length contracted. So the left end of the board is at the mark
with the value

γL(1 − v/c) = Lγ(1 − β) =
L(1 − β)√

1 − β2
= L

√
1 − β
1 + β

, (1.50)

in agreement with Eq. (1.49).

1.10. Cookie cutter
Let the diameter of the cookie cutter be L, and consider the two following reasonings.

• In the lab frame, the dough is length contracted, so the cutter’s diameter L corre-
sponds to a distance larger than L (namely γL) in the dough frame. Therefore, when
you buy a cookie, it is stretched by a factor γ in the direction of the belt.10

• In the dough frame, the cookie cutter is length contracted down to L/γ in the direction
of motion. So in the frame of the dough, the cookies have a length of only L/γ.
Therefore, when you buy a cookie, it is squashed by a factor γ in the direction of the
belt.

Which reasoning is correct? The first one is. The cookies are stretched out. The fallacy in
the second reasoning is that the various parts of the cookie cutter do not strike the dough

10The shape is an ellipse, since that’s what a stretched circle is. The eccentricity of an ellipse is the focal
length divided by the semi-major axis length. As an exercise, you can show that this equals β ≡ v/c here.
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simultaneously in the dough frame. What the dough sees is this: Assuming that the cutter
moves to the left, the rightmost point on the cutter stamps the dough, then nearby points
on the cutter stamp it, and so on, until finally the leftmost point stamps it. But by this time
the front (that is, the left) of the cutter has moved farther to the left. So the cookie turns
out to be longer than L. Let’s now show (by working in the dough frame) that the length
of the cookie is in fact γL, as the first of the above reasonings correctly states.
Assume that all points on the cutter have little clocks associated with them. Since all
points on the cutter strike the dough simultaneously in the lab frame (since the cutter is
horizontal), all of the clocks have the same reading when they strike the dough. Let’s
assume that this value is zero.
Now let’s look at what happens in the dough frame. Consider the moment when the
rightmost (rear) point on the cutter strikes the dough. The clock there reads zero (a
frame-independent reading). The clock at the leftmost (front) point on the cutter therefore
reads −Lv/c2, due to the rear-clock-ahead effect. This leftmost clock must then advance
by Lv/c2 by the time it strikes the dough when it reads zero (again a frame-independent
reading). However, due to time dilation, this takes a time γ(Lv/c2) in the dough frame.
During this time, the cutter travels a distance v(γLv/c2). But the front of the cutter was
initially a distance L/γ (due to length contraction) ahead of the back. The total length of
the cookie in the dough frame is this initial L/γ distance plus the extra v(γLv/c2) distance
traveled by the front. The total length is therefore

ℓ =
L
γ
+
γLv2

c2 = γL
(

1
γ2 +

v2

c2

)
= γL

((
1 − v2

c2

)
+
v2

c2

)
= γL, (1.51)

as we wanted to show. (This is the same calculation as in Eq. (1.23).) If the dough is then
slowly decelerated, the shape of the cookies won’t change. So this is the shape you see in
the store.

1.11. Getting shorter

(a) In the frame in which the balls are initially at rest, the people move rightward with
speed v. The beginning picture is shown in Fig. 1.68(a). The left person catches the
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left ball when his clock reads zero (a frame-independent fact). The right person’s
clock therefore reads −Lv/c2, due to the rear-clock-ahead effect. The balls are a
distance γL apart, and the people’s separation is length contracted down to L/γ.
The ending picture is shown in Fig. 1.68(b). The right person catches the right ball
when his clock reads zero (again a frame-independent fact). The left person’s clock
is ahead, so it reads Lv/c2. By the time the right person catches the ball, the left
person has moved to the right while holding the left ball. Both distances are now
L/γ.

(b) By looking at the two distances in Fig. 1.68(a), we see that the people travel a distance
γL − L/γ between the beginning and ending moments.
Let’s now use the clock readings to obtain the distance the people travel. The total
time of the process is γ(Lv/c2) because each person’s clock advances by Lv/c2, but
these clocks run slow in the frame we’re working in. Since the speed of the people
is v, the distance they travel is v(γLv/c2). This had better be equal to γL − L/γ.
And it is, because

γL − L
γ
= γL

(
1 − 1
γ2

)
= γL

(
1 −

(
1 − v2

c2

))
=
γLv2

c2 . (1.52)

If we then shift to the people’s frame where which everything is at rest, we see that
the proper distance between the balls is L, because this is what gets length contracted
down to the L/γ in Fig. 1.68(b).

(c) To sum up, the proper distance between the balls decreases because in the frame in
which the balls are initially at rest, the left person catches the left ball first and then
drags it closer to the right ball by the time the right person catches that ball. So it all
comes down to the loss of simultaneity.
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1.12. Transforming the length
The proper length of the stick is γ3/5L = 5L/4, because this is the length that is contracted
down to L in the ground frame. Using the velocity-addition (or rather, subtraction) formula,
the speed at which you see the stick move rightward is

3c
5
− c

2

1 − 3
5
· 1

2

=

c
10
7
10

=
c
7
. (1.53)

The length that you observe is obtained by contracting the proper length by the γ factor
associated with this c/7 speed, which is γ1/7 = 7/

√
48. So the length you observe is

Lproper
γ1/7

=
γ3/5L
γ1/7

=
5L
4
·
√

48
7
=

5
√

3
7

L ≈ (1.24)L. (1.54)

This is larger than the length L in the ground frame, because the stick is moving slower
in your frame (at c/7) than in the ground frame (at 3c/5). So it is contracted less in your
frame, from its proper length 5L/4.

Remark: Note that it is not correct to say, “Since the length of the stick in the ground
frame is L, and since you are moving with speed c/2 with respect to the ground, you
observe the length of the stick to be L/γ1/2 =

√
3L/2.” This is incorrect because the

standard length-contraction result applies only to the proper length. Length contraction
says, “If a stick is moving at speed v with respect to you, then in your frame it is short
(relative to its proper length) by a factor γv .” This is why we had to first find the proper
length in the above solution. You can’t contract a non-proper length. (Equivalently, if you
are using length contraction to go from one frame to another, the stick must be at rest in
one of the frames.) This is clear in a special case: If in the above problem you are moving
rightward also with speed 3c/5, then the stick is at rest with respect to you, so you must
observe a length that is longer than L (namely the proper length, γ3/5L = 5L/4). The
incorrect naive application of length contraction (contracting the ground frame’s length L)
would yield a length that is shorter than L (namely L/γ3/5 = 4L/5). ♣

1.13. Magnetic force
In q’s rest frame, the situation is shown in Fig. 1.69. The protons are moving leftward with

γλ0

electrons 

(moving)

protons 

(moving)

v

q (at rest)

?

v'0

Figure 1.69

speed v (because they were at rest in the original frame). The distance between them is
contracted by the factor γv ≡ γ, so the density is increased by the factor γ. The protons’
charge density in q’s frame is therefore

λprotons = γλ0. (1.55)

To determine the electrons’ charge density in q’s frame, we need to find the electrons’
velocity (call it v′0) in q’s frame. This is obtained via the velocity-addition (or subtraction)
formula, which gives

v′0 =
v0 − v

1 − v0v/c2 . (1.56)

If this is negative, then the electrons are actually moving leftward. Note that there are three
different velocities that appear in this solution:

v: velocity of charge q in lab frame,
v0: velocity of electrons in lab frame,
v′0: velocity of electrons in q’s frame.

v is also the leftward speed of the protons in q’s frame. The γ factors associated with each
of the above three velocities will appear at various places in this solution.
Before getting quantitative, let’s give a qualitative argument for why the net charge density
of the wire is nonzero in q’s frame. For the sake of drawing Fig. 1.69, we have assumed
that v < v0. The electrons are therefore still moving rightward, but with a speed (the v′0 in
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Eq. (1.56)) that is smaller than v0. Since this speed is smaller than the electrons’ speed v0
in the lab frame, the electrons are farther apart in q’s frame than in the lab frame (because
the proper distance between them isn’t contracted by as large a factor). The electrons’
charge density in q’s frame is therefore smaller (in magnitude) than the density in the lab
frame, which was λ0. Since we found in Eq. (1.55) that the protons’ charge density in q’s
frame is larger than λ0, we see that the wire has a net positive charge. That is, it is not
neutral in q’s frame. Let’s now be quantitative about what the charge density actually is.
To determine the separation between the electrons (and thereby their density) in q’s frame,
we can’t simply contract the separation in the original frame. (See Problem 1.12 for a
discussion of this erroneous method.) Instead, we must first find the proper separation
(that is, in the rest frame of the electrons) and then length contract this distance by the
appropriate γ factor. The proper separation between the electrons is γv0 ≡ γ0 times the
separation in the lab frame (because it is then contracted down to the distance in the lab
frame shown in Fig. 1.50). The proper density is therefore smaller than λ0 by a factor γ0.
So it equals −λ0/γ0, with the negative sign due to the fact that electrons are negatively
charged.
The electrons’ separation in q’s frame is then obtained by dividing the proper separation
by the γ factor associated with the speed v′0 in Eq. (1.56); let’s call this γ′0. Equivalently,
the electrons’ density in q’s frame is obtained by multiplying the proper density (which
is −λ0/γ0) by γ′0. So the electrons’ density in q’s frame equals γ′0(−λ0/γ0). We must
therefore determine γ′0. A straightforward but slightly tedious calculation gives (switching
to the β notation to that we can avoid writing all the c’s)

γ′0 =
1√

1 − β′20
=

1√
1 −

(
β0 − β

1 − β0 β

)2
=

1 − β0 β√
(1 − β0 β)2 − (β0 − β)2

=
1 − β0 β√

1 + β2
0 β

2 − β2
0 − β2

=
1 − β0 β√

1 − β2
0

√
1 − β2

= γ0γ(1 − β0 β). (1.57)

The electrons’ density in q’s frame is therefore

λelectrons = γ
′
0 ·
−λ0
γ0
= γ0γ(1 − β0 β) · −λ0

γ0
= −γλ0(1 − β0 β). (1.58)

Recalling Eq. (1.55), the total charge density of the positive protons and the negative
electrons is then

λtotal = λprotons + λelectrons

= γλ0 − γλ0(1 − β0 β)

= γ β β0λ0. (1.59)

This is nonzero, as we noted above. Assuming that β0 is positive, λtotal is positive if β is
positive (that is, q is moving rightward), but negative if β is negative (that is, q is moving
leftward).

Remark: We have solved the stated problem, but let’s now see how the result in Eq. (1.59)
leads to the magnetic force. We’ll mostly just work with proportionalities instead of
equalities here, lest we get bogged down with various constants and definitions that belong
more in a book on electromagnetism. We’ll invoke a few facts from electromagnetism in
the following discussion.
In q’s frame, the force on q equals the product of q and the electric field E from the
charged wire. We’ll just accept here (quite reasonably) that the electric field from a wire
is proportional to the charge density. So the force on q in q’s frame is (using Eq. (1.59))

Fin q frame = qE ∝ qλtotal = qγ β β0λ0. (1.60)
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If this is positive (that is, if q and λtotal have the same sign), then the force is directed away
from the wire. If it is negative, the force is directed toward the wire. In Chapter 3 we’ll
show that the transverse force on a particle is larger in the particle’s frame than in any other
frame (see Eq. (3.71)). The force in the original lab frame is then

Fin lab =
Fin q frame
γ

= qβ β0λ0 ∝ qvv0λ0. (1.61)

The current I in the wire in the lab frame is proportional (actually equal) to v0λ0. This
makes sense; the larger that v0 or λ0 is, the more charge that passes by a given point on
the wire. Using v0λ0 ∝ I in Eq. (1.61) yields

Fin lab ∝ qvI . (1.62)

Finally, the magnitude of the magnetic field B due to the current in the wire in the lab
frame is proportional to the current I (we’ll just accept this). So we finally have

Fin lab ∝ qvB. (1.63)

Although we dealt only with proportionalities in the above reasoning, we got a bit lucky; it
turns out that qvB is either exactly the correct force, or off by only a factor of c, depending
on which of the two most common systems of units you use.
In the present case where q is moving parallel to the wire, the force is directed either toward
or away from the wire. For other directions of q’s motion, the direction of the force in the
lab frame is given by the general cross-product expression: F ∝ qv × B. It can be shown
that the magnetic field B (which is a vector) points in the tangential direction around the
wire (that is, the field lines form circles around the wire). In the present setup, the velocity
v and the magnetic field B are perpendicular, so the magnitude of qv × B is simply qvB,
as we found above. Note that if v is parallel to B, the magnetic force is zero. ♣

1.14. Pythagorean triples
The relativistic addition or subtraction of the two given β’s has a β value of

a
h
± b

h

1 ± ab
h2

=
(a ± b)h
h2 ± ab

. (1.64)

The numerator and denominator here are two lengths in a Pythagorean triple, because

(h2 ± ab)2 − (
(a ± b)h

)2 = h4 + a2b2 − (a2 + b2)h2 = a2b2, (1.65)

where we have used the given information that a2 + b2 = h2. The other leg is therefore
ab, for both the addition and subtraction cases. So the full triple is(

(a ± b)h, ab, h2 ± ab
)
. (1.66)

The γ factor associated with the speed in Eq. (1.64) is

γ =
1√

1 −
(

(a ± b)h
h2 ± ab

)2
=

h2 ± ab√
(h2 ± ab)2 − (

(a ± b)h
)2
=

h2 ± ab
ab

, (1.67)

which is the hypotenuse divided by the second leg. (You can show that this γ is consistent
with the result from Exercise 1.41.) As an example, the initial triple (3, 4, 5) (or (4, 3, 5) if
we take a to be the longer leg) gives the addition triple (35, 12, 37) with γ = 37/12, and
the subtraction triple (5, 12, 13) with γ = 13/12.

1.15. Fizeau experiment
Since the light moves at speed c/n with respect to the water, and the water moves at speed
v with respect to the ground, the velocity-addition formula gives the speed of the light with
respect to the ground as

V =
c/n + v

1 +
(c/n)v

c2

=
c/n + v
1 + v/nc

. (1.68)
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To produce an approximate form of this answer when v ≪ c, we can multiply the numerator
and denominator each by 1 − v/nc and keep terms only up to order v/c. With O(v2/c2)
denoting terms of order v2/c2, we obtain

V =
c(1/n + v/c)

1 + v/nc
· 1 − v/nc

1 − v/nc
= c · 1/n + (v/c)(1 − 1/n2) − O(v2/c2)

1 − O(v2/c2)

≈ c ·
(
1
n
+
v

c

(
1 − 1

n2

))
=

c
n
+ v

(
1 − 1

n2

)
. (1.69)

The desired value of A is therefore 1−1/n2. We see that the speed of light in moving water
increases with the velocity v of the water, but not as fast as the naive answer of c/n + v

would imply. Instead of adding v to c/n, we add only (1 − 1/n2)v.

We can check the result in Eq. (1.69) in a few special cases. If n = 1, which means that
we have vacuum instead of water, we obtain a speed of c/1 + v(1 − 1) = c. This is correct
because we know that light always moves with speed c in vacuum. If n is very large, we
obtain a speed of c/n + v(1 − 0) = c/n + v. This is correct because it is the naive addition
of the speeds, which we know works perfectly fine when both speeds are much less than c.

In 1851, which was well before Einstein’s velocity-addition formula was known, Fizeau
performed an experiment to measure the speed (with respect to the ground) of light in
moving water. His setup involved an interferometer similar to the one Michelson and
Morley used in their experiment. He obtained a result consistent with our approximate
formula in Eq. (1.69), so he conjectured that the formula held (exactly) in general. Many
people then made unsuccessful attempts (involving frame dragging of the “ether,” for
example) to explain why the parameter A took on the value of 1− 1/n2 instead of the naive
value of 1. In retrospect, of course, failure was the likely result of their (commendable)
efforts to generate an exact theory from an approximate result. It was more than half a
century until Einstein produced the theory of special relativity in 1905, from which the
correct explanation of A’s value followed via the velocity-addition formula (along with the
approximations we made in Eq. (1.69)). Conversely, the result of Fizeau’s experiment was
highly influential in Einstein’s formulation of special relativity.

1.16. Equal speeds

First solution: Let C move at speed v with respect to the ground, and let the relative
speed of C and both A and B be u (as viewed by C). Then two different expressions for u
are the relativistic subtraction of v from 4c/5, and the relativistic subtraction of 3c/5 from
v. Therefore,

4
5
− v

1 − 4
5
v

=

v − 3
5

1 − 3
5
v

, (1.70)

where we have temporarily ignored the c’s, or equivalently used v to stand for β ≡ v/c,
or equivalently pretended that c equals 1. (We’ll do this in all three solutions here, since
it keeps things from getting too messy.) After some algebra, you can show that Eq. (1.70)
reduces to 0 = 35v2 − 74v + 35 = (5v − 7)(7v − 5). Since the v = 7/5 root represents a
speed larger than c, we want the other root:

v =
5
7

c, (1.71)

where we have brought the c back in. This is the speed of C with respect to the ground.
Plugging this back into either expression for u in Eq. (1.70) gives u = c/5. This is how
fast C sees both A and B approaching her. Note that C’s speed with respect to the ground
cannot be obtained by simply taking the average of A’s and B’s speeds, which would give
7c/10. Taking the average works for nonrelativistic speeds, but not for relativistic ones.
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Second solution: With u and v defined as above, two different expressions for v are the
relativistic subtraction of u from 4c/5, and the relativistic addition of u to 3c/5. Therefore,

4
5
− u

1 − 4
5

u
=

3
5
+ u

1 +
3
5

u
. (1.72)

After some algebra, you can show that this reduces to 0 = 5u2 − 26u+ 5 = (5u− 1)(u− 5).
Since the u = 5 root represents a speed larger than c, we want the other root:

u =
c
5
. (1.73)

Plugging this back into either expression for v in Eq. (1.72) gives v = 5c/7.

Third solution: The relative speed of A and B (as viewed by either A or B) is

4
5
− 3

5

1 − 4
5
· 3

5

=
5
13
. (1.74)

In C’s frame, A approaches with speed u from one side, and B approaches with speed u
from the other. The relative speed of A and B (as viewed by either A or B) is therefore
obtained by relativistically adding u with another u. But we just found that this relative
speed is 5/13. Therefore,

u + u
1 + u2 =

5
13

=⇒ 5u2 − 26u + 5 = 0, (1.75)

as in the second solution.

1.17. More equal speeds
Let u be the speed at which C sees A and B approaching her. Then u is the desired speed
of C with respect to B (that is, the ground). From C’s point of view, the given speed v is
the result of relativistically adding u with another u. Therefore,

v =
2u

1 + u2/c2 =⇒
(
v

c2

)
u2 − 2u + v = 0. (1.76)

Solving this quadratic equation for u gives

u =
c2 (

1 −
√

1 − v2/c2 )
v

=
c2(1 − 1/γ)

v
. (1.77)

The quadratic equation also has a solution with a plus sign in front of the square root, but
this solution cannot be correct, because it is greater than c, as you can verify (and in fact
goes to infinity as v goes to zero). The above solution for u has the correct limit as v goes
to zero, namely u → v/2 (the expected nonrelativistic result); this can be obtained by using
the Taylor approximation,

√
1 − ϵ ≈ 1 − ϵ/2.

The ratio of the distances CB and AC in the ground frame is the same as the ratio of the
differences in velocities as measured in the ground frame (because both A and C arrive at B
at the same time, so you could imagine running the scenario backward in time). Therefore,

CB
AC
=

VC − VB
VA − VC

=

c2(1 − 1/γ)
v

− 0

v − c2(1 − 1/γ)
v

=
1 − 1/γ

v2/c2 − 1 + 1/γ

=
1 − 1/γ

1/γ − (1 − v2/c2)
=

1 − 1/γ
1/γ − 1/γ2 = γ. (1.78)

We see that C is γ times as far from B as she is from A, as measured in the ground frame.
Note that for nonrelativistic speeds, we have γ ≈ 1, so C is midway between A and B, as
expected.
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An intuitive reason for the simple factor of γ is the following. Imagine that A and B are
carrying identical jousting sticks as they run toward C (in C’s frame). In C’s frame, the tips
of the sticks reach C simultaneously, because in C’s frame A and B are always the same
distance from C. This is true because we are told that all three people eventually coincide
at some instant. But since the sticks reach C simultaneously in C’s frame, they do also
in B’s frame (the ground frame). This is true because since we’re talking about the ends
of sticks reaching C, everything happens right at C. The L in the Lv/c2 rear-clock-ahead
result is therefore zero, so we don’t have to worry about any loss of simultaneity. Consider
then the instant in B’s frame (the ground frame) when both sticks reach C. B’s stick is at
rest, so it is uncontracted. But A’s stick is moving with speed v, so it is length contracted
by a factor γ. Therefore, in the ground frame, A is closer to C than B is, by a factor γ.

1.18. Many velocity additions
Let’s first check the formula for N = 1 and N = 2. When N = 1, it gives

β(1) =
P+1 − P−1
P+1 + P−1

=
(1 + β1) − (1 − β1)
(1 + β1) + (1 − β1)

= β1, (1.79)

as it should. And when N = 2, it gives

β(2) =
P+2 − P−2
P+2 + P−2

=
(1 + β1)(1 + β2) − (1 − β1)(1 − β2)
(1 + β1)(1 + β2) + (1 − β1)(1 − β2)

=
β1 + β2

1 + β1 β2
, (1.80)

in agreement with the velocity-addition formula. You can check that the factors of c work
out correctly when the β’s are swapped for v’s.
Let’s now prove the formula for a general N . We will use induction. That is, we will
assume that the result holds for a given N and then show that it also holds for N + 1. To
find the speed, β(N+1) , of the object with respect to SN+1, we can relativistically add the
speed of the object with respect to SN (which is β(N )) with the speed of SN with respect
to SN+1 (which is βN+1). This gives

β(N+1) =
βN+1 + β(N )

1 + βN+1 β(N )
. (1.81)

Under the assumption that our formula holds for N , this becomes

β(N+1) =

βN+1 +
P+N − P−N
P+
N
+ P−

N

1 + βN+1
P+N − P−N
P+
N
+ P−

N

=
βN+1(P+N + P−N ) + (P+N − P−N )

(P+
N
+ P−

N
) + βN+1(P+

N
− P−

N
)

=
P+N (1 + βN+1) − P−N (1 − βN+1)

P+
N

(1 + βN+1) + P−
N

(1 − βN+1)

≡
P+
N+1 − P−

N+1
P+
N+1 + P−

N+1
, (1.82)

as we wanted to show. We have therefore shown that if the result holds for N , then it also
holds for N + 1. Since we know that the result does indeed hold for N = 1, it therefore
holds for all N .
The expression for β(N ) has some expected properties. It is symmetric in the βi . And if
the given object is a photon with β1 = 1, then P−N = 0, which yields β(N ) = 1 as it should.
And if the given object is a photon with β1 = −1, then P+N = 0, which yields β(N ) = −1
as it should. Likewise, if any one of the βi’s equals 1 (or −1), then P−N = 0 (or P+N = 0),
which correctly yields β(N ) = 1 (or β(N ) = −1).

1.19. Velocity addition from scratch
As stated in the problem, we will use the fact that the meeting of the photon and the ball
occurs at the same fraction of the way along the train, independent of the frame. This
is true because, although distances may change depending on the frame, fractions remain
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the same, since length contraction doesn’t depend on position. We’ll compute the desired
fraction in the train frame S′, and then in the ground frame S.

Train frame: Let the train have length L′ in the train frame, S′. Let’s first find the time
at which the photon meets the ball. From Fig. 1.70, we see that the sum of the distances

L'

(train frame, S' )

v1

Figure 1.70

traveled by the ball and the photon, which is v1t ′ + ct ′, must equal twice the length of the
train, which is 2L′. The time of the meeting is therefore

t ′ =
2L′

c + v1
. (1.83)

The distance the ball has traveled is then d′ = v1t ′ = 2v1L′/(c+v1), so the desired fraction
F ′ is

F ′ =
d′

L′
=

2v1
c + v1

. (1.84)

Ground frame: Let the speed of the ball with respect to the ground be v, and let the
train have length L in the ground frame. (L equals L′/γ, but we’re not going to use this.)
Again, let’s first find the time at which the photon meets the ball. From Fig. 1.71, we see v

L

(start)

(later)

(finish)

(ground frame, S)

2

v2

v2

v

Figure 1.71

that the photon takes a time L/(c − v2) to reach the mirror, because the initial gap of L is
closed at a rate c − v2 in the ground frame. At this time, the photon has traveled a distance
cL/(c − v2). From the figure, we see that we can use the same reasoning we used in the
train frame, but with the sum of the distances traveled by the ball and the photon, which
is vt + ct, now equal to 2

[
cL/(c − v2)

]
. The time of the meeting in the ground frame is

therefore
t =

2cL/(c − v2)
(c + v)

. (1.85)

The relative speed of the ball and the back of the train (as viewed in the ground frame)
is v − v2. This is the rate at which the gap between them is increasing. So the distance
between the ball and the back of the train at the time of the meeting is d = (v − v2)t =
(v − v2) · 2cL/[(c − v2)(c + v)]. The desired fraction F is therefore

F =
d
L
=

2(v − v2)c
(c − v2)(c + v)

. (1.86)

We can now equate the above expressions for F ′ and F. For convenience, define β ≡ v/c,
β1 ≡ v1/c, and β2 ≡ v2/c. Then F ′ = F yields

β1
1 + β1

=
β − β2

(1 − β2)(1 + β)
. (1.87)

Solving for β in terms of β1 and β2 gives, after some algebra,

β =
β1 + β2

1 + β1 β2
, (1.88)

as desired. This problem is solved in Mermin (1983).

1.20. Time dilation and Lv/c2

The velocity-addition formula gives the person’s speed in the ground frame as (u+ v)/(1+
uv), where we have dropped the c’s. So in the ground frame, the person must close the
initial gap of L/γv that the front of the train had, at a relative speed of (u+ v)/(1+uv) − v.
The time in the ground frame is therefore

tg =
L/γv

u + v
1 + uv

− v
=

L(1 + uv)

u
√

1 − v2
. (1.89)

Compared with this ground-frame time, the front clock on the train runs slow by the
factor γv , and the person’s watch runs slow by the γ factor associated with the speed
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(u + v)/(1 + uv), which you can show equals γuγv (1 + uv); see Exercise 1.41. The
difference in the elapsed times on the front clock and the person’s watch is therefore

∆Tfront − ∆Tperson =
L(1 + uv)

u
√

1 − v2

(
1
γv
− 1
γuγv (1 + uv)

)
=

L
u

(
1 + uv − 1

γu

)
=

Lv
c2 +

L
u

(
1 − 1
γu

)
, (1.90)

where we have put the c’s back in to make the units correct. The second term here is
negligible for the following reason. For small u, we can use the Taylor series

√
1 − ϵ ≈

1−ϵ/2 to write 1/γu =
√

1 − u2/c2 ≈ 1−u2/2c2. The (L/u)(1−1/γu ) term then becomes
(L/u)(u2/2c2) = Lu/2c2. Since u is assumed to be small (more precisely, u ≪ c), this
term is negligible. So Eq. (1.90) becomes ∆Tfront − ∆Tperson ≈ Lv/c2. The front clock
therefore gains essentially Lv/c2 more time than the person’s watch, as we wanted to show.
Since the front clock started Lv/c2 behind the person’s watch, we conclude that they end
up showing the same time when the watch reaches the front, as we already knew from
working in the train frame. The point here is that no matter how small u is, the result for
∆Tfront−∆Tperson is nonzero (namely Lv/c2) because u appears at first order in the γ factor,
γuγv (1 + uv), associated with (u + v)/(1 + uv), while it appears only at second order in
γu . The difference between the γ factors is therefore first order in u, and this difference
combines with the 1/u factor in the time to yield a nonzero result.
The result in Eq. (1.90) holds perfectly well for non-small u too, so it implies that the final
readings on the front clock and the person’s watch differ by (L/u)(1 − 1/γu ), for any u.
In retrospect, this is clear from the train-frame calculation which gives the difference as
(L/u) − (L/u)/γu , due to the time dilation of the watch.

1.21. Modified twin paradox

(a) To help visualize the setup in each frame, we’ll draw the positions of the three people
as functions of time. The resulting lines (or more generally, curves) are known as
worldlines. In relativity, it is customary to put time on the vertical axis and space on
the horizontal axis (the opposite of what is normally done). It is also customary to
plot the value of ct, instead of t. This leads to the nice fact that light is represented
by a lines with slope ±45◦. The worldline of any (massive) object will always have
a slope that is larger than 45◦, because v < c.
In A’s frame, the worldlines of A, B, and C are shown in Fig. 1.72. A is at rest, so

x

ct

tA

tA

handoff

= tA / γ

A

B

C

Figure 1.72

his worldline is vertical. B moves to the right at speed v, and C moves to the left at
speed v. In A’s frame, B’s clock runs slow by a factor 1/γ. Therefore, if A’s clock
reads tA when B meets C, then B’s clock reads only tA/γ when he meets C. So the
time he hands off to C is tA/γ.
In A’s frame, the time between the B-meets-C event and the C-meets-A event is
again tA, because B and C travel at the same speed. And A sees C’s clock run slow
by a factor 1/γ, so A sees C’s clock increase by only tA/γ. Therefore, when A and C
meet, A’s clock reads 2tA, and C’s clock reads 2tA/γ. In other words, TC = TA/γ.

(b) Let’s now look at things in B’s frame. The worldlines of A, B, and C are shown in
Fig. 1.73. A moves to the left at speed v, and C moves to the left at speed 2v/(1+v2).
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Figure 1.73

This is the velocity addition of v with itself; we have ignored the c’s, to keep things
from getting cluttered.
From B’s point of view, there are two competing effects that lead to the relation
TC = TA/γ. The first is that B sees A’s clock run slow, so the time that B hands off
to C is larger than the time on A’s clock at that moment. So C’s clock reads more
than A’s at the handoff moment. The second effect is that from this point on, B sees
C’s clock run slower than A’s (because the relative speed of C and B is greater than
the relative speed of A and B). It turns out that this slowness wins out over the head
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start that C’s clock had over A’s. So in the end, C’s clock reads less than A’s. Let’s
be quantitative about this.
Let B’s clock read tB when C meets him. (tB is the same as the tA/γ in part (a), but
we won’t use that since we’re doing things from B’s point of view here.) Then when
B hands off this time to C, A’s clock reads only tB/γ, because B sees A’s clock run
slow. We must determine how much additional time elapses on A’s clock and on C’s
clock, by the time they meet. We’ll find all times below in terms of tB .
At time tB (when C passes B) A is a distance vtB from B. Let tb be the additional
time on B’s clock between C passing him and C catching up with A. We can find tb
by noting that C closes the initial head start of vtB that A had, at a relative speed of
2v/(1 + v2) − v, as viewed by B. So

tb =
vtB

2v
1 + v2 − v

=⇒ tb = tB

(
1 + v2

1 − v2

)
. (1.91)

During the time tb , B sees A’s and C’s clocks increase by tb divided by the relevant
time-dilation factor. For A this factor is γ = 1/

√
1 − v2, and for C it is

γC =
1√

1 −
(

2v
1 + v2

)2
=

1 + v2

1 − v2 , (1.92)

as you can verify. Therefore, the total time shown on A’s clock when A and C meet
is

TA =
tB
γ
+

tb
γ
= tB

√
1 − v2 + tB

(
1 + v2

1 − v2

)
·
√

1 − v2

=
2tB√
1 − v2

. (1.93)

And the total time shown on C’s clock when A and C meet is the handoff time of tB
plus the time elapsed on C, so

TC = tB +
tb
γC
= tB + tB

(
1 + v2

1 − v2

)
·
(
1 − v2

1 + v2

)
= 2tB . (1.94)

Therefore, TC = TA

√
1 − v2 = TA/γ, as desired.

(c) Let’s now work in C’s frame. The worldlines of A, B, and C are shown Fig. 1.74. A
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Figure 1.74

moves to the right at speed v, and B moves to the right at speed 2v/(1 + v2). As in
part (b), the time-dilation factor between B and C is γB = (1 + v2)/(1 − v2). Also,
as in part (b), let B and C meet when B’s clock reads tB . So this is the time that B
hands off to C. We’ll find all times below in terms of tB .
C sees B’s clock running slow, so in C’s frame it takes a time of γBtB for B’s clock
to advance by tB , since when he met A. B therefore travels for a time of

tB reachC = γBtB = tB

(
1 + v2

1 − v2

)
(1.95)

between meeting A and meeting C. During this time, B covers a distance in C’s
frame equal to

d = tB

(
1 + v2

1 − v2

)
· 2v

1 + v2 =
2vtB
1 − v2 . (1.96)

A must travel this same distance (from where B passed him) to meet up with C. This
allows us to find TA. The time (as viewed by C) that it takes A to travel the distance
d to reach C is

tA reachC =
d
v
=

2tB
1 − v2 . (1.97)
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But since C sees A’s clock running slow by a factor
√

1 − v2, A’s clock reads only

TA =
2tB√
1 − v2

(1.98)

when he meets C. This agrees with Eq. (1.93), as it must, because the reading is
frame-independent.
Now let’s find TC . To find TC , we must take the handoff time of tB and add to it the
extra time it takes A to reach C, compared with the time it takes B to reach C. From
Eqs. (1.95) and (1.97), this extra time is

tA reachC − tB reachC =
2tB

1 − v2 −
tB (1 + v2)

1 − v2 = tB . (1.99)

(This simple result is clear in A’s frame, but not so clear in C’s frame.) Therefore,
C’s clock reads

TC = tB + tB = 2tB, (1.100)

which agrees with Eq. (1.94), as it must, because the reading is frame-independent.
Hence, TC = TA

√
1 − v2 ≡ TA/γ, as desired.




