Chapter 1

Oscillations

David Morin, morin@physics.harvard.edu

A wave is a correlated collection of oscillations. For example, in a transverse wave traveling
along a string, each point in the string oscillates back and forth in the transverse direc-
tion (not along the direction of the string). In sound waves, each air molecule oscillates
back and forth in the longitudinal direction (the direction in which the sound is traveling).
The molecules don’t have any met motion in the direction of the sound propagation. In
water waves, each water molecule also undergoes oscillatory motion, and again, there is no
overall net motion.! So needless to say, an understanding of oscillations is required for an
understanding of waves.

The outline of this chapter is as follows. In Section 1.1 we discuss simple harmonic
motion, that is, motioned governed by a Hooke’s law force, where the restoring force is
proportional to the (negative of the) displacement. We discuss various ways to solve for the
position x(t), and we give a number of examples of such motion. In Section 1.2 we discuss
damped harmonic motion, where the damping force is proportional to the velocity, which
is a realistic damping force for a body moving through a fluid. We will find that there are
three basic types of damped harmonic motion. In Section 1.3 we discuss damped and driven
harmonic motion, where the driving force takes a sinusoidal form. (When we get to Fourier
analysis, we will see why this is actually a very general type of force to consider.) We present
three different methods of solving for the position z(¢). In the special case where the driving
frequency equals the natural frequency of the spring, the amplitude becomes large. This is
called resonance, and we will discuss various examples.

1.1 Simple harmonic motion

1.1.1 Hooke’s law and small oscillations

Consider a Hooke’s-law force, F'(x) = —kz. Or equivalently, consider the potential energy,
V(z) = (1/2)kz?. An ideal spring satisfies this force law, although any spring will deviate
significantly from this law if it is stretched enough. We study this F(z) = —ka force because:

1The ironic thing about water waves is that although they might be the first kind of wave that comes to
mind, they’re much more complicated than most other kinds. In particular, the oscillations of the molecules
are two dimensional instead of the normal one dimensional linear oscillations. Also, when waves “break”
near a shore, everything goes haywire (the approximations that we repeatedly use throughout this book
break down) and there ends up being some net forward motion. We’ll talk about water waves in Chapter
12.
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e We can study it. That it, we can solve for the motion exactly. There are many
problems in physics that are extremely difficult or impossible to solve, so we might as
well take advantage of a problem we can actually get a handle on.

e It is ubiquitous in nature (at least approximately). It holds in an exact sense for
an idealized spring, and it holds in an approximate sense for a real-live spring, a
small-angle pendulum, a torsion oscillator, certain electrical circuits, sound vibrations,
molecular vibrations, and countless other setups. The reason why it applies to so many
situations is the following.

Let’s consider an arbitrary potential, and let’s see what it looks like near a local min-
imum. This is a reasonable place to look, because particles generally hang out near a
minimum of whatever potential they’re in. An example of a potential V(z) is shown in
Fig. 1. The best tool for seeing what a function looks like in the vicinity of a given point
is the Taylor series, so let’s expand V(z) in a Taylor series around x (the location of the
minimum). We have

1

gV @)@ —z0) - (1)

V(@) = V(o) + V' (o) (o — 20) + V" (o) — 70)° +
On the righthand side, the first term is irrelevant because shifting a potential by a constant
amount doesn’t change the physics. (Equivalently, the force is the derivative of the potential,
and the derivative of a constant is zero.) And the second term is zero due to the fact that
we're looking at a minimum of the potential, so the slope V'(x¢) is zero at x¢. Furthermore,
the (x — z0)? term (and all higher order terms) is negligible compared with the (z — x¢)?
term if z is sufficiently close to zg, which we will assume is the case.? So we are left with

V(z) ~ %V”(xo)(x —20)? (2)

In other words, we have a potential of the form (1/2)kx?, where k = V" (1), and where we
have shifted the origin of x so that it is located at zy. Equivalently, we are just measuring
z relative to xg.

We see that any potential looks basically like a Hooke’s-law spring, as long as we’re close
enough to a local minimum. In other words, the curve can be approximated by a parabola,
as shown in Fig. 2. This is why the harmonic oscillator is so important in physics.

We will find below in Egs. (7) and (11) that the (angular) frequency of the motion in
a Hooke’s-law potential is w = y/k/m. So for a general potential V(z), the k = V" (x)
equivalence implies that the frequency is

V”(l‘o) .

b 3)

w =

1.1.2 Solving for z(t)
The long way

The usual goal in a physics setup is to solve for x(¢). There are (at least) two ways to do
this for the force F(x) = —kx. The straightforward but messy way is to solve the F' = ma
differential equation. One way to write F' = ma for a harmonic oscillator is —kx = m-dv/dt.
However, this isn’t so useful, because it contains three variables, x, v, and t. We therefore

2The one exception occurs when V" (z) equals zero. However, there is essentially zero probability that
V" (z9) = 0 for any actual potential. And even if it does, the result in Eq. (3) below is still technically true;
they frequency is simply zero.
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can’t use the standard strategy of separating variables on the two sides of the equation
and then integrating. Equation have only two sides, after all. So let’s instead write the
acceleration as a = v - dv/dz.3 This gives

F=ma = —ka:zm(vii) = —/k:xdx:/mvdv. 4)

Integration then gives (with E being the integration constant, which happens to be the

energy)
1 1 2 1
E—ikx2:§mv2 — v:i“E“E_ika' (5)

Writing v as dx/dt here and separating variables one more time gives

il ®

A trig substitution turns the lefthand side into an arccos (or arcsin) function. The result is
(see Problem [to be added] for the details)

’x(t) = Acos(wt + @) ‘ where |w = \/Z (7)

and where A and ¢ are arbitrary constants that are determined by the two initial conditions
(position and velocity); see the subsection below on initial conditions. A happens to be

2F [k, where E is the above constant of integration. The solution in Eq. (7) describes
sitmple harmonic motion, where x(t) is a simple sinusoidal function of time. When we discuss
damping in Section 1.2, we will find that the motion is somewhat sinusoidal, but with an
important modification.

The short way

F = ma gives
d*x
—kxr=m—s5. 8
72 (8)
This equation tells us that we want to find a function whose second derivative is proportional
to the negative of itself. But we already know some functions with this property, namely

sines, cosines, and exponentials. So let’s be fairly general and try a solution of the form,
x(t) = Acos(wt + ¢). ©))

A sine or an exponential function would work just as well. But a sine function is simply
a shifted cosine function, so it doesn’t really generate anything new; it just changes the
phase. We'll talk about exponential solutions in the subsection below. Note that a phase ¢
(which shifts the curve on the ¢ axis), a scale factor of w in front of the ¢ (which expands or
contracts the curve on the ¢ axis), and an overall constant A (which expands or contracts
the curve on the x axis) are the only ways to modify a cosine function if we want it to stay
a cosine. (Well, we could also add on a constant and shift the curve in the x direction, but
we want the motion to be centered around z = 0.)

3This does indeed equal a, because v - dv/dx = dz/dt - dv/dx = dv/dt = a. And yes, it’s legal to cancel
the dz’s here (just imagine them to be small but not infinitesimal quantities, and then take a limit).
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If we plug Eq. (9) into Eq. (8), we obtain

—k(A cos(wt + d))) = m( — w?Acos(wt + (b))
= (—k+mw2)(Acos(wt+¢)) = 0. (10)
Since this must be true for all ¢, we must have
9 k
E—mw* =0 = w=4/—, (11)
m

in agreement with Eq. (7). The constants ¢ and A don’t appear in Eq. (11), so they can
be anything and the solution in Eq. (9) will still work, provided that w = \/k/m. They are
determined by the initial conditions (position and velocity).

We have found one solution in Eq. (9), but how do we know that we haven’t missed any
other solutions to the F' = ma equation? From the trig sum formula, we can write our one
solution as

Acos(wt + ¢) = Acos ¢ cos(wt) — Asin ¢ sin(wt), (12)

So we have actually found two solutions: a sin and a cosine, with arbitrary coefficients in
front of each (because ¢ can be anything). The solution in Eq. (9) is simply the sum of
these two individual solutions. The fact that the sum of two solutions is again a solution
is a consequence of the linearity our F' = ma equation. By linear, we mean that x appears
only through its first power; the number of derivatives doesn’t matter.

We will now invoke the fact that an nth-order linear differential equation has n indepen-
dent solutions (see Section 1.1.4 below for some justification of this). Our F' = ma equation
in Eq. (8) involves the second derivative of x, so it is a second-order equation. So we’ll
accept the fact that it has two independent solutions. Therefore, since we’ve found two, we
know that we’ve found them all.

The parameters

A few words on the various quantities that appear in the x(t) in Eq. (9).
e w is the angular frequency.* Note that

x (t + 25) = Acos (w(t+2m/w) +¢) = Acos(wt+ ¢+ 2m)

= Acos(wt + ¢)
= 2t (13)

Also, using v(t) = dx/dt = —wAsin(wt + ¢), we find that v(t + 27/w) = v(t). So
after a time of T' = 27/w, both the position and velocity are back to where they were
(and the force too, since it’s proportional to x). This time T is therefore the period.
The motion repeats after every time interval of T. Using w = /k/m, we can write

T =2my/m/k.

41t is sometimes also called the angular speed or angular velocity. Although there are technically differ-
ences between these terms, we’ll generally be sloppy and use them interchangeably. Also, it gets to be a
pain to keep saying the word “angular,” so we’ll usually call w simply the “frequency.” This causes some
ambiguity with the frequency, v, as measured in Hertz (cycles per second); see Eq. (14). But since w is a
much more natural quantity to use than v, we will invariably work with w. So “frequency” is understood
to mean w in this book.
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The frequency in Hertz (cycles per second) is given by v = 1/T. For example, if T' =
0.1s, then v = 1/T = 10s~!, which means that the system undergoes 10 oscillations
per second. So we have
1 w 1 k
= —_ = — = — _ ].4
v T 27 27V m (14)
To remember where the “27” in v = w/27 goes, note that w is larger than v by a
factor of 27, because one revolution has 27 radians in it, and v is concerned with
revolutions whereas w is concerned with radians.

Note the extremely important point that the frequency is independent of the ampli-
tude. You might think that the frequency should be smaller if the amplitude is larger,
because the mass has farther to travel. But on the other hand, you might think that
the frequency should be larger if the amplitude is larger, because the force on the
mass is larger which means that it is moving faster at certain points. It isn’t intu-
itively obvious which of these effects wins, although it does follow from dimensional
analysis (see Problem [to be added]). It turns out that the effects happen to exactly
. . . . . x(?)
cancel, making the frequency independent of the amplitude. Of course, in any real-life 4
situation, the F'(z) = —kz form of the force will break down if the amplitude is large
enough. But in the regime where F'(z) = —kz is a valid approximation, the frequency R ‘ /\ ‘ / p

is independent of the amplitude. % v \/
-4

e A is the amplitude. The position ranges from A to —A, as shown in Fig. 3

e ¢ is the phase. It gives a measure of what the position is a ¢t = 0. ¢ is dependent on Figure 3
when you pick the ¢ = 0 time to be. Two people who start their clocks at different
times will have different phases in their expressions for z(t). (But they will have the
same w and A.) Two phases that differ by 27 are effectively the same phase.

Be careful with the sign of the phase. Fig. 4 shows plots of A cos(wt + ¢), for ¢ = 0,
+7/2, and 7. Note that the plot for ¢ = +m/2 is shifted to the left of the plot for
¢ = 0, whereas the plot for ¢ = —n/2 is shifted to the right of the plot for ¢ = 0.
These are due to the fact that, for example, the ¢ = —7/2 case requires a larger time
to achieve the same position as the ¢ = 0 case. So a given value of x occurs later in
the ¢ = —m/2 plot, which means that it is shifted to the right.

Acos(mt)
Acos(wt-1/2)

Acos(ot+m/2)

Acos(mt+m)

Figure 4

Various ways to write z(t)

We found above that z(t) can be expressed as z(t) = A cos(wt + ¢). However, this isn’t the
only way to write z(t). The following is a list of equivalent expressions.

x(t) = Acos(wt+ @)
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= Asin(wt + ¢')

= B;coswt + Bgsinwt

Ceit 1 OFeiwt

Re (De™") . (15)

A, B, and Bj are real quantities here, but C' and D are (possibly) complex. C* denotes
the complex conjugate of C'. See Section 1.1.5 below for a discussion of matters involving
complex quantities. Each of the above expressions for z(t) involves two parameters — for
example, A and ¢, or the real and imaginary parts of C. This is consistent with the fact
that there are two initial conditions (position and velocity) that must be satisfied.

The two parameters in a given expression are related to the two parameters in each of
the other expressions. For example, ¢’ = ¢+ /2, and the various relations among the other
parameters can be summed up by

B, = Acos ¢ = 2Re(C) = Re(D),
B, = —Asin¢ = —2Im(C) = —Im(D), (16)

and a quick corollary is that D = 2C. The task of Problem [to be added] is to verify these
relations. Depending on the situation at hand, one of the expressions in Eq. (15) might
work better than the others, as we’ll see in Section 1.1.7 below.

1.1.3 Linearity

As we mentioned right after Eq. (12), linear differential equations have the property that
the sum (or any linear combination) of two solutions is again a solution. For example, if
coswt and sinwt are solutions, then A coswt + Bsinwt is also a solution, for any constants
A and B. This is consistent with the fact that the z(¢) in Eq. (12) is a solution to our
Hooke’s-law mi = —kx equation.

This property of linear differential equations is easy to verify. Consider, for example, the
second order (although the property holds for any order) linear differential equation,

A + Bi + Cx = 0. (17)
Let’s say that we’ve found two solutions, z1(¢) and z3(t). Then we have
Ai’l + Bd?l + le = 0,
Afo+ Big+Cxy = 0. (18)

If we add these two equations, and switch from the dot notation to the d/dt notation, then
we have (using the fact that the sum of the derivatives is the derivative of the sum)

d?(x T d
(71 + 22) 4B (z1 + x2)
dt? dt
But this is just the statement that x; + x5 is a solution to our differential equation, as we
wanted to show.
What if we have an equation that isn’t linear? For example, we might have

Ai + Bi? + Cz = 0. (20)

If 1 and x5 are solutions to this equation, then if we add the differential equations applied

to each of them, we obtain
& (1 +z2) dai\* (doi)’
dt dt

A
dt?

+B +C(z1 + 2) = 0. (21)
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This is not the statement that z; + xo is a solution, which is instead

A

d2($1 +£B2) d(:Cl -I—ZL'Q)
B
a ( d

The two preceding equations differ by the cross term in the square in the latter, namely
2B(dxy /dt)(dxo/dt). This is in general nonzero, so we conclude that x1+x5 is not a solution.
No matter what the order if the differential equation is, we see that these cross terms will
arise if and only if the equation isn’t linear.

This property of linear differential equations — that the sum of two solutions is again a
solution — is extremely useful. It means that we can build up solutions from other solutions.
Systems that are governed by linear equations are much easier to deal with than systems
that are governed by nonlinear equations. In the latter, the various solutions aren’t related
in an obvious way. Each one sits in isolation, in a sense. General Relativity is an example
of a theory that is governed by nonlinear equations, and solutions are indeed very hard to
come by.

1.1.4 Solving nth-order linear differential equations

The “fundamental theorem of algebra” states that any nth-order polynomial,
2" + 12" L+ -+ a1z + ao, (23)

can be factored into
an(z—11)(z—712) (2 —Tp). (24)

This is believable, but by no means obvious. The proof is a bit involved, so we’ll just accept
it here.
Now consider the nth-order linear differential equation,

d"z d" 'z dx
andtin-l-anflw—l—“-—&—alg—i—aozo. (25)
Because differentiation by ¢ commutes with multiplication by a constant, we can invoke the
equality of the expressions in Egs. (23) and (24) to say that Eq. (25) can be rewritten as

() (L) (A oo o

In short, we can treat the d/dt derivatives here like the 2’s in Eq. (24), so the relation
between Eqgs. (26) and (25) is the same as the relation between Eqs. (24) and (23). And
because all the factors in Eq. (26) commute with each other, we can imagine making any of
the factors be the rightmost one. Therefore, any solution to the equation,

d dx
(dt—m)x—o = o =T, (27)

is a solution to the original equation, Eq. (25). The solutions to these n first-order equations
are simply the exponential functions, x(t) = Ae™'. We have therefore found n solutions,
so we're done. (We’ll accept the fact that there are only n solutions.) So this is why our
strategy for solving differential equations is to always guess exponential solutions (or trig
solutions, as we’ll see in the following section).
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1.1.5 Taking the real part

In the second (short) derivation of z(t) we presented above, we guessed a solution of the
form, x(t) = A cos(wt+ ¢). However, anything that can be written in terms of trig functions
can also be written in terms of exponentials. This fact follows from one of the nicest formulas
in mathematics:

e = cosf +isind ‘ (28)

This can be proved in various ways, the quickest of which is to write down the Taylor series
for both sides and then note that they are equal. If we replace # with —0 in this relation,
we obtain e= = cosf — isin#, because cosf and sin@ are even and odd functions of 6,
respectively. Adding and subtracting this equation from Eq. (28) allows us to solve for the
trig functions in terms of the exponentials:
i 4 =it it _ o—i0
cos) = ——— | and sin = ———— . 29
2 2 (29)
So as we claimed above, anything that can be written in terms of trig functions can also be
written in terns of exponentials (and vice versa). We can therefore alternatively guess an
exponential solution to our —kx = mi differential equation. Plugging in z(t) = Ce®® gives
at 2 at 2 k . k
—kCe™ =ma“Ce = a‘=-—— = a==ziw, where w=14/—. (30)
m m
We have therefore found two solutions, z1(t) = Cie™t, and x5(t) = Cre~™!. The C;
coefficient here need not have anything to do with the Cs coefficient. Due to linearity, the
most general solution is the sum of these two solutions,

’x(t) = Cre™t + Che~ Wt ‘ (31)

This expression for x(t) satisfies the —kx = ma equation for any (possibly complex) values
of C7 and Cs. However, z(t) must of course be real, because an object can’t be at a position
of, say, 3+7i meters (at least in this world). This implies that the two terms in Eq. (31) must
be complex conjugates of each other, which in turn implies that Cy must be the complex
conjugate of C;. This is the reasoning that leads to the fourth expression in Eq. (15).

There are two ways to write any complex number: either as the sum of a real and
imaginary part, or as the product of a magnitude and a phase e’?. The equivalence of these
is a consequence of Eq. (28). Basically, if we plot the complex number in the complex plane,
we can write it in either Cartesian or polar coordinates. If we choose the magnitude-phase
way and write C; as Cpe’®, then the complex conjugate is Cy = Cpe™**. Eq. (31) then
becomes

x(t) = Coe'?e™?t + Cpe 1 Pe™ w0t
= 2C)cos(wt + ¢), (32)

where we have used Eq. (29). We therefore end up with the trig solution that we had
originally obtained by guessing, so everything is consistent.

Note that by adding the two complex conjugate solutions together in Eq. (32), we ba-
sically just took the real part of the Cpe’®e™* solution (and then multiplied by 2, but that
can be absorbed in a redefinition of the coefficient). So we will often simply work with the
exponential solution, with the understanding that we must take the real part in the end to
get the actual physical solution.

If this strategy of working with an exponential solution and then taking the real part
seems suspect or mysterious to you, then for the first few problems you encounter, you
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should do things the formal way. That is, you should add on the second solution and then
demand that z(t) (or whatever the relevant variable is in a given setup) is real. This will
result in the sum of two complex conjugates. After doing this a few of times, you will realize
that you always end up with (twice) the real part of the exponential solutions (either of
them). Once you're comfortable with this fact, you can take a shortcut and forget about
adding on the second solution and the other intermediate steps. But that’s what you're
really doing.

REMARK: The original general solution for z(¢) in Eq. (31) contains four parameters, namely the
real and imaginary parts of C1, and likewise for C2 (w is determined by k and m). Or equivalently,
the four parameters are the magnitude and phase of Cy, and likewise for C. These four parameters
are all independent, because we haven’t yet invoked the fact that z(¢) must be real. If we do invoke
this, it cuts down the number of parameters from four to two. These two parameters are then
determined by the two initial conditions (position and velocity).

However, although there’s no arguing with the “z(¢) must be real” reasoning, it does come a
little out of the blue. It would be nice to work entirely in terms of initial conditions. But how
can we solve for four parameters with only two initial conditions? Well, we can’t. But the point
is that there are actually four initial conditions, namely the real and imaginary parts of the initial
position, and the real and imaginary parts of the initial velocity. That is, (0) = o + 0 - ¢, and
v(0) = vo + 0 -4. It takes four quantities (zo, 0, vo, and 0 here) to specify these two (possibly
complex) quantities. (Once we start introducing complex numbers into z(t), we of course have to
allow the initial position and velocity to be complex.) These four given quantities allow us to solve
for the four parameters in z(¢). And in the end, this process gives (see Problem [to be added]) the
same result as simply demanding that z(t) is real. &

1.1.6 Phase relations and phasor diagrams

Let’s now derive the phase relation between z(t), v(t), and a(t). We have

xz(t) = Acos(wt+ @),

= () = Z—? = —wAsin(wt + ¢) = wA cos (wt+¢)+ g) ,
d
= a(t) = d—: = —w?Acos(wt + ¢) = w?Acos (wt + ¢ + 7). (33)

We see that a leads v by 7/2, and v leads = by 7/2. These phase relations can be conveniently
expressed in the phasor diagram in Fig. 5. The values of z, v, and a are represented by
vectors, where it is understood that to get their actual values, we must take the projection
of the vectors onto the horizontal axis. The whole set of three vectors swings around
counterclockwise with angular speed w as time goes on. The initial angle between the x
phasor and the horizontal axis is picked to be ¢. So the angle of the x phasor as a function
of time is wt 4 ¢, the angle of the v phasor is wt + ¢ + m/2, and the angle of the a phasor
is wt + ¢ + 7. Since taking the horizontal projection simply brings in a factor of the cosine
of the angle, we do indeed obtain the expressions in Eq. (33), as desired.

The units of x, v, and a are different, so technically we shouldn’t be drawing all three
phasors in the same diagram, but it helps in visualizing what’s going on. Since the phasors
swing around counterclockwise, the diagram makes it clear that a(t) is 7/2 ahead of v(t),
which is 7/2 ahead of x(t). So the actual cosine forms of z, v, and a look like the plots
shown in Fig. 6 (we’ve chosen ¢ = 0 here).

A
° \ '/ ot+d
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24

horizontal projections
give x,v, and a

Figure 5

x,v,a
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a(t) v(t) x(0)

x,v,a
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a(t) reaches its maximum before v(t) (that is, a(t) is ahead of v(t)). And v(t) reaches its
maximum before x(t) (that is, v(t) is ahead of z(t)). So the plot of a(t) is shifted to the left
from v(t), which is shifted to the left from x(t). If we look at what an actual spring-mass
system is doing, we have the three successive pictures shown in Fig. 7. Figures 5, 6, and 7
are three different ways of saying the same thing about the relative phases.

U‘I

-0.

U'|

Figure 6

1.1.7 Initial conditions

As we mentioned above, each of the expressions for x(t) in Eq. (15) contains two parameters,
and these two parameters are determined from the initial conditions. These initial conditions
are invariably stated as the initial position and initial velocity. In solving for the subsequent
motion, any of the forms in Eq. (15) will work, but the

x(t) = B coswt + Bgsinwt (34)
form is the easiest one to work with when given z(0) and v(0). Using

d
v(t) = d—g; = —wB, sinwt + wB; coswt, (35)

the conditions z(0) = x¢ and vy = vy yield

zo = z(0) = B, and vo =v(0) =wBy = Bs=—. (36)

Therefore,

x(t) = xg coswt + 2 ginwt (37)
w

If you wanted to use the x(t) = A cos(wt+ ¢) form instead, then v(t) = —wA sin(wt + ¢).
The initial conditions now give zop = z(0) = Acos¢ and vo = —wAsin ¢. D1V1d1ng gives
tan ¢ = —vg/wxg. Squaring and adding (after dividing by w) gives A = /3 + (vo/w)?. We
have chosen the positive root for A; the negative root would simply add 7 on to ¢. So we
have

WX

z(t) = /23 + (%)2 cos (wt + arctan (_UO>> . (38)

The correct choice from the two possibilities for the arctan angle is determined by either
cos ¢ = /A or sin¢p = —vg/wA. The result in Eq. (38) is much messier than the result in
Eq. (37), so it is clearly advantageous to use the form of x(t) given in Eq. (34).
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All of the expressions for z(t) in Eq. (15) contain two parameters. If someone proposed
a solution with only one parameter, then there is no way that it could be a general solution,
because we don’t have the freedom to satisfy the two initial conditions. Likewise, if someone
proposed a solution with three parameters, then there is no way we could ever determine
all three parameters, because we have only two initial conditions. So it is good that the
expressions in Eq. (15) contain two parameters. And this is no accident. It follows from the
fact that our F' = ma equation is a second-order differential equation; the general solution
to such an equation always contains two free parameters.

We therefore see that the fact that two initial conditions completely specify the motion
of the system is intricately related to the fact that the F' = ma equation is a second-
order differential equation. If instead of F' = m&, Newton’s second law was the first-order
equation, F' = ma, then we wouldn’t have the freedom of throwing a ball with an initial
velocity of our choosing; everything would be determined by the initial position only. This is
clearly not how things work. On the other hand, if Newton’s second law was the third-order
equation, F' = md3x/dt3, then the motion of a ball wouldn’t be determined by an initial
position and velocity (along with the forces in the setup at hand); we would also have to
state the initial acceleration. And again, this is not how things work (in this world, at least).

1.1.8 Energy

F(z) = —kz is a conservative force. That is, the work done by the spring is path-
independent. Or equivalently, the work done depends only on the initial position x; and
the final position z¢. You can quickly show that that work is [(—kx)dz = ka?/2 — ka? /2.
Therefore, since the force is conservative, the energy is conserved. Let’s check that this is
indeed the case. We have

1 1
E = ikarz—i—imv

= %k(A cos(wt + gb))2 + %m( — wAsin(wt + ¢))2

2

= 1A2 (k cos? (wt + ¢) + mw? sin’(wt + gb))
= _kA? ( cos? (wt + ¢) + sin?(wt + QS)) (using w? = k/m)

_ = 2
= kA% (39)

This makes sense, because kA%/2 is the potential energy of the spring when it is stretched
the maximum amount (and so the mass is instantaneously at rest). Fig. 8 shows how the
energy breaks up into kinetic and potential, as a function of time. We have arbitrarily
chosen ¢ to be zero. The energy sloshes back and forth between kinetic and potential. It is
all potential at the points of maximum stretching, and it is all kinetic when the mass passes
through the origin.
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1.1.9 Examples

Let’s now look at some examples of simple harmonic motion. Countless examples exist in
the real word, due to the Taylor-series argument in Section 1.1. Technically, all of these
examples are just approximations, because a force never takes ezactly the F(x) = —kx form;
there are always slight modifications. But these modifications are negligible if the amplitude
is small enough. So it is understood that we will always work in the approximation of small
amplitudes. Of course, the word “small” here is meaningless by itself. The correct statement
is that the amplitude must be small compared with some other quantity that is inherent
to the system and that has the same units as the amplitude. We generally won’t worry
about exactly what this quantity is; we’ll just assume that we’ve picked an amplitude that
is sufficiently small.

The moral of the examples below is that whenever you arrive at an equation of the
form Z + (something)z = 0, you know that z undergoes simple harmonic motion with

w = y/something.

Simple pendulum

Consider the simple pendulum shown in Fig. 9. (The word “simple” refers to the fact that
the mass is a point mass, as opposed to an extended mass in the “physical ” pendulum
below.) The mass hangs on a massless string and swings in a vertical plane. Let ¢ be
the length of the string, and let 6(¢) be the angle the string makes with the vertical. The
gravitational force on the mass in the tangential direction is —mgsinf. So F' = ma in the
tangential direction gives

—mgsinf = m(€6) (40)

The tension in the string combines with the radial component of gravity to produce the
radial acceleration, so the radial F' = ma equation serves only to tell us the tension, which
we won’t need here.

Eq. (40) isn’t solvable in closed form. But for small oscillations, we can use the siné ~
approximation to obtain

0+ w?0 =0, where w = % . (41)

This looks exactly like the #+w?x equation for the Hooke’s-law spring, so all of our previous
results carry over. The only difference is that w is now \/g/¢ instead of \/k/m. Therefore,

we have
0(t) = Acos(wt + ¢), (42)
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where A and ¢ are determined by the initial conditions. So the pendulum undergoes simple
harmonic motion with a frequency of \/gW The period is therefore T' = 27 /w = QW\/%.
The true motion is arbitrarily close to this, for sufficiently small amplitudes. Problem [to be
added] deals with the higher-order corrections to the motion in the case where the amplitude
is not small.

Note that the angle # bounces back and forth between +A, where A is small. But the
phase angle wt + ¢ increases without bound, or equivalently keeps running from 0 to 27
repeatedly.

Physical pendulum

Consider the “physical” pendulum shown in Fig. 10. The planar object swings back and
forth in the vertical plane that it lies in. The pivot is inside the object in this case, but it
need not be. You could imagine a stick (massive or massless) that is glued to the object
and attached to the pivot at its upper end.

We can solve for the motion by looking at the torque on the object around the pivot.
If the moment of inertia of the object around the pivot is I, and if the object’s CM is a
distance d from the pivot, then 7 = I« gives (using the approximation sin 6 = 6)

. ; d
—mgdsind =10 — 6 +w?0=0, where w = g . (43)

So we again have simple harmonic motion. Note that if the object is actually a point mass,
then we have I = md?, and the frequency becomes w = +/g/d. This agrees with the
simple-pendulum result in Eq. (41) with £ — d.

If you wanted, you could also solve this problem by using 7 = I« around the CM, but
then you would need to also use the F, = ma, and F, = ma, equations. All of these

equations involve messy forces at the pivot. The point is that by using 7 = I« around the
pivot, you can sweep these forces under the rug.

LC circuit

Consider the LC circuit shown in Fig. 11. Kirchhoff’s rule (which says that the net voltage
drop around a closed loop must be zero) applied counterclockwise yields

a Q
L - =X =0. 44
at C 0 (44)
But I = dQ/dt, so we have
—LQ—Q:O = Q+u°Q=0 where wzwi. (45)
C ’ LC

So we again have simple harmonic motion. In comparing this LQ + (1/C)Q equation with
the simple-harmonic m& + kx = 0 equation, we see that L is the analog of m, and 1/C' is
the analog of k. L gives a measure of the inertia of the system; the larger L is, the more
the inductor resists changes in the current (just as a large m makes it hard to change the
velocity). And 1/C gives a measure of the restoring force; the smaller C is, the smaller the
charge is that the capacitor wants to hold, so the larger the restoring force is that tries to
keep @Q from getting larger (just as a large k makes it hard for = to become large).

mass m,
moment of inertia /

Figure 10

QQQQQ
~
a
|

Figure 11

QK



14 CHAPTER 1. OSCILLATIONS

1.2 Damped oscillations

1.2.1 Solving the differential equation

Let’s now consider damped harmonic motion, where in addition to the spring force we also
have a damping force. We’ll assume that this damping force takes the form,

Fdamping = —bi. (46)

Note that this is not the force from sliding friction on a table. That would be a force with
constant magnitude uxN. The —bz force here pertains to a body moving through a fluid,
provided that the velocity isn’t too large. So it is in fact a realistic force. The F = ma
equation for the mass is

Fspring + Fdamping = mI‘
= —kxr—br = mz
.. . 2 k b
= Ii+vyt+wijz = 0, where wo =1/ —, y=—. (47)
m m

We'll use wy to denote \/k/m here instead of the w we used in Section 1.1, because there
will be a couple frequencies floating around in this section, so it will be helpful to distinguish
them.

In view of the discussion in Section 1.1.4, the method we will always use to solve a linear
differential equation like this is to try an exponential solution,

z(t) = Ce™. (48)
Plugging this into Eq. (47) gives
?Ce™ + yaCe® + w2Ce™ =0

= o?+ya+wi=0

SR 72 - 4‘”8 (49)
5 .

—— o=

We now have three cases to consider, depending on the sign of 42 — 4w2. These cases are
called underdamping, overdamping, and critical damping.

1.2.2 Underdamping (v < 2wp)

The first of the three possible cases is the case of light damping, which holds if v < 2wq. In
this case, the discriminant in Eq. (49) is negative, so o has a complex part.’ Let’s define
the real quantity w, (where the “u” stands for underdamped) by

M| —

Wy

2
dwg—7? = |wy=woy/l— (%) (50)
Wo

Then the a in Eq. (49) becomes oo = —v/2 %+ iw,. So we have the two solutions,

z1(t) = Cyel—7/2Fiwa)t and xo(t) = Cyel—7/2—iwu)t (51)

5This reminds me of a joke: The reason why life is complex is because it has both a real part and an
imaginary part.
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We'll accept here the fact that a second-order differential equation (which is what Eq. (47)
is) has at most two linearly independent solutions. Therefore, the most general solution is
the sum of the above two solutions, which is

x(t) = e 1?2 (Clei“’“t + C’ze*i“’“t) (52)

However, as we discussed in Section 1.1.5, x(¢) must of course be real. So the two terms
here must be complex conjugates of each other, to make the imaginary parts cancel. This
implies that Cy = Cf, where the star denotes complex conjugation. If we let C; = Ce'®
then Cy = C} = Ce~ ™, and so x(t) becomes

Tunderdamped () = eﬂt/2c<ei(wut+¢>)+efi(wut+¢))

= e 20 2cos(wut + B)

= | Ae7 "2 cos(wyt + ¢) (where A =20C). (53)

As we mentioned in Section 1.1.5, we’ve basically just taken the real part of either of the
two solutions that appear in Eq. (52).

We see that we have sinusoidal motion that slowly decreases in amplitude due to the
e~"/2 factor. In other words, the curves +Ae~7/2 form the envelope of the sinusoidal
motion. The constants A and ¢ are determined by the initial conditions, whereas the
constants v and w, (which is given by Eq. (50)) are determined by the setup. The task of
Problem [to be added] is to find A and ¢ for the initial conditions, z(0) = z and v(0) = 0.
Fig. 12shows a plot of z(t) for v = 0.2 and wp = 1s™!, with the initial conditions of z(0) = 1
and v(0) = 0.

Note that the frequency w, = wpy/1 — (7/2wp)? is smaller than the natural frequency,
wp. However, this distinction is generally irrelevant, because if -y is large enough to make wy
differ appreciably from wg, then the motion becomes negligible after a few cycles anyway.
For example, if w, differs from wy by even just 20% (so that wy = (0.8)wg), then you can
show that this implies that v = (1.2)wg. So after just two cycles (that is, when wy,t = 4m),
the damping factor equals

e (/D1 = o= (0600t — = (0.6/0.8)wut — o= (3/4)(4m) — (=37 o 1. 1074, (54)
which is quite small.

Very light damping (v < wq)

In the limit of very light damping (that is, v < wp), we can use the Taylor-series approxi-
mation /14 € = 1+ ¢/2 in the expression for w, in Eq. (50) to write

7 \2 1/ v \2 v?
L= 1—(7) ~ 1—7(—) = wo — . 55
Wu = &0 %) U0 ( 2\ 2w, 0T R (55)

So wy, essentially equals wy, at least to first order in +.

Energy

Let’s find the energy of an underdamped oscillator, E = mi?/2 + k2?/2, as a function of
time. To keep things from getting too messy, we’ll let the phase ¢ in the expression for x(t)
in Eq. (53) be zero. The associated velocity is then

d
v = d—? = Ae /2 (f% €OS Wyt — wy sin wut) ) (56)

t
20 25 30

Figure 12
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The energy is therefore

1 1
émfl":z + §k$2

1 2 1
imAz(f775 (—% cos wyl — wy sin wut> + ikAQe*Wt cos? wyt. (57)

E

Using the definition of w, from Eq. (50), and using k = mw3, this becomes

2

1 2
E “mA%e 7t (7 082 Wyt + Ywy €OS Wyt Sin wyt + (wg — %) sin? wyt + w% cos? wut>

2 4

1 2
= EmAQeﬂt (1 (0032 wut — sin? wut> + Ywy cos wyt sin wy,t + wg ( cos? wyt + sin? wut)>

1 2
imAze*w <1 cos 2wyt + % sin 2wyt + w%) . (58)

As a double check, when v = 0 this reduces to the correct value of E = mw3A?/2 = kA%/2.
For nonzero vy, the energy decreases in time due to the e=7* factor. The lost energy goes
into heat that arises from the damping force.

Note that the oscillating parts of £ have frequency 2w,. This is due to the fact that the
forward and backward motions in each cycle are equivalent as far as the energy loss due to
damping goes.

Eq. (58) is an exact result, but let’s now work in the approximation where v is very
small, so that the e™* factor decays very slowly. In this approximation, the motion looks
essentially sinusoidal with a roughly constant amplitude over a few oscillations. So if we take
the average of the energy over a few cycles (or even just exactly one cycle), the oscillatory
terms in Eq. (58) average to zero, so we're left with

1 1
(E) = §mw§A26_'yt = 51{:1426_”, (59)

where the brackets denote the average over a few cycles. In retrospect, we could have
obtained this small-y result without going through the calculation in Eq. (58). If v is very
small, then Eq. (53) tells us that at any given time we essentially have a simple harmonic
oscillator with amplitude Ae~7*/2, which is roughly constant. The energy of this oscillator
is the usual (k/2)(amplitude)?, which gives Eq. (59).

Energy decay

What is the rate of change of the average energy in Eq. (59)7 Taking the derivative gives

— = —(E) (60)

This tells us that the fractional rate of change of (E) is . That is, in one unit of time, (E)
loses a fraction «y of its value. However, this result holds only for small «, and furthermore
it holds only in an average sense. Let’s now look at the exact rate of change of the energy
as a function of time, for any value of ~, not just small .

The energy of the oscillator is E = m?2/2 + kxz?/2. So the rate of change is

dE
P mad + kxt = (m& + kx)d. (61)
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Since the original F' = ma equation was mz + bz + kx = 0, we have m& + kx = —bz,
Therefore,

4B _
dt

dE

(—bi)i = E_—bj? (62)

This is always negative, which makes sense because energy is always being lost to the
damping force. In the limit where b = 0, we have dE'/dt = 0, which makes sense because we
simply have undamped simple harmonic motion, for which we already know that the energy
is conserved.

We could actually have obtained this —bi? result with the following quicker reason-
ing. The damping force is Fyamping = —bZ, so the power (which is dE/dt) it produces is
Fdampingv = (—bx)x = —b.’b2.

Having derived the exact dE/dt = —bi? result, we can give another derivation of the
result for (E) in Eq. (60). If we take the average of dE/dt = —bi? over a few cycles, we
obtain (using the fact that the average of the rate of change equals the rate of change of the
average)

d(E) 9

i b(z7). (63)

We now note that the average energy over a few cycles equals twice the average kinetic

energy (and also twice the average potential energy), because the averages of the kinetic
and potential energies are equal (see Fig. 8). Therefore,

(E) = m(i?). (64)
Comparing Eqs. (63) and (64) yields
AqE) b
“at _E<E> = —(E), (65)

in agreement with Eq. (60). Basically, the averages of both the damping power and the
kinetic energy are proportional to (i?). And the ratio of the proportionality constants is
—b/m = —.

Q value

The ratio v/wg (or its inverse, wg/v) comes up often (for example, in Eq. (50)), so let’s
define

_ @
Q= S (66)

@ is dimensionless, so it is simply a number. Small damping means large Q). The Q stands
for “quality,” so an oscillator with small damping has a high quality, which is a reasonable
word to use. A given damped-oscillator system has particular values of v and wqg (see Eq.
(47)), so it therefore has a particular value of Q. Since @ is simply a number, a reasonable
question to ask is: By what factor has the amplitude decreased after @ cycles? If we consider
the case of very small damping (which is reasonable, because if the damping isn’t small, the
oscillations die out quickly, so there’s not much to look at), it turns out that the answer is
independent of (). This can be seen from the following reasoning.

The time to complete @ cycles is given by w,t = Q(27) = t = 27Q/wy. In the case
of very light damping (v < wp), Eq. (50) gives w, &~ wy, so we have t ~ 27Q/wy. But since
we defined Q = wp /7, this time equals t &~ 27 (wq/7)/wo = 27 /7. Eq. (53) then tells us that
at this time, the amplitude has decreased by a factor of

e~/ — o—(VDET/Y) _ o7 p, 0,043, (67)
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which is a nice answer if there ever was one! This result provides an easy way to determine
Q, and hence ~. Just count the number of cycles until the amplitude is about 4.3% of the
original value. This number equals @, and then Eq. (66) yields +, assuming that we know
the value of wy.

1.2.3 Overdamping (v > 2wy)
If v > 2wy, then the two solutions for « in Eq. (49) are both real. Let’s define pq and ps by

_ 7 __ 7
=g+ Z—w%, and o =5 = Z—w%. (68)
The most general solution for x(¢) can then be written as
Zoverdamped (t) = ’ Cle_ult + CQG_Mzt (69)

where C; and Cs are determined by the initial conditions. Note that both py and us are
positive, so both of these terms undergo exponential decay, and not exponential growth
(which would be a problem physically). Since py > ps, the first term decays more quickly
than the second, so for large t we are essentially left with only the Coe™#2! term.

The plot of z(¢t) might look like any of the plots in Fig. 13, depending on whether you
throw the mass away from the origin, release it from rest, or throw it back (fairly quickly)
toward the origin. In any event, the curve can cross the origin at most once, because if we
set z(t) = 0, we find

1 —
Cre "Mt 4 Che™ ™! =0 = _G elm—m)t  — ¢ — In & . (70)
Oy M1 — K2 Cs

We have found at most one solution for ¢, as we wanted to show. In a little more detail, the
various cases are: There is one positive solution for ¢ if —Cy/Cy > 1; one zero solution if
—(1/C5 = 1; one negative solution if 0 < —C4/Cs < 1; and no (real) solution if —C, /Cy < 0.
Only in the first of these four cases does that mass cross the origin at some later time after
you release/throw it (assuming that this moment corresponds to ¢ = 0).

Very heavy damping (7 > wp)

Consider the limit where v > wg. This corresponds to a very weak spring (small wp)
immersed in a very thick fluid (large ), such a molasses. If v > wp, then Eq. (68) gives
1 ~ 7. And if we use a Taylor series for gy we find

42 142 2
pp=1-1 1_%7_7(1_%):@0«7. (71)

We therefore see that p; > g, which means that the e #t* term goes to zero much faster
than the e7#2¢ term. So if we ignore the quickly-decaying e~ #1* term, Eq. (69) becomes

a(t) & Che M2t & Che™ 3/t = Che /T, where T = (72)

e

wd '’
A plot of a very heavily damped oscillator is shown in Fig. 14. We have chosen wy = 1571
and v = 3s~!. The initial conditions are xy = 1 and vy = 0. The two separate exponential
decays are shown, along with their sum. This figure makes it clear that v doesn’t have to be
much larger than wy for the heavy-damping approximation to hold. Even with v/wg only
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equal to 3, the fast-decay term dies out on a time scale of 1/pu; &~ 1/ = (1/3)s, and the
slow-decay term dies out on a time scale of 1/ ~ /w3 = 3s.

T = 7/wd is called the “relaxation time.” The displacement decreases by a factor of 1/e
for every increase of T in the time. If v > wy, we have T' = /w3 > 1/wp. In other words,
T is much larger than the natural period of the spring, 27 /wg. The mass slowly creeps back
toward the origin, as you would expect for a weak spring in molasses.

Note that T = v/w? = (b/m)(k/m) = b/k. So Eq. (72) becomes z(t) ~ Coe~*/0)1,
What is the damping force is associated with this z(¢)? We have

k ,
Fiamping = —b = —b <_bg2e—(k/b)t> =k (Cze—(k/b)t> =Fk-2(t) = —Fspring- (73)

This makes sense. If we have a weak spring immersed in a thick fluid, the mass is hardly
moving (or more relevantly, hardly accelerating). So the drag force and the spring force must
essentially cancel each other. This also makes it clear why the relaxation time, T' = b/k, is
independent of the mass. Since the mass is hardly moving, its inertia (that is, its mass) is
irrelevant. The only things that matter are the (essentially) equal and opposite spring and
damping forces. So the only quantities that matter are b and k.

1.2.4 Critical damping (v = 2w)

If v = 2wy, then we have a problem with our method of solving for z(¢), because the two a’s
in Eq. (49) are equal, since the discriminant is zero. Both solutions are equal to —vy/2, which
equals wg because we're assuming v = 2wgy. So we haven’t actually found two independent
solutions, which means that we won’t be able to satisfy arbitrary initial conditions for x(0)
and v(0). This isn’t good. We must somehow find another solution, in addition to the e~«°*
one.

It turns out that te~*° is also a solution to the F' = ma equation, & + 2wod + wiz = 0
(we have used v = 2wq here). Let’s verify this. First note that

z = % (te™0") = e=“°"(1 — wpt),
= & = % (e7°" (1 — wot)) = e — wy — wo(1 — wot)). (74)
Therefore,
&+ 2wod + wir = e~ wo! ((—ng + wit) + 2wo(1 — wot) + wgt) =0, (75)

as desired. Why did we consider the function te~“°! as a possible solution? Well, it’s a
general result from the theory of differential equations that if a root « of the characteristic
equation is repeated k times, then

eon&7 t@at, t2€at, e tkfleat (76)

are all solutions to the original differential equation. But you actually don’t need to invoke
this result. You can just take the limit, as v — 2wy, of either of the underdamped or
overdamped solutions. You will find that you end up with a e=“°% and a te~“°! solution
(see Problem [to be added]). So we have

l'critical(t) - (A + Bt)eiu)()t (77)

A plot of this is shown in Fig. 15. It looks basically the same as the overdamped plot
in Fig. 13. But there is an important difference. The critically damped motion has the
property that it converges to the origin in the quickest manner, that is, quicker than both
the overdamped or underdamped motions. This can be seen as follows.

15
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e (QUICKER THAN OVERDAMPED: From Eq. (77), the critically damped motion goes to
zero like e7@0t (the Bt term is inconsequential compared with the exponential term).
And from Eq. (69), the overdamped motion goes to zero like e #2¢ (since p; > pa).
But from the definition of uo in Eq. (68), you can show that ps < wg (see Problem
[to be added]). Therefore, e~“0" < e™#2!| 50 Zeritical (t) < Toverdamped (t) for large ¢, as
desired.

e (QUICKER THAN UNDERDAMPED: As above, the critically damped motion goes to zero
like e=#o*. And from Eq. (53), the envelope of the underdamped motion goes to zero
like e~ (/2% But the assumption of underdamping is that v < 2wg, which means that
v/2 < wp. Therefore, e=“0t < e~ (/2! 50 Tepigical(t) < zﬁtjvggsgped(t) for large t, as

desired. The underdamped motion reaches the origin first, of course, but it doesn’t
stay there. It overshoots and oscillates back and forth. The critically damped oscillator
has the property that it converges to zero quickest without overshooting. This is very
relevant when dealing with, for example, screen doors or car shock absorbers. After
going over a bump in a car, you want the car to settle down to equilibrium as quickly
as possible without bouncing around.

1.3 Driven and damped oscillations

1.3.1 Solving for z(t)

Having looked at damped oscillators, let’s now look at damped and driven oscillators. We’ll
take the driving force to be Fyyiving(t) = Fgcoswt. The driving frequency w is in general
equal to neither the natural frequency of the oscillator, wg = /k/m, nor the frequency of
the underdamped oscillator, w,. However, we’ll find that interesting things happen when
wp = w. To avoid any confusion, let’s explicitly list the various frequencies:

e wp: the natural frequency of a simple oscillator, 1/k/m.
e w,: the frequency of an underdamped oscillator, \/wg — v2/4.
e w: the frequency of the driving force, which you are free to pick.

There are two reasons why we choose to consider a force of the form coswt (a sinwt form
would work just as well). The first is due to the form of our F = ma equation:

Fspring + Fdamping + Fdriving = ma
= —kax —bi+ Fycoswt = mi. (78)

This is simply Eq. (47) with the additional driving force tacked on. The crucial property
of Eq. (78) is that it is linear in z. So if we solve the equation and produce the function
x1(t) for one driving force F(t), and then solve it again and produce the function z5(t) for
another driving force Fy(t), then the sum of the 2’s is the solution to the situation where
both forces are present. To see this, simply write down Eq. (78) for z1(t), and then again
for xo(t), and then add the equations. The result is

—k(z1 + x2) — b(21 + @2) + (F1 + Fa) = m(&1 + &2). (79)

In other words, x1(t) + x2(t) is the solution for the force F(t) + Fa(t). It’s easy to see that
this procedure works for any number of functions, not just two. It even works for an infinite
number of functions.
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The reason why this “superposition” result is so important is that when we get to Fourier
analysis in Chapter 3, we’ll see that any general function (well, as long as it’s reasonably
well behaved, which will be the case for any function we’ll be interested in) can be written
as the sum (or integral) of coswt and sinwt terms with various values of w. So if we use
this fact to write an arbitrary force in terms of sines and cosines, then from the preceding
paragraph, if we can solve the special case where the force is proportional to coswt (or
sinwt), then we can add up the solutions (with appropriate coefficients that depend on the
details of Fourier analysis) to obtain the solution for the original arbitrary force. To sum
up, the combination of linearity and Fourier analysis tells us that it is sufficient to figure
out how to solve Eq. (78) in the specific case where the force takes the form of Fy coswt.

The second reason why we choose to consider a force of the form coswt is that F(t) =
Fjcoswt is in fact a very realistic force. Consider a spring that has one end attached to
a mass and the other end attached to a support. If the support is vibrating with position
Zend(t) = Aena coswt (which often happens in real life), then the spring force is

Fipring () = —k(z — Tena) = —kx + kAena coswt. (80)

This is exactly the same as a non-vibrating support, with the addition of someone exerting
a force Fy coswt directly on the mass, with Fy = kAcng-

We'll now solve for z(t) in the case of damped and driven motion. That is, we’ll solve
Eq. (78), which we’ll write in the form,

b [k F,
&+t 4+ wiz = F coswt, where y= —, wy=4/—, F= - (81)
m m m

There are (at least) three ways to solve this, all of which involve guessing a sinusoidal or
exponential solution.

Method 1

Let’s try a solution of the form,
x(t) = Acos(wt + ¢), (82)

where the w here is the same as the driving frequency. If we tried a different frequency, then
the lefthand side of Eq. (81) would have this different frequency (the derivatives don’t affect
the frequency), so it would have no chance of equaling the F' coswt term on the righthand
side.

Note how the strategy of guessing Eq. (82) differs from the strategy of guessing Eq. (48)
in the damped case. The goal there was to find the frequency of the motion, whereas in the
present case we're assuming that it equals the driving frequency w. It might very well be
the case that there doesn’t exist a solution with this frequency, but we have nothing to lose
by trying. Another difference between the present case and the damped case is that we will
actually be able to solve for A and ¢, whereas in the damped case these parameters could
take on any values, until the initial conditions are specified.

If we plug z(t) = Acos(wt + ¢) into Eq. (81), we obtain

—w? A cos(wt + @) — ywAsin(wt + ¢) + wi A cos(wt + ¢) = F cos wt. (83)
We can cleverly rewrite this as

w? A cos(wt + ¢ + ) + ywA cos(wt + ¢ + 7/2) + wi A cos(wt + ¢) = F coswt, (84)
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which just says that a is 90° ahead of v, which itself is 90° ahead of . There happens to
be a slick geometrical interpretation of this equation that allows us to quickly solve for A
and ¢. Consider the diagram in Fig. 16. The quantities wy, v, w, and F are given. We have
picked an arbitrary value of A and formed a vector with length w2 A pointing to the right.
Then we’ve added on a vector with length ywA pointing up, and then another vector with
length w?A point to the left. The sum is the dotted-line vector shown. We can make the
magnitude of this vector be as small or as large as we want by scaling the diagram down or
up with an arbitrary choice of A.

If we pick A so that the magnitude of the vector sum equals F', and if we rotate the
whole diagram through the angle ¢ that makes the sum horizontal (¢ is negative here), then
we end up with the diagram in Fig.17. The benefit of forming this diagram is the following.
Consider the horizontal projections of all the vectors. The fact that the sum of the three
tilted vectors equals the horizontal vector implies that the sum of their three horizontal
components equals F'. That is (remember that ¢ is negative),

Wi Acos ¢+ ywAcos(¢p +7/2) +w?Acos(¢ 4 ) = F cos(0). (85)

This is just the statement that Eq. (84) holds when ¢t = 0. However, if A and ¢ are chosen
so that it holds at ¢ = 0, then it holds at any other time too, because we can imagine
rotating the entire figure counterclockwise through the angle wt. This simply increases the
arguments of all the cosines by wt. The statement that the z components of the rotated
vectors add up correctly (which they do, because the figure keeps the same shape as it is
rotated, so the sum of the three originally-tilted vectors still equals the originally-horizontal
vector) is then

Wi Acos(wt + ¢) + ywA cos(wt + ¢ + 7/2) + w? Acos(wt + ¢ + 1) = F coswt, (86)

which is the same as Eq. (84), with the terms on the left in reverse order. Our task therefore
reduces to determining the values of A and ¢ that generate the quadrilateral in Fig. 17.

THE PHASE ¢

If we look at the right triangle formed by drawing the dotted line shown, we can quickly
read off

WA —
ik = |tang = — -

ta S R
né (w2 —w?)A wd — w?

(87)

We’ve put the minus sign in by hand here because ¢ is negative. This follows from the fact
that we made a “left turn” in going from the w2A vector to the ywA vector. And then
another left turn in going from the ywA vector to the w?A vector. So no matter what the
value of w is, ¢ must lie somewhere in the range —7 < ¢ < 0. Angles less than —90° arise
when w > wy, as shown in Fig. 18. ¢ & 0 is obtained when w ~ 0, and ¢ ~ —7 is obtained
when w ~ co. Plots of ¢(w) for a few different values of 7y are shown in Fig. 19.
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Figure 19

If v is small, then the ¢ curve starts out with the roughly constant value of zero, and
then jumps quickly to the roughly constant value of —w. The jump takes place in a small
range of w near wy. Problem [to be added] addresses this phenomenon. If v is large, then
the ¢ curve quickly drops to —m/2, and then very slowly decreases to 7. Nothing interesting
happens at w = wy in this case. See Problem [to be added].

Note that for small v, the ¢ curve has an inflection point (which is point where the second
derivative is zero), but for large « it doesn’t. The value of v that is the cutoff between these
two regimes is v = /3wy (see Problem [to be added]). This is just a fact of curiosity; I don’t
think it has any useful consequence.

THE AMPLITUDE A

To find A, we can apply the Pythagorean theorem to the right triangle in Fig. 17. This
gives

((wg - wz)A)2 + (AP =F? = |A= N wi)Q e (88)

Our solution for z(t) is therefore

| 2(t) = Acos(wt +¢) | (89)

where ¢ and A are given by Egs. (87) and (88). Plots of the amplitude A(w) for a few
different values of v are shown in Fig. 20.
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At what value of w does the maximum of A(w) occur? A(w) is maximum when the
denominator of the expression in Eq. (88) is minimum, so setting the derivative (with respect
to w) of the quantity under the square root equal to zero gives

2wh — w?)(—2w) + Y (2w) =0 = w=/wi—"2/2. (90)

For small v (more precisely, for v < wp), this yields w ~ wg. If v = v/2wp, then the
maximum occurs at w = 0. If 7 is larger than v/2wp, then the maximum occurs at w = 0,
and the curve monotonically decreases as w increases. These facts are consistent with Fig.
20. For small 7, which is the case we’ll usually be concerned with, the maximum value of
A(w) is essentially equal to the value at wg, which is A(wg) = F/yw.
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A(w) goes to zero as w — 0o. The value of A(w) at w =0 is

o F _Fd/m_Fd
A(O)_w—g:k/m_?. (91)

This is independent of v, consistent with Fig. 20. The reason why A(0) takes the very simple
form of Fy/k will become clear in Section 1.3.2 below.

Using the same techniques that we’ll use below to obtain in Eq. (128) the width of the
power curve, you can show (see Problem [to be added]) that the width of the A(w) curve
(defined to be the width at half max) is

width = v/3 v (92)

So the curves get narrower (at half height) as v decreases.

However, the curves don’t get narrower in an absolute sense. By this we mean that for
a given value of w, say w = (0.9)wp, the value of A in Fig. 20 increases as v decreases.
Equivalently, for a given value of A, the width of the curve at this value increases as ~y
decreases. These facts follow from the fact that as v — 0, the A in Eq. (88) approaches the
function F/|w3 — w?|. This function is the envelope of all the different A(w) functions for
different values of . If we factor the denominator in F/|w3 — w?|, we see that near wq (but
not right at wp), A behaves like (F'/2wp)/|wo — w].

Remember that both A and ¢ are completely determined by the quantities wy, 7, w,
and F. The initial conditions have nothing to do with A and ¢. How, then, can we satisfy
arbitrary initial conditions with no free parameters at our disposal? We’ll address this
question after we discuss the other two methods for solving for z(t).

Method 2

Let’s try a solution of the form,
x(t) = Acoswt + Bsinwt. (93)

(This A isn’t the same as the A in Method 1.) As above, the frequency here must be the
same as the driving frequency if this solution is to have any chance of working. If we plug
this expression into the F' = ma equation in Eq. (81), we get a fairly large mess. But if we
group the terms according to whether they involve a coswt or sinwt, we obtain (you should
verify this)

(—w?B — ywA + w2B)sinwt + (—w?A + ywB + w2 A) coswt = F cos wt. (94)

We have two unknowns here, A and B, but only one equation. However, this equation is
actually two equations. The point is that we want it to hold for all values of t. But sinwt
and cos wt are linearly independent functions, so the only way this equation can hold for all ¢
is if the coefficients of sin wt and coswt on each side of the equation match up independently.
That is,

~w?B—qywA+wiB = 0,
~w?A+ywB+wiA = F. (95)

We now have two unknowns and two equations. Solving for either A or B in the first
equation and plugging the result into the second one gives

(Wi —w?)F ywF
2, 2)2 2, 2 and B = 2 2\2 2, 92"
(wg — w?)? + 72w (Wi —w?)? + 72w

A:

(96)
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The solution for x(t) is therefore

(W —w?)F ‘it ywF
cosw
(wg — w?)? + y2w? (wg — w?)? + y2w?

z(t) = sin wt (97)

We'll see below in Method 3 that this solution is equivalent to the z(t) = Acos(wt + ¢)
solution from Method 1, given that A and ¢ take on the particular values we found.

Method 3

First, consider the equation,
i+ 79+ wiy = Fe™". (98)

This equation isn’t actually physical, because the driving “force” is the complex quantity
Fe't. Forces need to be real, of course. And likewise the solution for y(t) will complex,
so it can’t actually represent an actual position. But as we’ll shortly see, we’ll be able to
extract a physical result by taking the real part of Eq. (98).

Let’s guess a solution to Eq. (98) of the form y(t) = Ce™!. When we get to Fourier
analysis in Chapter 3, we’ll see that this is the only function that has any possible chance
of working. Plugging in y(t) = Ce™? gives

F
2

_w2ceiwt + Z',YwCeiwt + wgCeiwt —F. Ceiwt — C _ -
wh — w* +1yw

(99)
What does this solution have to do with our original scenario involving a driving force
proportional to coswt? Well, consider what happens when we take the real part of Eq. (98).

Using the fact that differentiation commutes with the act of taking the real part, which is
true because

Re (jt(a + ib)) = fl—j = %(Re(a +ib)), (100)
we obtain
Re(§j) + Re(v4) + Re(wjy) = Re(Fe™?)
% (Re(y)) + V% (Re(y)) +wp (Re(y)) = Fcoswt. (101)

In other words, if y is a solution to Eq. (98), then the real part of y is a solution to our
original (physical) equation, Eq. (81), with the F coswt driving force. So we just need to
take the real part of the solution for y that we found, and the result will be the desired
position z. That is,

z(t) = Re (y(t)) = Re (Cei‘“t) =Re <2Fei‘“t> . (102)

wi — w? + iyw

Note that the quantity Re(Ce?) is what matters here, and not Re(C)Re(e™?). The equiv-
alence of this solution for z(t) with the previous ones in Egs. (89) and (97) can be seen as
follows. Let’s consider Eq. (97) first.

e AGREEMENT WITH EQ. (97):

Any complex number can be written in either the Cartesian a + bi way, or the polar
(magnitude and phase) Ae'® way. If we choose to write the C' in Eq. (99) in the
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Cartesian way, we need to get the 7 out of the denominator. If we “rationalize” the
denominator of C and expand the e™? term in Eq. (102), then z(¢) becomes

F((wd — w?) — iyw)
= S il . 1
z(t) = Re ( (W — ) £ 72 (coswt + i sinwt) (103)

The real part comes from the product of the real parts and the product of the imaginary
parts, so we obtain

(W — W F ywF
3 N2 o a0 CoOSwt+ 22 L A2 2
(W — w?)?2 +~2w (W — w?)? +~2w

x(t) = sin wt, (104)

in agreement with Eq. (97) in Method 2.

e AGREEMENT WITH EQ. (89):

If we choose to write the C' in Eq. (99) in the polar Ae’® way, we have

A=vC-0or= \/(w2 w]‘;—‘)Q + 72(,02 ’ (105)
2 -
and Im(C)
m —Yw
= = 1
tan ¢ Re(C) wi—w?’ (106)

where we have obtained the real and imaginary parts from the expression for C' that
we used in Eq. (103). (This expression for tan ¢ comes from the fact that the ratio of
the imaginary and real parts of ¢® = cos ¢ + isin ¢ equals tan ¢.) So the z(t) in Eq.
(102) becomes

x(t) = Re (y(t)) = Re (Cei‘*’t) = Re (Aewem> = Acos(wt + ¢). (107)

This agrees with the result obtained in Eq. (89) in Method 1, because the A and ¢ in
Egs. (105) and (106) agree with the A and ¢ in Egs. (88) and (87).

The complete solution

Having derived the solution for z(t) in three different ways, let’s look at what we’ve found.
We'll use the x(t) = A cos(wt + ¢) form of the solution in the following discussion.

As noted above, A and ¢ have definite values, given the values of wy = \/k/m, v = b/m,
F = F43/m, and w. There is no freedom to impose initial conditions. The solution in
Eq. (107) therefore cannot be the most general solution, because the most general solution
must allow us to be able to satisfy arbitrary initial conditions. So what is the most general
solution? It is the sum of the Acos(wt + ¢) solution we just found (this is called the
“particular” solution) and the solution from Section 1.2.1 (the “homogeneous” solution)
that arose when there was no driving force, and thus a zero on the righthand side of the
F = ma equation in Eq. (47). This sum is indeed a solution to the F' = ma equation in
Eq. (81) because this equation is linear in . The homogeneous solution simply produces a
zero on the righthand side, which doesn’t mess up the equality generated by the particular
solution. In equations, we have (with the sum of the particular and homogeneous solutions
written as = xp + xn)

P4yt twir = (&, +Fn) +y(Ep + En) + wi(Tp + Th)
= (ﬂ'ép +yTp + ngp) + (i‘h + yan + w%xh)
F coswt + 0, (108)



1.3. DRIVEN AND DAMPED OSCILLATIONS 27

which means that * = x, + =y is a solution to the F' = ma equation, as desired. The
two unknown constants in the homogeneous solution yield the freedom to impose arbitrary
initial conditions. For concreteness, if we assume that we have an underdamped driven
oscillator, which has the homogeneous solution given by Eq. (53), then the complete solution,
T = Tp + T, IS

z(t) = Ap cos(wt + @) + Ape™ /2 cos(wpt + ) (underdamped) (109)

A word on the various parameters in this result:
e w is the driving frequency, which can be chosen arbitrarily.

o A, and ¢ are functions of wy = \/k/m, v = b/m, F = Fq/m, and w. They are given
in Egs. (88) and (87).

e wy is a function of wy and «. It is given in Eq. (50).
e Ay, and 0 are determined by the initial conditions.

However, having said all this, we should note the following very important point. For large ¢
(more precisely, for ¢ > 1/7), the homogeneous solution goes to zero due to the e~ 7%/2 term.
So no matter what the initial conditions are, we’re left with essentially the same particular
solution for large ¢. In other words, if two different oscillators are subject to exactly the same
driving force, then even if they start with wildly different initial conditions, the motions will
essentially be the same for large t. All memory of the initial conditions is lost.® Therefore,
since the particular solution is the one that survives, let’s examine it more closely and discuss
some special cases.

1.3.2 Special cases for w
Slow driving (w < wp)

If w is very small compared with wp, then we can simplify the expressions for ¢ and A in
Eqgs. (87) and (88). Assuming that v isn’t excessively large (more precisely, assuming that
yw < wd), we find

Fd/m Fd

m = (110)

¢ =0, and A=

&)

Therefore, the position takes the form (again, we're just looking at the particular solution

here), -
z(t) = Acos(wt + ¢) = ?d cos wt. (111)

Note that the spring force is then Fypring = —kz = —F4 coswt, which is simply the negative
of the driving force. In other words, the driving force essentially balances the spring force.
This makes sense: The very small frequency, w, of the motion implies that the mass is hardly
moving (or more relevantly, hardly accelerating), which in turn implies that the net force
must be essentially zero. The damping force is irrelevant here because the small velocity
(due to the small w) makes it negligible. So the spring force must balance the driving force.
The mass and the damping force play no role in this small-frequency motion. So the effect
of the driving force is to simply balance the spring force.

6The one exception is the case where there is no damping whatsoever, so that «y is exactly zero. But all
mechanical systems have at least a tiny bit of damping (let’s not worry about superfluids and such), so we’ll
ignore the v = 0 case.
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Mathematically, the point is that the first two terms on the lefthand side of the F' = ma
equation in Eq. (81) are negligible:

@+L¢+w§x = F coswt. (112)

This follows from the fact that since x(t) = Acos(wt + ¢), the coefficients of each of the
sinusoidal terms on the lefthand side are proportional to w?, yw, and w3, respectively. And
since we're assuming both w < wg and yw < wg, the first two terms are negligible compared
with the third. The acceleration and velocity of the mass are negligible. The position is all
that matters.

The ¢ ~ 0 result in Eq. (110) can be seen as follows. We saw above that the driving
force cancels the spring force. Another way of saying this is that the driving force is 180°
out of phase with the —kxz = k(—z) spring force. This means that the driving force is in
phase with the position z. Intuitively, the larger the force you apply, the larger the spring
force and hence the larger the position x. The position just follows the force.

Fast driving (w > wo)

If w is very large compared with wy, then we can again simplify the expressions for ¢ and
A in Egs. (87) and (88). Assuming that 7 isn’t excessively large (which now means that

v < w), we find

F F
¢~ —m,  and ~ =4 (113)

T w2 mw?
Therefore, the position takes the form,

4 coswt. (114)

d
3 t _ —
cos(wt — ) = —

z(t) = Acos(wt + ¢) = o

Note that the mass times the acceleration is then mZ = Fy4 coswt, which is the driving force.
In other words, the driving force is essentially solely responsible for the acceleration. This
makes sense: Since there are w’s in the denominator of x(t), and since w is assumed to be
large, we see that z(t) is very small. The mass hardly moves, so the spring and damping
forces play no role in this high-frequency motion. The driving force provides essentially all
of the force and therefore causes the acceleration.

Mathematically, the point is that the second two terms on the lefthand side of the
F = ma equation in Eq. (81) are negligible:

i+ i+ wpr = Feoswt. (115)

As we noted after Eq. (112), the coefficients of each of the sinusoidal terms on the lefthand
side are proportional to w?, yw, and w?, respectively. And since we’re assuming both wy < w
and v < w, the second two terms are negligible compared with the first. The velocity and
position of the mass are negligible. The acceleration is all that matters.

The ¢ ~ — result in Eq. (113) can be seen as follows. Since the driving force provides
essentially all of the force, it is therefore in phase with the acceleration. But the acceleration
is always out of phase with x(¢) (at least for sinusoidal motion). So the driving force is out
of phase with z(t). Hence the ¢ ~ —7 result and the minus sign in the expression for z(t)
in Eq. (114).

Resonance (w = wyp)

If w equals wp, then we can again simplify the expressions for ¢ and A in Egs. (87) and (88).
We don’t need to make any assumptions about v in this case, except that it isn’t exactly
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equal to zero. We find

¢=—g, and A~ — = = . (116)

Therefore, the position takes the form,

cos(wt — w/2) =

Fq .
t)=A t = t. 11
x(t) cos(wt + ¢) S sinw (117)

ymwo

Note that the damping force is then Fyamping = —(ym)& = —Fq4 coswt, which is the negative
of the driving force. In other words, the driving force essentially balances the damping force.
This makes sense: If w = wp, then the system is oscillating at wg, so the spring and the mass
are doing just what they would be doing if the damping and driving forces weren’t present.
You can therefore consider the system to be divided into two separate systems: One is a
simple harmonic oscillator, and the other is a driving force that drags a massless object
with the same shape as the original mass (so that it recreates the damping force) back and
forth in a fluid (or whatever was providing the original damping force). None of the things
involved here (spring, mass, fluid, driver) can tell the difference between the original system
and this split system. So the effect of the driving force is to effectively cancel the damping
force, while the spring and the mass do their natural thing.

Mathematically, the point is that the first and third terms on the lefthand side of the
F = ma equation in Eq. (81) cancel each other:

&+ vi + wir = Fcoswt. (118)

As above, the coefficients of each of the sinusoidal terms on the lefthand side are proportional
(in magnitude) to w?, yw, and w?, respectively. Since w = wy, the first and third terms
cancel (the second derivative yields a minus sign in the first term). The remaining parts
of the equation then say that the driving force balances the damping force. Note that the
amplitude must take on the special value of Fy/ymwy for this to work.

If ~ is small, then the amplitude A in Eq. (116) is large. Furthermore, for a given value
of v, the amplitude is largest when (roughly) w = wy. Hence the name “resonance.” We've
added the word “roughly” here because it depends on what we’re taking to be the given
quantity, and what we’re taking to be the variable. If w is given, and if we want to find
the maximum value of the A in Eq. (88) as a function of wy, then we want to pick wy to
equal w, because this choice makes w3 — w? equal to zero, and we can’t do any better than
that, with regard to making the denominator of A small. On the other hand, if wq is given,
and if we want to find the maximum value of A as a function of w, then we need to take
the derivative of A with respect to w. We did this in Eq. (90) above, and the result was
w = y/wi —72/2. So the peaks of the curves in Fig. 20 (where A was considered to be a
function of w) weren’t located exactly at w = wy. However, we will generally be concerned
with the case of small v (more precisely v < wp), in which case the peak occurs essentially
at w = wp, even when A is considered to be a function of w.

Having noted that the amplitude is maximum when w = wg, we can now see where the
¢ ~ —m/2 result in Eq. (116) comes from. If we want to make the amplitude as large as
possible, then we need to put a lot of energy into the system. Therefore, we need to do a lot
of work. So we want the driving force to act over the largest possible distance. This means
that we want the driving force to be large when the mass velocity is large. (Basically, power
is force times velocity.) In other words, we want the driving force to be in phase with the
velocity. And since z is always 90° behind v, £ must also be 90° behind the force. This
agrees with the ¢ = —7/2 phase in z. In short, this ¢ = —7/2 phase implies that the force
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always points to the right when the mass is moving to the right, and always points to the
left when the mass is moving to the left. So we’re always doing positive work. For any other
phase, there are times when we’re doing negative work.

In view of Egs. (112), (115), and (118), we see that the above three special cases are
differentiated by which one of the terms on the lefthand side of Eq. (81) survives. There
is a slight difference, though: In the first two cases, two terms disappear because they are
small. In the third case, they disappear because they are equal and opposite.

1.3.3 Power

In a driven and damped oscillator, the driving force feeds energy into the system during
some parts of the motion and takes energy out during other parts (except in the special case
of resonance where it always feeds energy in). The damping force always takes energy out,
because the damping force always points antiparallel to the velocity. For the steady-state
solution (the “particular” solution), the motion is periodic, so the energy should stay the
same on average; the amplitude isn’t changing. The average net power (work per time) from
the driving force must therefore equal the negative of the average power from the damping
force. Let’s verify this. Power is the rate at which work is done, so we have

AW =Fdz — p= _pd _p, (119)
dt dt

The powers from the damping and driving forces are therefore:
POWER DISSIPATED BY THE DAMPING FORCE: This equals
Pdamping = Fdampingv = (—bﬂ]‘)ﬂ?

= —b(— wAsin(wt + ¢))2
= —b(wA)?sin®(wt + ¢). (120)
Since the average value of sin® @ over a complete cycle is 1 /2 (obtained by either doing an

integral or noting that sin? @ has the same average as cos? 6, and these two averages add up
to 1), the average value of the power from the damping force is

1
<Pdamping> = *ib(WA)z (121)

POWER SUPPLIED BY THE DRIVING FORCE: This equals

Pariving = Farivingt? = Fycoswt)x
g g
= (Fycoswt)( —wAsin(wt + ¢))
= —FywAcoswt (sinwtcos ¢ + coswt sin ¢). (122)

The results in Egs. (120) and (122) aren’t the negatives of each other for all ¢, because the
energy waxes and and wanes throughout a cycle. (The one exception is on resonance with
¢ = —7/2, as you can verify.) But on average they must cancel each other, as we noted
above. This is indeed the case, because in Eq. (122), the coswt sin wt term averages to zero,
while the cos? wt term averages to 1/2. So the average value of the power from the driving
force is

(Pariving) = — %Fde sin ¢. (123)
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Now, what is sin ¢? From Fig. 17, we have sin¢ = —ywA/F = —ymwA/Fy. So Eq. (123)
gives

(Pasiving) = —%Fde (_7m°‘)A> 1

1
_ L 2 _ |4 2
2 = 27m(wA) = 2b(wA) (124)
Egs. (121) and (124) therefore give (Piamping) + (Pariving) = 0, as desired.

What does (Pariving) 100k like as a function of w? Using the expression for A in Eq. (88),
along with b = ym, we have

1
<Pdriving> - Qb(WA)Q
_m? (Fam)?
2 (wg _ w2)2 + ’}/2(4)2
_ (ym)F§ 7w?
- 2’}/27'712 (wg _ w2>2 + ’72(,02
Fd2 72w2 . Fd2

fw). (125)

2ym (w2 — w?)? + 12w? 2ym

We have chosen to write the result this way because the function f(w) is a dimensionless
function of w. The F? out front tells us that for given w, wp, and v, the average power
(Pariving) grows as the driving amplitude Fyy becomes larger, which makes sense. Fig. 21
shows some plots of the dimensionless function f(w) for a few values of 4. In other words,
it shows plots of (Payiving) in units of F3/2ym = F2 /2b.

Aw) = (P(w)) in units of F§/2ym
10}
08t
061 =(0.5)mg
04}

0.2F

0.0

3

Figure 21

Fig. 22 shows plots of f(w)/v for the same values of 7. That is, it shows plots of the
actual average power, (Pariving), in units of F3/2m. These plots are simply 1/v times the
plots in Fig. 21.



32 CHAPTER 1. OSCILLATIONS

flo)/y = (P(®)) in units of F#/2m

5

® (in units of wg)

4

Figure 22

The curves in Fig. 22 get thinner and taller as v gets smaller. How do the widths
depend on y? We'll define the “width” to be the width at half max. The maximum value
of (Pariving) (or equivalently, of f(w)) is achieved where its derivative with respect to w is
zero. This happens to occur right at w = wy (see Problem [to be added]). The maximum
value of f(w) then 1, as indicated in Fig. 21 So the value at half max equals 1/2. This is
obtained when the denominator of f(w) equals 2v2w?, that is, when

(Wi —wh? =~7%? = Wl —w? =ty (126)

There are two quadratic equations in w here, depending on the sign. The desired width at
half max equals the difference between the positive roots, call them w; and ws, of each of
these two equations. If you want, you can use the quadratic formula to find these roots, and
then take the difference. But a cleaner way is to write down the statements that w; and wy
are solutions to the equations:

wi—wi = g,
wy—wy = —yw, (127)

and then take the difference. The result is

Wi—w=qlwetw) = wa—w =7 = (128)

(We have ignored the wy 4+ ws solution to this equation, since we are dealing with positive
w1 and wy.) So we have the nice result that the width at half max is ezactly equal to ~.
This holds for any value of v, even though the the plot of (Pgriving) looks like a reasonably
symmetric peak only if v is small compared with wy. This can be see in Fig. 23, which
shows plots of f(w) for the reasonably small value of v = (0.4)wy and the reasonably large
value of v = 2wy.

Aw) = (P(o)) in units of F§/2ym
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Figure 23

To sum up, the maximum height of the (Pariving) curve is proportional to 1/ (it equals
F3/2ym), and the width of the curve at half max is proportional to v (it’s just 7). So the
curves get narrower as v decreases.

Furthermore, the curves get narrower in an absolute sense, unlike the A(w) curves in
Fig. 20 (see the discussion at the end of the “Method 1”7 part of Section 1.3.1). By this we
mean that for a given value of w (except wy), say w = (0.9)wp, the value of P in Fig. 22
decreases as <y decreases. Equivalently, for a given value of P, the width of the curve at this
value decreases as 7y decreases. These facts follow from the fact that as v — 0, the P in
Eq. (125) is proportional to the function v/((w§ — w?)? + v*w?). For any given value of w
(except wp), this becomes very small if + is sufficiently small.

Since the height and width of the power curve are proportional to 1/ and +, respectively,
we might suspect that the area under the curve is independent of «. This is indeed the case.
The integral is very messy to calculate in closed form, but if you find the area by numerical
integration for a few values of ~, that should convince you.

Let’s now discuss intuitively why the (Pariving) curve in Fig. 22 goes to zero at w ~ 0
and w =~ 00, and why it is large at w = wy.

e w = 0: In this case, Eq. (110) gives the phase as ¢ = 0, so the motion is in phase
with the force. The consequence of this fact is that half the time your driving force
is doing positive work, and half the time it is doing negative work. These cancel, and
on average there is no work done. In more detail, let’s look at each quarter cycle; see
Fig. 24 (the graph is plotted with arbitrary units on the axes). As you (very slowly)
drag the mass to the right from the origin to the maximum displacement, you are
doing positive work, because your force is in the direction of the motion. But then as
you (very slowly) let the spring pull the mass back toward to the origin, you are doing
negative work, because your force is now in the direction opposite the motion. The
same cancelation happens in the other half of the cycle.

e w A oo: In this case, Eq. (113) gives the phase as ¢ ~ —m, so the motion is out of
phase with the force. And again, this implies that half the time your driving force
is doing positive work, and half the time it is doing negative work. So again there is
cancelation. Let’s look at each quarter cycle again; see Fig. 25. As the mass (very
quickly) moves from the origin to the maximum displacement, you are doing negative
work, because your force is in the direction opposite the motion (you are the thing
that is slowing the mass down). But then as you (very quickly) drag the mass back
toward to the origin, you are doing positive work, because your force is now in the
direction of the motion (you are the thing that is speeding the mass up). The same
cancelation happens in the other half of the cycle.

e w = wp: In this case, Eq. (116) gives the phase as ¢ = —m/2, so the motion is in
“quadrature” with the force. The consequence of this fact is that your driving force is
always doing positive work. Let’s now look at each half cycle; see Fig. 26. Start with
the moment when the mass has maximum negative displacement. For the next half
cycle until it reaches maximum positive displacement, you are doing positive work,
because both your force and the velocity point to the right. And for other half cycle
where the mass move back to the maximum negative displacement, you are also doing
positive work, because now both your force and the velocity point to the left. In short,
the velocity, which is obtained by taking the derivative of the position in Eq. (117),
is always in phase with the force. So you are always doing positive work, and there is
no cancelation.
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Q) values

Recall the @ = wp/7 definition in Eq. (66). @ has interpretations for both the transient
(“homogeneous”) solution and the steady-state (“particular”) solution.

e For the transient solution, we found in Eq. (67) that @ is the number of oscillations
it takes for the amplitude to decrease by a factor of e™™ ~ 4%.

For the steady-state solution, there are actually two interpretations of Q.

e The first is that it equals the ratio of the amplitude at resonance to the amplitude at
small w. This can be seen from the expression for A in Eq. (88). For w = wy we have
A = F/~ywy, while for w ~ 0 we have A ~ F/w2. Therefore,

Aresonance - F/vywo _wo

szO B F/w(% B 0

Q. (129)

So the larger the @ value, the larger the amplitude at resonance. The analogous
statement in terms of power is that the larger the value of Q, the larger the F3/2ym =
F2Q/2woym value of the power at resonance.

e The second steady-state interpretation of () comes from the fact that the widths of
both the amplitude and power curves are proportional to v (see Egs. (92) and (128)).
Therefore, since @ = wg /7, the widths of the peaks are proportional to 1/Q. So the
larger the @) value, the thinner the peaks.

Putting these two facts together, a large () value means that the amplitude curve is
tall and thin. And likewise for the power curve.

Let’s now look at some applications of these interpretations.

TUNING FORKS: The transient-solution interpretation allows for an easy calculation of
@, at least approximately. Consider a tuning fork, for example. A typical frequency is
w = 440s~! (a concert A pitch). Let’s say that it takes about 5 seconds to essentially
die out (when exactly it reaches 4% of the initial amplitude is hard to tell, but we’re just
doing a rough calculation here). This corresponds to 5 - 440 = 2000 oscillations. So this is
(approximately) the @ value of the tuning fork.

RaADIOS: Both of the steady-state-solution interpretations (tall peak and thin peak) are
highly relevant in any wireless device, such at a radio, cell phone, etc. The natural frequency
of the RLC circuit in, say, a radio is “tuned” (usually by adjusting the capacitance) so that
it has a certain resonant frequency; see Problem [to be added]. If this frequency corresponds
to the frequency of the electromagnetic waves (see Chapter 8) that are emitted by a given
radio station, then a large-amplitude oscillation will be created in the radio’s circuit. This
can then be amplified and sent to the speakers, creating the sound that you hear.

The taller the power peak, the stronger the signal that is obtained. If a radio station
is very far away, then the electromagnetic wave has a very small amplitude by the time it
gets to your radio. This means that the analog of Fy in Eq. (125) is very small. So the
only chance of having a sizeable value (relative to the oscillations from the inevitable noise
of other electromagnetic waves bombarding your radio) of the F(f /2ym term is to have v be
small, or equivalently @ be large. (The electrical analog of v is the resistance of the circuit.)

However, we need two things to be true if we want to have a pleasant listening experience.
We not only need a strong signal from the station we want to listen to, we also need a weak
signal from every other station, otherwise we’ll end up with a garbled mess. The thinness
of the power curve saves the day here. If the power peak is thin enough, then a nearby
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radio-station frequency (even, say, w = (0.99)wp) will contribute negligible power to the
circuit. It’s like this second station doesn’t exist, which is exactly how we want things to
look.

AToMIC CLOCKS: Another application where the second of the steady-state-solution in-
terpretations is critical is atomic clocks. Atomic clocks involve oscillations between certain
energy levels in atoms, but there’s no need to get into the details here. Suffice it to say that
there exists a damped oscillator with a particular natural frequency, and you can drive this
oscillator. The basic goal in using an atomic clock is to measure with as much accuracy and
precision as possible the value of the natural frequency of the atomic oscillations. You can
do this by finding the driving frequency that produces the largest oscillation amplitude, or
equivalently that requires the largest power input. The narrower the amplitude (or power)
curve, the more confident you can be that your driving frequency w equals the natural
frequency wg. This is true for the following reason.

Consider a wide amplitude curve like the first one shown in Fig. 27. It’s hard to tell, by
looking at the size of the resulting amplitude, whether you're at, say w; or wa, or ws (all
measurements have some inherent error, so you can never be sure exactly what amplitude
you’ve measured). You might define the time unit of one second under the assumption that
wy is the natural frequency, whereas someone else (or perhaps you on a different day) might
define a second by thinking that ws is the natural frequency. This yields an inconsistent
standard of time. Although the natural frequency of the atomic oscillations has the same
value everywhere, the point is that people’s opinions on what this value actually is will
undoubtedly vary if the amplitude curve is wide. Just because there’s a definite value out
there doesn’t mean that we know what it is.”

If, on the other hand, we have a narrow amplitude curve like the second one shown
in Fig. 27, then a measurement of a large amplitude can quite easily tell you that you're
somewhere around wy, versus ws or ws. Basically, the uncertainty is on the order of the
width of the curve, so the smaller the width, the smaller the uncertainty. Atomic clocks
have very high @ values, on the order of 10'7. The largeness of this number implies a very
small amplitude width, and hence very accurate clocks.

The tall-peak property of a large @ value isn’t too important in atomic clocks. It was
important in the case of a radio, because you might want to listen to a radio station that is
far away. But with atomic clocks there isn’t an issue with the oscillator having to pick up
a weak driving signal. The driving mechanism is right next to the atoms that are housing
the oscillations.

The transient property of large @ (that a large number of oscillations will occur before
the amplitude dies out) also isn’t too important in atomic clocks. You are continuing to
drive the system, so there isn’t any danger of the oscillations dying out.

1.3.4 Further discussion of resonance

Let’s now talk a bit more about resonance. As we saw in Eq. (118), the # and w3z terms
cancel for the steady-state solution, x(t) = Acos(wt + ¢), because w = wy at resonance.
You can consider the driving force to be simply balancing the damping force, while the
spring and the mass undergo their standard simple-harmonic motion. If w = wqp, and if
A < Fy/ymw (which means that the system isn’t in a steady state), then the driving force
is larger than the damping force, so the motion grows. If, on the other hand, A > Fy/vymw,

"This is the classical way of thinking about it. The (correct) quantum-mechanical description says that
there actually isn’t a definite natural frequency; the atoms themselves don’t even know what it is. All that
exists is a distribution of possible natural frequencies. But for the present purposes, it’s fine to think about
things classically.
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then the driving force is less than the damping force, so the motion shrinks. This is why
A = Fy4/ymw at resonance.

As shown in Fig. 26, the force leads the motion by 90° at resonance, so the force is in
phase with the velocity. This leads to the largest possible energy being fed into the system,
because the work is always positive, so there is no cancelation with negative work. There
are many examples of resonance in the real world, sometimes desirable, and sometimes
undesirable. Let’s take a look at a few.

Desirable resonance

e RLC circuiTs: As you will find if you do Problem [to be added], you can use
Kirchhoff’s rules in an RLC circuit to derive an equation exactly analogous to the
damped/driven oscillator equation in Eq. (81). The quantities m, v, k, and Fy in the
mechanical system are related to the quantities L, R, 1/C, and Vj in the electrical
system, respectively. Resonance allows you to pick out a certain frequency and ignore
all the others. This is how radios, cell phones, etc. work, as we discussed in the “Q)
values” section above.

If you have a radio sitting on your desk, then it is being bombarded by radio waves
with all sorts of frequencies. If you want to pick out a certain frequency, then you
can “tune” your radio to that frequency by changing the radio’s natural frequency
wo (normally done by changing the capacitance C' in the internal circuit). Assuming
that the damping in the circuit is small (this is determined by R), then from the plot
of A in Fig. 20, there will be a large oscillation in the circuit at the radio station’s
frequency, but a negligible oscillation at all the other frequencies that are bombarding
the radio.

e MUSICAL INSTRUMENTS: The “pipe” of, say, a flute has various natural frequencies
(depending on which keys are pressed), and these are the ones that survive when
you blow air across the opening. We’ll talk much more about musical instruments
in Chapter 5. There is a subtlety about whether some musical instruments function
because of resonance or because of “positive feedback,” but we won’t worry about that
here.

e THE EAR: The hair-like nerves in the cochlea have a range of resonant frequencies
which depend on the position in the cochlea. Depending on which ones vibrate, a signal
is (somehow) sent to the brain telling it what the pitch is. It is quite remarkable how
this works.

Undesirable resonance

e VEHICLE VIBRATIONS: This is particularly relevant in aircraft. Even the slightest
driving force (in particular from the engine) can create havoc if its frequency matches
up with any of the resonant frequencies of the plane. There is no way to theoretically
predict every single one of the resonant frequencies, so the car/plane/whatever has to
be tested at all frequencies by sweeping through them and looking for large amplitudes.
This is difficult, because you need the final product. You can’t do it with a prototype
in early stages of development.

e TACOMA NARROWS BRIDGE FAILURE: There is a famous video of this bridge oscillat-
ing wildly and then breaking apart. As with some musical instruments, this technically
shouldn’t be called “resonance.” But it’s the same basic point — a natural frequency
of the object was excited, in one way or another.
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e MILLENNIUM BRIDGE IN LONDON: This pedestrian bridge happened to have a lateral
resonant frequency on the order of 1Hz. So when it started to sway (for whatever
reason), people began to walk in phase with it (which is the natural thing to do). This
had the effect of driving it more and further increasing the amplitude. Dampers where
added, which fixed the problem.

e TALL BUILDINGS: A tall building has a resonant frequency of swaying (or actually a
couple, depending on the direction; and there can be twisting, too). If the effects from
the wind or earthquakes happen to unfortuitously drive the building at this frequency,
then the sway can become noticeable. “Tuned mass dampers” (large masses connected
to damping mechanisms, in the upper floors) help alleviate this problem.

e SPACE STATION: In early 2009, a booster engine on the space station changed its
firing direction at a frequency that happened to match one of the station’s resonant
frequencies (about 0.5 Hz). The station began to sway back and forth, made noticeable
by the fact that free objects in the air were moving back and forth. Left unchecked,
a larger and larger amplitude would of course be very bad for the structure. It was
fortunately stopped in time.



