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Staples of Classical Maximum-Likelihood Theory

Classical asymptotics: p fixed, n→∞
√
n(β̂ − β) d→ N (0, I−1β )

Under the null,

−2 log LRT d→ χ2

Is classical inference accurate in modern settings where n, p are both large and
n/p is 5 or 10?
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Simulation settings

Consider n i.i.d. samples (yi,Xi) from a logistic model

P(yi = 1 |Xi) = (1 + exp(−X ′iβ))−1

Covariates are generated from a Gaussian distribution

√
nXi

i.i.d.∼ N (0, Ip×p)

Coefficients β ∈ Rp scaled s.t.

γ2 := Var(X ′iβ) = 5

Dimensionality factor n/p = 5
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Is the MLE asymptotically unbiased?

Figure: Signal (black) and MLE (blue), n = 4000, p = 800

Dimensions sufficiently large so possibly not merely a finite sample effect.

Same feature seen on several repetitions and for other choices of dimensions.
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Unbiasedness of MLE? Second example
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Figure: Scatterplot of (β̂j , βj). Line with slope 1 (black), n = 4000, p = 800.

 MLE seems to be over-biased even in large samples.

The bias has been noted before in small sample problems. Traditionally this has been attributed to a finite sample effect.
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What about standard errors?
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Figure: SEs of null coeff. estimates obtained via MC simulations (red). Classical
inverse Fisher information value (blue)

 MLE exhibits variance inflation in high dimensions.
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Accuracy of Wilks’ theorem?

Particularly problematic for multiple testing applications!
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Figure: P-values (under the null) based on χ2 approximation to the LRT

 P-values far from uniform. Note, LRT distribution here is continuous.
Observed earlier in Candès et. al. (’16)
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