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Staples of Classical Maximum-Likelihood Theory

@ Classical asymptotics: p fixed, n — oo

V(B - B) S N(0,157)

@ Under the null,
—21og LRT % 2

Is classical inference accurate in modern settings where n, p are both large and
n/pis 5 or 107
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Simulation settings

Consider n i.i.d. samples (y;, X;) from a logistic model
P(y; = 1] Xi) = (1 + exp(—=X;8)) ™"
@ Covariates are generated from a Gaussian distribution

\/EXZ' I'I\(’i N(07 Ipxp)

Coefficients B € RP scaled s.t.

7? = Var(X/38) =5

@ Dimensionality factor n/p =5
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Is the MLE asymptotically unbiased?
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Figure: Signal (black) and MLE (blue), n = 4000, p = 800

@ Dimensions sufficiently large so possibly not merely a finite sample effect.

@ Same feature seen on several repetitions and for other choices of dimensions.
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Unbiasedness of MLE? Second example
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Figure: Scatterplot of (3;,3;). Line with slope 1 (black), n = 4000, p = 800.

~> MLE seems to be over-biased even in large samples.

The bias has been noted before in small sample problems. Traditionally this has been attributed to a finite sample effect.
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What about standard errors?
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Figure: SEs of null coeff. estimates obtained via MC simulations (red). Classical
inverse Fisher information value (blue)

~~» MLE exhibits variance inflation in high dimensions.
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Accuracy of Wilks' theorem?

Particularly problematic for multiple testing applications!
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Figure: P-values (under the null) based on x? approximation to the LRT

~~ P-values far from uniform. Note, LRT distribution here is continuous.

Observed earlier in Candgs et. al. ('16)
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