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ABSTRACT

Al for social impact (AI4SI) offers significant potential for address-
ing complex societal challenges in areas such as public health, agri-
culture, education, conservation, and public safety. However, exist-
ing Al4SIresearch is often labor-intensive and resource-demanding,
limiting its accessibility and scalability; the standard approach is
to design a (base-level) system tailored to a specific AI4SI problem.
We propose the development of a novel meta-level multi-agent
system designed to accelerate the development of such base-level
systems, thereby reducing the computational cost and the burden
on social impact domain experts and Al researchers. Leveraging
advancements in foundation models and large language models,
our proposed approach focuses on resource allocation problems
providing help across the full AI4SI pipeline from problem formu-
lation over solution design to impact evaluation. We highlight the
ethical considerations and challenges inherent in deploying such
systems and emphasize the importance of a human-in-the-loop
approach to ensure the responsible and effective application of Al
systems.
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1 INTRODUCTION

Artificial intelligence (AI) for social impact (AI4SI), which focuses
on leveraging Al to address societal issues, has gained traction in
both academia and industry [9, 14, 26, 37, 57]. With advancements
in Al and multi-agent systems, there is an opportunity to apply
these technologies to complex problems in areas like public safety,
wildlife conservation, and public health [25, 36, 42, 72]. Previously,
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AI4SI research has been very labor-intensive, as it is oftentimes
necessary to develop customized approaches going beyond con-
ventional methods to address the challenges characteristic to these
domains such as low resources and noisy or scarce data. This lim-
its the overall impact of AI4SI research, as every individual effort
requires non-trivial time, expertise, and financial investment. We
envision the formation of a new approach to AI4SI which is less
labor-intensive, customizable by non-experts, and can thus be made
more widely available. We believe promising progress can be made
on this vision by employing recent methodological advancements
in computer science research, tapping into a substantial currently
unleveraged potential.

In this paper, we will use resource allocation problems, which
often arise in AI4SI domains [4, 5, 16, 41, 52, 57, 72] as our running
example, yet our general ideas also apply more broadly. Some ex-
amples of previously studied resource allocation problems in AI4SI
include strategically scheduling patrols in protected conservation
areas [27, 29, 31, 88] and distributing scarce healthcare resources
to optimize people’s health outcomes [50, 63, 70, 96].

We envision a meta-level multi-agent system that helps
us accelerate the development of base-level systems, which
tackle specific AI4SI problems. The meta-level system would
help non-profits and Al researchers in social impact domains lever-
age Al without having to invest significant amounts of labor and
resources to build a tailored base-level system from scratch. Our
envisioned system leverages foundation models, which are typically
developed by pretraining on available datasets, and can be used on
different downstream tasks or new challenges [8, 39, 71, 97]. Our
proposed system involves: (i) using LLM based meta-level agents
to communicate with decision makers in human language to un-
derstand the problem from the perspective of decision-makers; (ii)
employing meta-level agents and foundation models for AI4SI prob-
lems to design base-level systems for AI4SI problems; and (iii) using
meta-level agents for field-testing solutions to validate their impact.

Importantly, instead of taking over the AI4SI pipeline,
the meta-level system will accelerate the process, improve
generalization, and enable thorough evaluation, with human-
in-the-loop required in each part of the system. We will discuss
and highlight major challenges and our vision for each phase of
this system, emphasizing the multi-agent aspect. We also discuss
ethics and fairness aspects.
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The current era of foundation models has led to contemplation
on the challenges and opportunities that such models may offer in
multiple areas, from medical Al [51] to autonomous supply chains
[92], autonomous mining [45], and robotics [74]. In comparison
with these previous works, this paper focuses on the use of founda-
tion models in AI4SI. Moreover, even within AI4SI, we exemplarily
focus on optimizing the allocation of limited resources, providing
an analysis of challenges in a specific aspect of AI4SI. Furthermore,
in contrast to previous work, we focus more on foundation-model-
based agents at the meta-level, to assist base-level systems that
optimize these limited resources, rather than replacing the base-
level system entirely. This enables existing well-developed resource
optimization tools to be brought to bear on relevant challenges as
required, allowing instead the foundation models to configure the
tools as needed.

2 PRELIMINARIES

We formally define the key concepts of meta-level and base-level
systems, which we will refer to throughout this work.

DEFINITION 1 (META-LEVEL AND BASE-LEVEL SYSTEMS). A base-
level AI4SI system is the actual deployed system that will solve the
problem on the ground. A meta-level system helps us accelerate the
development of a base-level system or accelerate its modification as
needed for a new objective.

Notably, a meta-level system does not actually solve an AI4SI
problem. A meta-level system may involve several meta-level agents,
each responsible for different tasks in the development of the base-
level system, which may interact with each other. In the context
of the use cases we are focusing on in this paper, the base system
itself will be a multi-agent system or one that models multi-agent
interactions such as a social network. The base-level agents present
in the base-level system are defined as follows:

DEFINITION 2 (BASE-LEVEL AGENTS). In the base-level system,
the base-level agents model or serve as abstract representations of
individuals or entities in the real-world.

Whereas the idea of a meta-level architecture has been proposed
in agent architectures, there the idea is to directly assist agents in
their immediate problem solving [13, 28, 59, 78]. In our work, the
meta-level refers to deciding which agents and how many to select,
how to evaluate their performance, and other such tasks. Another
difference is that at least as conceived now, our meta-agents are
focused on assisting humans in building base-level agents.

Another key concept we will frequently refer to is foundation-
model-based agents (FM agents) used in the meta-level system.

DEFINITION 3 (FOUNDATION-MODEL-BASED AGENTS (FM-AGENTS)).
In the meta-level system, we use meta-level agents that employ founda-
tion models including LLMs. We will refer to these agents as FM-agents

An AI4SI pipeline typically involves three phases [9, 57]:
Formulate the problem Identify how to best represent or model
the real-world entities and multiple stakeholders involved in
the on-the-ground problem, along with their constraints and
objectives. For example, the real-world entities may include
individuals enrolled in social welfare programs and decision-
makers such as non-profit program managers. Previously,

this effort was largely manual and involved multiple parties,
including nonprofits and Al researchers [19, 64, 68].

Design solution method Identify appropriate solution methods
and adapt them to design the base-level system. Previously,
this process was largely manual in terms of researcher efforts
to tailor advances in Al algorithms to the specific application
scenarios. The adaptation to different application scenarios
was also largely manual [20, 54, 75, 81, 87].

Evaluation, refinement, and deployment Testing, improving,
and deploying solutions has typically been done manually,
adding to the workload of researchers and even more impor-
tantly to that of resource-constraint NGO workers [72].

Notably, each step in the AI4SI pipeline poses its own challenges
[66], implying that AI4SI work often requires substantially more
effort than pure Al algorithmic improvement research. Specifically,
formulating the problem and collecting detailed information (e.g.
potential decisions available and their impact on each of the in-
dividuals) can be time-consuming and expensive [60]. Moreover,
designing solution methods can require significant time from Al
experts and social impact domain experts [68], who must work
together to devise a tailored solution method for every application
scenario. Thorough testing and evaluation before deployment often
require substantial manual effort, as detailed simulation studies are
often required (e.g. by regulations or as precautionary measures)
[6], and Al experts typically manually design each simulation study
from scratch.

For our running example, we consider allocating limited inter-
ventions (specifically live service calls made by health workers) in
ARMMAN, which is a non-profit in India focusing on improving
health awareness for expectant and new mothers [62, 97]. Their
health workers make service calls to boost the engagement of moth-
ers enrolled in their health information program. They have shown
that Al powered solutions can reduce engagement drops by about
30% in real-world deployment [49, 75].

3 FORMULATING THE PROBLEM

In this phase, we discuss how to formulate an AI4SI problem. Exist-
ing works require researchers and human experts in Al to talk to
collaborating non-profit organizations to understand who makes
the decisions within a problem and gather key information on the
agents such as demographics [72, 80]. This process is expensive
and labor-intensive, and non-profits may not have Al-trained staff
to assist with this, making it difficult to ensure that Al solutions
are accurately tailored to the complexities of the real-world prob-
lem. Thus, previous works often require Al researchers to have
numerous rounds of discussions with non-profits and arrange a
field trip to speak with key stakeholders in social good programs.
Whereas these discussions are fundamental to AI4SI, some of the
work oriented toward formulating the right base-level model is
repetitive. To accelerate this work we propose the following vision:

VisioN 1. Employ FM-agents to (i) identify the base-level agents
involved, (ii) find an adequate formal description for the setting (e.g.
as a Markov Decision Process), and (iii) define key components of the
settings (e.g. state space, action space, and reward function in a MDP).

The FM-agents may use large language models to communicate
with a partnering non-profit to formulate the social challenge as
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Figure 1: Overview of our proposed Al for social impact (AI4SI) workflow. The three key phases, formulating the problem,
designing the solution methods, and testing and deployment, are discussed in Sections 3, 4, and 5 respectively.

an Al problem and to understand who makes the decisions within
a problem. The world knowledge of LLMs may help the FM-agent
uncover confounding variables and undocumented information[33—
35, 43, 73, 91]. The FM-agent should determine what information
the individuals or entities in the real-world have to guide their
decisions. The FM-agent should then define base-level agents to
model the individuals or entities and make proper assumptions
about the information available to them.

The FM-agent may gather data from past interactions, includ-
ing the effects of actions, and observed costs or rewards, and in-
teractions between agents [24, 58, 98]. The FM-agent, potentially
LLM-based, could communicate directly with beneficiaries enrolled
in non-profit’s program in their native language to gain a clearer
perspective and would not have time constraints.

RUNNING ExampLE 1. In ARMMAN, the base-level agents repre-
sent beneficiaries enrolled, and the state and action space correspond
to beneficiaries’ engagement levels and possible schedules of service
calls, respectively. The FM-agent should have conversations with do-
main experts in ARMMAN to find out that one way to approach this
application scenario is to model beneficiaries as agents that follow
Markov Decision Processes. After that, the FM-agent should define the
state space, action space, and other key parts of the MDP.

4 DESIGNING SOLUTION METHODS

In this phase, we elaborate on how to design a solution method
for AI4SI problems. Existing approaches often require manually
designing solution methods tailored to each application scenario
[2, 46, 47, 82, 86, 93]. This approach fails to easily adapt to new
application scenarios or knowledge and data from previous applica-
tion scenarios, motivating the development of foundation models
to accelerate solution approaches for problems in AI4SI. Besides
adaptation ability, other aspects that are of particular impor-
tance when designing solution methods in AI4SI problems
include ethics, fairness, and collaboration among base-level
agents. We will motivate each of these aspects and propose
our visions to address them.

Adaptation is crucial in Al for social impact domains due to the
dynamic and evolving nature of these environments. Social issues
are often complex and multifaceted, with priorities evolving over-
time [6, 7, 15]. A foundation model for resource allocation could
accelerate developing solutions for different application scenarios
without incurring repeated development costs, making them more
affordable and accessible to low-resource communities [8, 97]. For
example, a foundation model designed to analyze medical data

can be adapted to different diseases, health conditions, or popu-
lations, improving health outcomes on a larger scale [44]. Based
on advances in foundation models and adaptation, we propose the
following vision:

VisioN 2. Build a foundation model for resource allocation prob-
lems in AI4SI domains that can be adapted to and finetuned on specific
application scenarios. For each new AI4SI application scenario, employ
a FM-agent to leverage the foundation model and provide solution
methods.

RUNNING EXAMPLE 2. A concrete example of foundation model
for resource allocations tasks is given by Zhao et al. [96], who de-
velop a pretrained restless bandit model that can be finetuned on
various resource allocation application scenarios that ARMMAN may
encounter. Currently, the application scenarios have different number
of base-level agents and different amounts of distribution shifts. Here,
our research idea is to start with such a foundation model and allow
an FM-agent to adapt and specialize it to newer scenarios that may
involve bigger changes than just differences in numbers of base-level
agents. This could include new application scenarios that may need a
change of the states and actions in the restless bandit model.

To address the inherent complexity of social challenges, we may
also use FM-agents in the form of Large Language Model (LLM) to
process and understand human instructions, queries, and feedback
from stakeholders to alter the priorities within the resource alloca-
tion process [67, 79, 83, 90]. For example, in the ARMMAN domain,
a program manager may suggest prioritizing a specific segment
of the underserved population such as those older in age, which
an LLM could interpret and accordingly adjust the restless bandit
resource allocation model by changing its reward function [6, 69].

Besides the adaptation aspect, fostering efficient collaboration
among multiple base-level agents plays an important role in AI4SI
research. Recall that a base-level agent serves as an abstract repre-
sentation of an individual or an entity in the real-world. In some
problems, multiple base-level agents may collectively plan to counter
an adversary such as wildlife poacher or terrorists [31, 65, 85]. In
other problems, multiple base-level agents may communicate to
mitigate the impact of data errors, which frequently arise in real-
world situations due to factors such as inconsistent data collection
methods and deliberate noise introduced for differential privacy
[17, 18, 21, 22, 55, 99].

However, previous works in AI4SI often require human experts
in Al to manually craft ways of collaboration among base-level
agents for specific AI4SI domains. An FM-agent can help with this
process to accelerate Al for social impact work:



VisioN 3. The FM-agent, when designing solution methods for
base-level systems, should design effective communication channels
and strategies for base-level agents. Specifically, these channels should
allow base-level agents to learn from each other’s experience and to
improve decision-making.

Although the above vision on developing collaboration may ap-
pear to be straightforward for human-AI experts crafting solution
methods, it is not easy for FM-agents to figure out due to complex
relationships between base-level agents [38, 76, 77]. The FM-agent
may use the world knowledge of LLMs to understand which com-
munications can be potentially useful and should be included in the
design of solution methods [10]. Here a communication channel
may be that an individual or entity talks to another via cellular
network or other infrastructure in place.

4.1 Ethics and Fairness

In high-stakes resource allocation scenarios like healthcare, au-
thorities frequently prioritize certain groups based on sensitive
attributes, aiming to address the needs of those most disadvantaged
[1, 70]. For example, governments may mandate non-discrimination
based on sensitive attributes, while non-profits may prioritize low-
income groups. Given the importance of fairness in base-level sys-
tem design and the solution method’s tangible impact on people’s
lives, we propose the following idea:

VisioN 4. Ensure that the FM-agent recommends the design of a
base-level system that does not discriminate against any subpopula-
tion or result in unfavorable outcomes for under-privileged groups.

When accelerating the design of base-level systems, the FM-
agent should ensure fairness guarantees or fairness checks are in
place. This can be done by explicitly incorporating fairness in de-
signing base-level systems for social impact applications [70, 94].
However, this added complexity is difficult for FM-agents to handle,
due to the fact that AI may not easily understand demographic in-
formation available in text or abstract fairness concepts potentially
based on demographics. Blindly applying fairness constraints or
solely optimizing a fairness objective may greatly compromise the
overall effectiveness of the solution method. Thus, fairness con-
cerns necessitate innovative strategies to ensure that FM-agents
design base-level systems that balance fairness and utility.

RUNNING EXAMPLE 3. In ARMMAN a concrete example of fairness
constraints is the enforcement of non-discrimination based on sensi-
tive attributes and the prioritization of low-income and low-education
groups to reduce socio-economic disparities. In the ARMMAN con-
text, demographic information for enrolled beneficiaries are available.
When designing a base-level system, the FM-agent could enforce fair-
ness constraints such as that each beneficiary must receive a sufficient
amount of resources within some time. Additionally, the FM-agent
should prioritize underprivileged groups by explicitly optimizing a
fairness objective (e.g. Max Nash Welfare or Maximin Reward) in the
solution method.

5 TESTING AND DEPLOYMENT

In this phase, we explain how to thoroughly evaluate and deploy
Al models for social impact domains. We use FM-agents to improve
model testing and facilitate real-world deployment.

Deploying an Al model in real-world social impact domains
without sufficient simulation studies may result in poor decision-
making on crucial public resources. Thus, thoroughly testing and
evaluating Al algorithms or trained models is an important aspect
of accelerating Al for social impact. Based on above, we propose
the following research idea:

VisioN 5. Employ FM-agents, based on LLMs, to simulate agents’
behaviors. Here we wish to build a powerful simulator that serves as a
good proxy of real-world deployment environment and can effectively
evaluate the performance of trained models.

LLM based simulators have recently received great interest, and
there is demonstrated success in using LLMs to simulate human
behaviors in fields including education, healthcare, and social sci-
ences [3, 11, 48, 61, 89]. To build such a LLM simulator / evaluator
for AI4SI problems, we should represent observations and possible
decisions in a way that the LLM can understand, and potentially
use textual descriptions combined with structured data, to help the
LLM simulator generate contextually appropriate (e.g. suitable for
the domain) individual behaviors. Furthermore, textual descriptions
on individual’s characteristics, such as demographic information
(age, gender, geographical location, etc) may help LLMs to better
understand how individuals’ condition would evolve over time. For
a particular AI4SI problem, we may need to finetune LLMs on his-
torical data collected to better simulate the individual’s trajectories.

RUNNING ExAMPLE 4. In the ARMMAN application, we need to
thoroughly test algorithms before real-world deployment. An FM-
agent can employ LLMs to perform agent-based simulations to evalu-
ate learning algorithms [32, 53], or use cognitive models to augment
ML based evaluation approaches [30, 62].

Having discussed evaluation before real-world deployment, we
now move on to challenges in the deployment. During the deploy-
ment of Al models, there can be shifts in the user base or shifts
in people’s behaviors [23]. Different from adaptation ability taken
into account during model development and training, distribution
shifts in testing can be unexpected and the need to handle these
shifts can be urgent. This brings the next research idea:

Vision 6. Have an FM-agent that could (i) involve human-in-the-
loop and implement real-time monitoring to track model performance
and detect shifts in user behavior or data distribution; (ii) use feedback
from either human or Al to adjust the model (e.g. enhance model
fairness when there are unexpected distribution shifts).

Specifically, we may use a feedback loop to gather data on model
predictions and user interactions, allowing for prompt detection of
shifts in behavior [6, 84]. Once substantial shifts in user behaviors
are detected, we could then involve human experts, potentially
from partnering non-profit organizations, to review and provide
feedback on model predictions and decisions. This feedback can
then be used to guide model adjustments and improve its response
to distribution changes. We may retrain or finetune the model using
newly collected data, potentially weighting recent data more to
better align with current trends and user behavior [8, 12, 40, 56, 95].

ACKNOWLEDGMENTS
The work is supported by Harvard HDSI funding.



REFERENCES

(1]
(2]

3

=

(7]
(8]

=
22

[10

[11

[12]

=
&

[14]

(15

[16

[17]

[18]

[19

[20]

[21

[22

[23]

[24

Joseph J Amon. 2020. Ending discrimination in healthcare. Journal of the Inter-
national AIDS Society 23, 2 (2020).

Seyed Amir Hossein Aqajari, Ziyu Wang, Ali Tazarv, Sina Labbaf, Salar Jafar-
lou, Brenda Nguyen, Nikil Dutt, Marco Levorato, and Amir M Rahmani. 2024.
Enhancing Performance and User Engagement in Everyday Stress Monitoring:
A Context-Aware Active Reinforcement Learning Approach. arXiv preprint
arXiv:2407.08215 (2024).

Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting,
and David Wingate. 2023. Out of one, many: Using language models to simulate
human samples. Political Analysis 31, 3 (2023), 337-351.

Turgay Ayer, Can Zhang, Anthony Bonifonte, Anne C Spaulding, and Jagpreet
Chhatwal. 2019. Prioritizing hepatitis C treatment in US prisons. Operations
Research 67, 3 (2019), 853-873.

Rob Baltussen and Louis Niessen. 2006. Priority setting of health interventions:
the need for multi-criteria decision analysis. Cost effectiveness and resource
allocation 4 (2006), 1-9.

Nikhil Behari, Edwin Zhang, Yunfan Zhao, Aparna Taneja, Dheeraj Nagaraj, and
Milind Tambe. 2024. A Decision-Language Model (DLM) for Dynamic Restless
Multi-Armed Bandit Tasks in Public Health. Neural Information Processing Systems
(2024).

Joshua Blumenstock. 2018. Don’t forget people in the use of big data for devel-
opment.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258 (2021).

Elizabeth Bondi, Lily Xu, Diana Acosta-Navas, and Jackson A Killian. 2021. Envi-
sioning communities: a participatory approach towards Al for social good. In
Proceedings of the 2021 AAA/ACM Conference on Al Ethics, and Society. 425-436.
Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao,
Cheng Yang, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2024. Internet of
agents: Weaving a web of heterogeneous agents for collaborative intelligence.
arXiv preprint arXiv:2407.07061 (2024).

Myra Cheng, Tiziano Piccardi, and Diyi Yang. 2023. CoMPosT: Characterizing and
Evaluating Caricature in LLM Simulations. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing. 10853-10875.

Krzysztof Marcin Choromanski, Arijit Sehanobish, Han Lin, Yunfan Zhao, Eli
Berger, Tetiana Parshakova, Alvin Pan, David Watkins, Tianyi Zhang, Valerii
Likhosherstov, et al. 2023. Efficient graph field integrators meet point clouds. In
International Conference on Machine Learning. PMLR, 5978-6004.

Daniel D Corkill and Victor R Lesser. 1983. The Use of Meta-Level Control for
Coordination in a Distributed Problem Solving Network.. In IJCAL Vol. 83. 748.
Josh Cowls, Andreas Tsamados, Mariarosaria Taddeo, and Luciano Floridi. 2021.
A definition, benchmark and database of Al for social good initiatives. Nature
Machine Intelligence 3, 2 (2021), 111-115.

Maria De-Arteaga, William Herlands, Daniel B Neill, and Artur Dubrawski. 2018.
Machine learning for the developing world. ACM Transactions on Management
Information Systems (TMIS) 9, 2 (2018), 1-14.

Sarang Deo, Seyed Iravani, Tingting Jiang, Karen Smilowitz, and Stephen Samuel-
son. 2013. Improving health outcomes through better capacity allocation in a
community-based chronic care model. Operations Research 61, 6 (2013), 1277—
1294.

Heng Dong, Tonghan Wang, Jiayuan Liu, and Chongjie Zhang. 2022. Low-
rank modular reinforcement learning via muscle synergy. Advances in Neural
Information Processing Systems 35 (2022), 19861-19873.

Heng Dong, Junyu Zhang, Tonghan Wang, and Chongjie Zhang. 2023. Symmetry-
aware robot design with structured subgroups. In International Conference on
Machine Learning. PMLR, 8334-8355.

Jason Xiaotian Dou, Runxue Bao, and Wenxin Wei. 2022. Clinical Decision System
using Machine Learning and Deep Learning: a Survey. (2022).

Jason Xiaotian Dou, Minxue Jia, Nika Zaslavsky, Mark Ebeid, Runxue Bao, Shiyi
Zhang, Ke Ni, Paul Pu Liang, Haiyi Mao, and Zhi-Hong Mao. 2022. Learning more
effective cell representations efficiently. In NeurIPS 2022 Workshop on Learning
Meaningful Representations of Life.

Joshua K Dubrow. 2022. Local data and upstream reporting as sources of error in
the administrative data undercount of Covid 19. International Journal of Social
Research Methodology 25, 4 (2022), 471-476.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3—4
(2014), 211-407.

Adam Elmachtoub, Vishal Gupta, and Yunfan Zhao. 2023. Balanced off-policy
evaluation for personalized pricing. In International Conference on Artificial Intel-
ligence and Statistics. PMLR, 10901-10917.

Adam N Elmachtoub, Henry Lam, Haofeng Zhang, and Yunfan Zhao. 2023.
Estimate-then-optimize versus integrated-estimationoptimization: A stochas-
tic dominance perspective. arXiv preprint arXiv:2304.06833 (2023).

[25] Luciano Floridi, Josh Cowls, Monica Beltrametti, Raja Chatila, Patrice Chazerand,

Virginia Dignum, Christoph Luetge, Robert Madelin, Ugo Pagallo, Francesca Rossi,
et al. 2018. Al4People—an ethical framework for a good Al society: opportunities,
risks, principles, and recommendations. Minds and machines 28 (2018), 689-707.
Francesca Foffano, Teresa Scantamburlo, and Atia Cortés. 2023. Investing in Al
for social good: an analysis of European national strategies. AI & society 38, 2
(2023), 479-500.

Zohreh S Gatmiry, Ashkan Hafezalkotob, Roya Soltani, et al. 2021. Food web
conservation vs. strategic threats: A security game approach. Ecological Modelling
442 (2021), 109426.

Michael R Genesereth and D Smith. 1983. An Overview of Meta-Level Architec-
ture.. In AAAL 119-124.

Daniel Golovin, Andreas Krause, Beth Gardner, Sarah Converse, and Steve Morey.
2011. Dynamic resource allocation in conservation planning. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 25. 1331-1336.

Cleotilde Gonzalez, Javier F Lerch, and Christian Lebiere. 2003. Instance-based
learning in dynamic decision making. Cognitive Science 27, 4 (2003), 591-635.
Lucia Gordon, Esther Rolf, and Milind Tambe. 2024. Combining Diverse Infor-
mation for Coordinated Action: Stochastic Bandit Algorithms for Heterogeneous
Agents. arXiv preprint arXiv:2408.03405 (2024).

T Guo, X Chen, Y Wang, R Chang, S Pei, NV Chawla, O Wiest, and X Zhang.
2024. Large Language Model based Multi-Agents: A Survey of Progress and
Challenges.. In 33rd International Joint Conference on Artificial Intelligence (IJCAI
2024). JCAL Cornell arxiv.

Nan He, Hanyu Lai, Chenyang Zhao, Zirui Cheng, Junting Pan, Ruoyu Qin,
Ruofan Lu, Rui Lu, Yunchen Zhang, Gangming Zhao, et al. 2023. Teacherlm:
Teaching to fish rather than giving the fish, language modeling likewise. arXiv
preprint arXiv:2310.19019 (2023).

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi
Zheng, Yewei Fang, Yuxiang Huang, Weilin Zhao, et al. 2024. Minicpm: Unveiling
the potential of small language models with scalable training strategies. arXiv
preprint arXiv:2404.06395 (2024).

Yuelyu Ji, Zhuochun Li, Rui Meng, and Daqing He. 2024. ReasoningRank: Teach-
ing Student Models to Rank through Reasoning-Based Knowledge Distillation.
arXiv preprint arXiv:2410.05168 (2024).

Yuelyu Ji, Wenhe Ma, Sonish Sivarajkumar, Hang Zhang, Eugene Mathew Sadhu,
Zhuochun Li, Xizhi Wu, Shyam Visweswaran, and Yanshan Wang. 2024. Mitigat-
ing the Risk of Health Inequity Exacerbated by Large Language Models. arXiv
preprint arXiv:2410.05180 (2024).

Yuelyu Ji, Zeshui Yu, and Yanshan Wang. 2024. Assertion Detection in Clinical
Natural Language Processing Using Large Language Models. In 2024 IEEE 12th
International Conference on Healthcare Informatics (ICHI). 242-247. https://doi.
org/10.1109/ICHI61247.2024.00039

Yipeng Kang, Tonghan Wang, Qianlan Yang, Xiaoran Wu, and Chongjie Zhang.
2022. Non-linear coordination graphs. Advances in Neural Information Processing
Systems 35 (2022), 25655-25666.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of naacL-HLT, Vol. 1. 2.

Lingkai Kong, Haorui Wang, Wenhao Mu, Yuangi Du, Yuchen Zhuang, Yifei
Zhou, Yue Song, Rongzhi Zhang, Kai Wang, and Chao Zhang. 2024. Aligning
Large Language Models with Representation Editing: A Control Perspective.
Advances in Neural Information Processing Systems (2024).

Margaret E Kruk, Anna D Gage, Catherine Arsenault, Keely Jordan, Hannah H
Leslie, Sanam Roder-DeWan, Olusoji Adeyi, Pierre Barker, Bernadette Daelmans,
Svetlana V Doubova, et al. 2018. High-quality health systems in the Sustainable
Development Goals era: time for a revolution. The Lancet global health 6, 11
(2018), e1196-e1252.

Roberta Kwok et al. 2019. Al empowers conservation biology. Nature 567, 7746
(2019), 133-134.

Shuogiu Li, Han Xu, and Haipeng Chen. 2024. Focused ReAct: Improving ReAct
through Reiterate and Early Stop. arXiv preprint arXiv:2410.10779 (2024).
Yinghao Li, Lingkai Kong, Yuanqi Du, Yue Yu, Yuchen Zhuang, Wenhao Mu,
and Chao Zhang. 2023. Muben: Benchmarking the uncertainty of molecular
representation models. Transactions on Machine Learning Research (2023).
Yuchen Li, Siyu Teng, Lingxi Li, Zhe Xuanyuan, and Long Chen. 2023. Foundation
Models for Mining 5.0: Challenges, Frameworks, and Opportunities. In 2023 IEEE
3rd International Conference on Digital Twins and Parallel Intelligence (DTPI). 1-6.
https://doi.org/10.1109/DTPI59677.2023.10365454

Haiyi Mao, Minxue Jia, Jason Xiaotian Dou, Haotian Zhang, and Panayiotis V
Benos. 2022. COEM: cross-modal embedding for metacell identification. arXiv
preprint arXiv:2207.07734 (2022).

Haiyi Mao, Hongfu Liu, Jason Xiaotian Dou, and Panayiotis V Benos. 2022.
Towards cross-modal causal structure and representation learning. In Machine
Learning for Health. PMLR, 120-140.

Julia M Markel, Steven G Opferman, James A Landay, and Chris Piech. 2023.
Gpteach: Interactive ta training with gpt-based students. In Proceedings of the
tenth acm conference on learning@ scale. 226—-236.


https://doi.org/10.1109/ICHI61247.2024.00039
https://doi.org/10.1109/ICHI61247.2024.00039
https://doi.org/10.1109/DTPI59677.2023.10365454

[49]

[50]

(51

[52]

[53]

[54]

[55]

[56]

[57

[58]

[59]

=
)

[61]

[62

[63

[64]

[65

[66

[67

[68]

[69]

[70]

[71]

Aditya Mate, Lovish Madaan, Aparna Taneja, Neha Madhiwalla, Shresth Verma,
Gargi Singh, Aparna Hegde, Pradeep Varakantham, and Milind Tambe. 2022.
Field study in deploying restless multi-armed bandits: Assisting non-profits in
improving maternal and child health. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 36. 12017-12025.

Tasquia Mizan and Sharareh Taghipour. 2022. Medical resource allocation plan-
ning by integrating machine learning and optimization models. Artificial Intelli-
gence in Medicine 134 (2022), 102430.

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M Krumholz,
Jure Leskovec, Eric J Topol, and Pranav Rajpurkar. 2023. Foundation models for
generalist medical artificial intelligence. Nature 616, 7956 (2023), 259-265.
Siddharth Nishtala, Lovish Madaan, Aditya Mate, Harshavardhan Kamarthi,
Anirudh Grama, Divy Thakkar, Dhyanesh Narayanan, Suresh Chaudhary, Neha
Madhiwalla, Ramesh Padmanabhan, et al. 2021. Selective intervention planning
using restless multi-armed bandits to improve maternal and child health outcomes.
arXiv preprint arXiv:2103.09052 (2021).

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy
Liang, and Michael S Bernstein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th annual acm symposium on user
interface software and technology. 1-22.

Sarita Paudel, Benjamin E Warner, Renwei Wang, Jennifer Adams-Haduch, Alex S
Reznik, Jason Dou, Yufei Huang, Yu-Tang Gao, Woon-Puay Koh, Alan Bickerholm,
et al. 2022. Serologic profiling using an Epstein-Barr virus mammalian expression
library identifies EBNA1 IgA as a prediagnostic marker for nasopharyngeal
carcinoma. Clinical Cancer Research 28, 23 (2022), 5221-5230.

David Paulus, Gerdien de Vries, Marijn Janssen, and Bartel Van de Walle. 2023.
Reinforcing data bias in crisis information management: The case of the Yemen
humanitarian response. International Journal of Information Management 72
(2023), 102663

Dazhi Peng and Hangrui Cao. 2024. E-tamba: Efficient transformer-mamba layer
transplantation. In NeurIPS 2024 Workshop on Fine-Tuning in Modern Machine
Learning: Principles and Scalability.

Andrew Perrault, Fei Fang, Arunesh Sinha, and Milind Tambe. 2020. Artificial
Intelligence for Social Impact: Learning and Planning in the Data-to-Deployment
Pipeline. Al Mag. 41, 4 (2020), 3-16. https://doi.org/10.1609/AIMAG.V4114.5296
Yuji Roh, Geon Heo, and Steven Euijong Whang. 2019. A survey on data collection
for machine learning: a big data-ai integration perspective. IEEE Transactions on
Knowledge and Data Engineering 33, 4 (2019), 1328-1347.

Paul S Rosenbloom, John E Laird, and Allen Newell. 1988. Meta-levels in Soar. In
Meta-Level Architectures and Reflection. Elsevier Science Publishers BV Amster-
dam, 227-240.

Nithya Sambasivan and Rajesh Veeraraghavan. 2022. The deskilling of domain
expertise in Al development. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems. 1-14.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and
Tatsunori Hashimoto. 2023. Whose opinions do language models reflect?. In
International Conference on Machine Learning. PMLR, 29971-30004.

Roderick Seow, Yunfan Zhao, Duncan Wood, Milind Tambe, and Cleotilde Gon-
zalez. 2024. Improving the Prediction of Individual Engagement in Recommen-
dations Using Cognitive Models. Workshop on Health Recommender Systems
co-located with ACM RecSys 2024 (2024).

Sonia Jawaid Shaikh. 2020. Artificial Intelligence and Resource Allocation in
Healthcare: The Process-Outcome Divide in Perspectives on Moral Decision-
Making.. In AI4SG@ AAAI Fall Symposium.

Zheyuan Ryan Shi, Claire Wang, and Fei Fang. 2020. Artificial intelligence for
social good: A survey. arXiv preprint arXiv:2001.01818 (2020).

Eric Shieh, Bo An, Rong Yang, Milind Tambe, Craig Baldwin, Joseph DiRenzo,
Ben Maule, and Garrett Meyer. 2012. Protect: A deployed game theoretic system
to protect the ports of the united states. In Proceedings of the 11th international
conference on autonomous agents and multiagent systems-volume 1. 13-20.
Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, and Milind Tambe.
2018. Stackelberg security games: Looking beyond a decade of success. IJJCAL
Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. 2023.
Adaplanner: Adaptive planning from feedback with language models. Advances
in Neural Information Processing Systems (2023).

Nenad Tomasev, Julien Cornebise, Frank Hutter, Shakir Mohamed, Angela Piccia-
riello, Bec Connelly, Danielle CM Belgrave, Daphne Ezer, Fanny Cachat van der
Haert, Frank Mugisha, et al. 2020. Al for social good: unlocking the opportunity
for positive impact. Nature Communications 11, 1 (2020), 2468.

Shresth Verma, Niclas Boehmer, Lingkai Kong, and Milind Tambe. 2024. Balancing
Act: Prioritization Strategies for LLM-Designed Restless Bandit Rewards. (2024).
arXiv:2408.12112

Shresth Verma, Yunfan Zhao, Sanket Shah, Niclas Boehmer, Aparna Taneja, and
Milind Tambe. [n.d.]. Group Fairness in Predict-Then-Optimize Settings for
Restless Bandits. In The 40th Conference on Uncertainty in Artificial Intelligence.
Vijay Viswanathan, Chenyang Zhao, Amanda Bertsch, Tongshuang Wu, and
Graham Neubig. 2023. Prompt2Model: Generating Deployable Models from
Natural Language Instructions. In Proceedings of the 2023 Conference on Empirical

[72

[73

[74

k=
2

[76

(77

[78

[80

(81]

(82

(83

[84

[85

(86

[87

[88

(89]

[90

[91

[92

[93

Methods in Natural Language Processing: System Demonstrations. 413-421.

Fei Wang and Anita Preininger. 2019. Al in health: state of the art, challenges,
and future directions. Yearbook of medical informatics 28, 01 (2019), 016-026.
Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix
Streith-Kalthoff, Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, et al. 2024.
Efficient Evolutionary Search over Chemical Space with Large Language Models.
arXiv preprint arXiv:2406.16976 (2024).

Jiaqi Wang, Zihao Wu, Yiwei Li, Hangi Jiang, Peng Shu, Enze Shi, Huawen Hu,
Chong Ma, Yiheng Liu, Xuhui Wang, et al. 2024. Large language models for robot-
ics: Opportunities, challenges, and perspectives. arXiv preprint arXiv:2401.04334
(2024).

Kai Wang, Shresth Verma, Aditya Mate, Sanket Shah, Aparna Taneja, Neha
Madhiwalla, Aparna Hegde, and Milind Tambe. 2023. Scalable decision-focused
learning in restless multi-armed bandits with application to maternal and child
health. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37.
12138-12146.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. 2020. ROMA:
Multi-Agent Reinforcement Learning with Emergent Roles. In Proceedings of the
37th International Conference on Machine Learning.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and
Chongjie Zhang. 2020. RODE: Learning Roles to Decompose Multi-Agent Tasks.
In International Conference on Learning Representations.

Yanan Wang, Yong Ge, Li Li, Rui Chen, and Tong Xu. 2020. M3rec: An of-
fline meta-level model-based reinforcement learning approach for cold-start
recommendation. In Proceedings of the 33th International Conference on Neural
Information Processing Systems, NIPS, Vol. 20.

Ziyu Wang, Anil Kanduri, Seyed Amir Hossein Aqajari, Salar Jafarlou, Sanaz R
Mousavi, Pasi Liljeberg, Shaista Malik, and Amir M Rahmani. 2024. Ecg unveiled:
Analysis of client re-identification risks in real-world ecg datasets. In 2024 IEEE
20th International Conference on Body Sensor Networks (BSN). IEEE, 1-4.

Ziyu Wang, Hao Li, Di Huang, and Amir M Rahmani. 2024. HealthQ: Unveiling
Questioning Capabilities of LLM Chains in Healthcare Conversations. arXiv
preprint arXiv:2409.19487 (2024).

Ziyu Wang, Nanging Luo, and Pan Zhou. 2020. GuardHealth: Blockchain em-
powered secure data management and Graph Convolutional Network enabled
anomaly detection in smart healthcare. J. Parallel and Distrib. Comput. 142 (2020),
1-12.

Ziyu Wang, Zhongqi Yang, Iman Azimi, and Amir M. Rahmani. 2024. Differential
Private Federated Transfer Learning for Mental Health Monitoring in Everyday
Settings: A Case Study on Stress Detection. In Proceedings of the 46th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC) (USA).

Chaojun Xiao, Zhengyan Zhang, Chenyang Song, Dazhi Jiang, Feng Yao, Xu Han,
Xiaozhi Wang, Shuo Wang, Yufei Huang, Guanyu Lin, et al. 2024. Configurable
Foundation Models: Building LLMs from a Modular Perspective. arXiv preprint
arXiv:2409.02877 (2024).

Guojun Xiong, Ujwal Dinesha, Debajoy Mukherjee, Jian Li, and Srinivas Shakkot-
tai. 2024. DOPL: Direct Online Preference Learning for Restless Bandits with
Preference Feedback. arXiv:2410.05527 [cs.LG] https://arxiv.org/abs/2410.05527
Guojun Xiong and Jian Li. 2024. Provably Efficient Reinforcement Learning for
Adversarial Restless Multi-Armed Bandits with Unknown Transitions and Bandit
Feedback. arXiv preprint arXiv:2405.00950 (2024).

Guojun Xiong, Shufan Wang, Jian Li, and Rahul Singh. 2024. Whittle Index-Based
Q-Learning for Wireless Edge Caching With Linear Function Approximation.
IEEE/ACM Transactions on Networking (2024).

Guojun Xiong, Shufan Wang, Gang Yan, and Jian Li. 2023. Reinforcement learning
for dynamic dimensioning of cloud caches: A restless bandit approach. IEEE/ACM
Transactions on Networking 31, 5 (2023), 2147-2161.

Haifeng Xu, Long Tran-Thanh, and Nick Jennings. 2016. Playing repeated se-
curity games with no prior knowledge. In AAMAS’16: Proceedings of the 2016
International Conference on Autonomous Agents & Multiagent Systems. ACM Press,
104-112.

Han Xu, Xingyuan Wang, and Haipeng Chen. 2024. Towards Real-Time and
Personalized Code Generation. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management. 5568-5569.

Han Xu, Jingyang Ye, Yutong Li, and Haipeng Chen. 2024. Can Speculative Sam-
pling Accelerate ReAct Without Compromising Reasoning Quality?. In The Second
Tiny Papers Track at ICLR 2024. https://openreview.net/forum?id=42b9ohJrIpX
Han Xu, Ruining Zhao, Jindong Wang, and Haipeng Chen. 2024. RESTful-Llama:
Connecting User Queries to RESTful APIs. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing: Industry Track. 1433-1443.
Liming Xu, Sara Almahri, Stephen Mak, and Alexandra Brintrup. 2023. Multi-
Agent Systems and Foundation Models Enable Autonomous Supply Chains:
Opportunities and Challenges. Available at SSRN 4695075 (2023).

Lily Xu, Arpita Biswas, Fei Fang, and Milind Tambe. 2022. Ranked prioritization
of groups in combinatorial bandit allocation. arXiv preprint arXiv:2205.05659
(2022).


https://doi.org/10.1609/AIMAG.V41I4.5296
https://arxiv.org/abs/2408.12112
https://arxiv.org/abs/2410.05527
https://arxiv.org/abs/2410.05527
https://openreview.net/forum?id=42b9hJrIpX

[94] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Mega- [97] Yunfan Zhao, Nikhil Behari, Edward Hughes, Edwin Zhang, Dheeraj Nagaraj, Karl

hed, and Ricardo Baeza-Yates. 2017. Fa* ir: A fair top-k ranking algorithm. In Tuyls, Aparna Taneja, and Milind Tambe. 2024. Towards Zero Shot Learning in
Proceedings of the 2017 ACM on Conference on Information and Knowledge Man- Restless Multi-armed Bandits. In Proceedings of the 23rd International Conference
agement. 1569-1578. on Autonomous Agents and Multiagent Systems. 2618-2620.

[95] Chenyang Zhao, Xueying Jia, Vijay Viswanathan, Graham Neubig, and Tong- [98] Yunfan Zhao, Alvin Pan, Krzysztof Marcin Choromanski, Deepali Jain, and Vikas
shuang Wu. [n.d.]. Self-Guide: Better Task-Specific Instruction Following via Sindhwani. [n.d.]. Implicit Two-Tower Policies. In 5th Workshop on practical ML
Self-Synthetic Finetuning. In First Conference on Language Modeling. for limited/low resource settings.

[96] Yunfan Zhao, Nikhil Behari, Edward Hughes, Edwin Zhang, Dheeraj Nagaraj, [99] Yunfan Zhao, Tonghan Wang, Dheeraj Nagaraj, Aparna Taneja, and Milind Tambe.
Karl Tuyls, Aparna Taneja, and Milind Tambe. 2024. Towards a Pretrained Model 2024. The Bandit Whisperer: Communication Learning for Restless Bandits. arXiv

for Restless Bandits via Multi-arm Generalization. IJJCAL preprint arXiv:2408.05686 (2024).



	Abstract
	1 Introduction
	2 Preliminaries
	3 Formulating the Problem
	4 Designing Solution Methods
	4.1 Ethics and Fairness

	5 Testing and Deployment
	Acknowledgments
	References

