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Abstract. LLMs are increasingly used to design reward functions based
on human preferences in multiagent Reinforcement Learning (RL). We
focus on LLM-designed rewards for Restless Multi-Armed Bandits, a
framework for allocating limited resources among agents. In applications
such as public health, this approach empowers grassroots health work-
ers to tailor automated allocation decisions to community needs. In the
presence of multiple agents, altering the reward function based on hu-
man preferences can impact subpopulations very differently, leading to
complex tradeoffs and a multi-objective resource allocation problem. We
are the first to present a principled method termed Social Choice Lan-
guage Model for dealing with these tradeoffs for LLM-designed rewards
for multiagent planners in general and restless bandits in particular. The
novel part of our model is a transparent and configurable selection com-
ponent, called an adjudicator, external to the LLM that controls com-
plex tradeoffs via a user-selected social welfare function. Our experiments
demonstrate that our model reliably selects more effective, aligned, and
balanced reward functions compared to purely LLM-based approaches.
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1 Introduction

Reward functions play a fundamental role in the generation of optimal policies
for sequential decision-making via reinforcement learning. Previous work has
shown that LLMs are an effective tool for designing reward functions that can
be guided and customized via human language prompts (15; 7; 14; 37; 16; 39;
11). Focusing on optimization and planning scenarios, we study the problem of
designing high-quality reward functions aligned with human preference prompts
in a multiagent context, rendering the underlying problem inherently multi-
objective. We present a transparent framework around LLMs that constructs
effective, aligned, and balanced reward functions for complex human prompts.

We study the reward design problem for restless multi-armed bandits
(RMABs), a popular model in multiagent systems for sequentially allocating
a limited number of resources to a set of agents (36; 22). In RMABs, there are
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multiple, independently evolving agents, with each agent being represented by
an individual Markov Decision Process including a reward function. By choosing
these reward functions, one can control which agents are more or less likely to
receive a resource. RMABs have been applied to multiagent problems in various
domains such as machine maintenance (1), anti-poaching (25), and healthcare
(5; 34). In many of them, system organizers have evolving allocation priorities
based on agents’ features that need to be incorporated into the resource alloca-
tion process (9; 35). For instance, in a healthcare program, a healthcare worker
might want to change the allocation policy to prioritize low-income beneficiaries
who are at higher risk or older beneficiaries who have transportation barriers
for healthcare access (21; 29) via the following preference prompt: Prioritize
low-income beneficiaries and older beneficiaries.

Unfortunately, handcrafting reward functions is often a challenging and time-
consuming task for humans because of the complex relationship between reward
functions and policy outcomes (11; 7; 15). Further, the multiagent nature of
the RMAB problem adds a new twist to the problem of reward design in RL:
It becomes fundamentally multi-objective. Consider the above example prompt
asking for the prioritization of two subpopulations. As these subpopulations
may contain different agents, selecting a reward function will most likely involve
trading off the interests of the low-income vs. older beneficiaries, making this
a multi-objective problem. If this multi-objective nature is ignored, a selected
reward function might heavily favor one of the two groups (e.g., leading to the
allocation of many resources to low-income beneficiaries, and no resources to
older ones).

This problem of multi-objective reward function modification even extends
beyond Restless Multi-Armed Bandits, to challenges relevant in using Game
Theory and AI for security, for instance, in Stackelberg Security Games (SSGs)
applications (30). In SSGs, optimal security strategies are highly sensitive to
the defined payoff functions, which typically reflect the defender’s and attacker’s
objectives. Using a natural language interface offers defenders to refine and bal-
ance these payoff functions when faced with conflicting objectives can act as a
powerful tool. This is in contrast with traditional iterative and manual adjust-
ments presented in prior SSG applications. For instance, the ARMOR system
deployed at LAX airport for security resource allocation (24) originally included
a graphical user interface to enable payoff adjustments, but this interface was
rudimentary. A natural language interface, as proposed in our work, could sig-
nificantly enhance the practical utility of SSGs by allowing security personnel to
express nuanced objectives (e.g., "prioritize slightly more air marshals on routes
to Tokyo and Paris" using a system like IRIS (31)) directly, and have these
preferences be translated into balanced and effective security strategies. This
capability addresses a critical need for more flexible and human-centric control
over complex security resource allocation.

To our knowledge, we are the first to address the multi-objective nature
of LLM-powered reward design with application in RMABs in particular and
multiagent planners in general. Closest to our paper is the work by (6) who
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proposed a fully LLM-based Decision-Language Model for RMABs to generate
and select reward functions (as code) from human language prompts. However,
as argued in Sections 2 and 4, the DLM model is not properly equipped to
handle the multi-objective nature of the problem, as the LLM selects functions
in an unpredictable, hard-to-control and sometimes (clearly) suboptimal way
that does not adequately take into account and balance the different objectives.

We present a Social Choice Language Model (SCLM) that designs reward
functions (as Python code) aligned with complex, multi-objective human lan-
guage preferences; see Figure 3 for an overview of SCLM. Our pipeline separates
the generation of candidate reward functions in the generator from the selection
of one function in the adjudicator. For the generator, we use LLM-powered evo-
lutionary search to generate a pool of reward functions (6). In the transparent
and customizable adjudicator, we take a new social choice perspective to address
the multi-objective nature of our problem: We create a scorer component that
evaluates the quality of generated reward functions according to the different
objectives (e.g., different prioritization requests). Subsequently, a social welfare
function aggregates these “alignment scores” to select the best reward function.
The user can select the social welfare function and thereby has additional control
over the preferred trade-off between objectives, e.g., maximizing the summed vs.
minimum alignment of all objectives. We show that SCLM returns high-quality
reward functions even if the computed alignment scores are noisy. In our exper-
iments, we demonstrate that SCLM leads to the selection of reward functions
significantly better aligned with complex, multi-objective prompts.

Moreover, we also show how it can be used to effectively mitigate the risks
of using rewards designed from human prompts: unintended effects for other
agents and the ineffective allocation of resources. Overall, SCLM combines the
generative power of LLMs to design reward functions with the capabilities of
social choice to handle multi-objective decision-making scenarios.

2 Related Works

LLM-enhanced RL LLMs have emerged as a powerful tool to enhance RL. Recent
work has used LLMs to generate reward functions based on natural language
descriptions (15; 38; 39). For instance, (10; 8; 18; 11) shape rewards by training
an RL agent to learn and complete intermediate tasks guided by language, yet
focusing on very different (non-multiagent) environments.

The work of (6) is the first to present a Decision-Language Model for gener-
ating reward functions for RMABs from human prompts. The model performs
a form of evolutionary search to find reward functions aligned with the given
prompt in two interleaving phases: generation and reflection. In the generation
phase, an LLM generates a set of reward functions. Based on reward function’s
performances, in the reflection phase (15; 28), the LLM selects the function best
aligned with the prompt. This function is then included in the prompt for the
next generation phase or returned. In contrast to our work, DLM mixes genera-
tion with selection and does not explicitly account for the multi-objective nature
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of the reward design problem. Furthermore, in contrast to our work, they focus
on small RMAB instances (∼ 20 arms). Throughout the paper, we will use a
slightly modified variant of DLM adjusted to our setting (see Appendix C.2 in
the full paper (33)) as a baseline.

Multi-Objective Reinforcement Learning (MORL) Research on MORL focuses
on learning policies that maximize (and balance between) multiple objective
functions, typically via scalarizing the objectives into a single reward function
(19) or approximating the Pareto front (27; 32; 13). In the context of multiagent
systems, MORL has been used as a method to ensure the fair treatment of the
individual agents (12; 41; 40). Closest to ours from these lines of work are the
papers by (40) and (13). (40) uses ideas from the resource allocation literature
to combine multiple objectives into a singular non-linear objective function and
focuses on policy learning for such non-linear objective functions. (13) focuses on
finding a set of policies that approximate the Pareto front for various sequential
planning problems. However, in contrast to our paper, neither considers reward
design, human natural language preference prompts and LLMs.

We refer to Appendix A in the full paper (33) for additional related work.

3 Preliminaries

An instance of Restless Multi-Armed Bandits (RMAB) is defined by a set of
N arms, a time horizon T , and a budget K. We also refer to arms as agents.
Each arm i ∈ [N ] is an independently evolving MDP with state space Si, actions
Ai = {0, 1}, transition function Pi : Si × Ai × Si → R≥0, and reward function
Ri : Si → R. We refer to 1 as the active action corresponding to pulling the
arm (i.e., allocating a resource) and 0 as the passive action corresponding to not
pulling the arm. We focus on the popular case where each MDP consists of two
states, i.e., Si = {0, 1} for all i ∈ [N ], yet our methodology applies to MDPs
with arbitrary state spaces. We refer to 0 as the bad and 1 as the good state. For
each step in which an agent is in the good state, they derive a utility of 1, while
they derive a utility of 0 in the bad state. Accordingly, agents’ default reward
function R∗ is R∗(s) = s. We assume that there is a set of categorical features.
Each arm is associated with a value of each feature. A global reward function
is a reward function defined over features, which induces a reward function for
each arm by plugging in its feature values (see Example 1).

In each step within the time horizon T , the planner observes the state of all
arms and decides to pull a subset of at most K arms. As solving the RMAB
problem optimally is computationally intractable (23), we make use of the very
popular state-dependent Whittle index (36; 22), which given arms’ reward func-
tions tries to quantify for each state of each arm the reward gain achieved from
applying the active action to the arm in this state. In the Whittle index policy
Π, in each step, we compute the Whittle index for each arm (based on its current
state) and pull the arms with the K highest Whittle indices. We will use it as
the solution strategy in the following.
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For a global reward function R, we write Π(R) to denote the Whittle index
policy for R, i.e., the Whittle index policy for the instance where each agent uses
the function R after plugging in their feature values as their reward. We refer
to Π(R∗) as the default policy. To assess the quality of a global reward function
R, we often consider the utility feature distribution for some feature X. This
distribution shows for each value of the feature, the expected utility generated
by arms with this feature value under the policy Π(R) (see Figure 2a).

4 Problem Statement & Challenges

We assume that we are given a human-language preference prompt, concate-
nating one or multiple preference clauses. Each preference clause specifies a sin-
gle optimization goal. We explicitly consider three types of preference clauses
(yet our methodology extends to arbitrary ones): (i) Give priority to agents
with certain feature values, i.e., increase the utility generated by these agents,
(ii) do not shift the utility distribution for some feature, and (iii) maximize the
summed utility generated by all agents. We mostly focus on the first type and
refer to them as prioritization clauses and prompts. A preference prompt is a set
P = {p1, p2, . . . } of the involved preference clauses. We call a prompt P singular
if |P | = 1 and composite otherwise; our focus is on the latter. We can influence
the utility agents generate by selecting a single global reward function (inducing
reward functions (Ri)i∈[n] for all agents).

Example 1. Consider an RMAB instance with three binary features A, B, and
C. A preference prompt P could be “Prioritize agents with A = 0 and prioritize
agents with B = 1”, i.e., P = {“prioritize agents with A = 0”, “prioritize agents
with B = 1” }. Two possible global reward functions for the prompt are R′(s) =
s · (1−A) ·B and R′′(s) = s · (1−A) + s ·B. For function R′′, the reward of an
agent i with A = 0 and B = 1 is Ri(s) = 2s, while the reward of an agent j with
A = 1 and B = 1 is Rj(s) = s. Selecting R′′, agent i is more likely to receive a
resource than agent j, as the good state contributes more reward for i.

We want to design a single global reward function that is “well-aligned” with
all clauses of the given human-language preference prompt. However, as clauses
can contradict each other, perfect alignment with all clauses becomes impos-
sible. For instance, if a prompt requests the prioritization of two fully disjoint
subpopulations, each resource will only benefit one of the two. When picking
the reward function, we need to carefully balance the interests of the two groups
of agents against each other. Generally, in the presence of multiple agents and
limited resources, each clause can be viewed as a separate independent objective
that we want to optimize, rendering this a multi-objective problem.

To illustrate tradeoff decisions we face between different clauses when select-
ing reward function, in Figure 1, we show two instances from our experiments for
a prompt consisting of two prioritization clauses. Every point represents LLM-
designed reward function. The x and y axes represent quality of reward function
from the perspective of the two prioritized subgroups where higher percentage
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(a) Prompt: “Prioritize agents with old
age and agents with low education”

(b) Prompt: “Prioritize agents with high
age and agents with low income”

Fig. 1: Tradeoffs between prioritization clauses.

values indicate more benefits . Reward functions marked with stars lie on the
Pareto fronts (no other available function dominates them).

In our experiments, we observe that the DLM model from previous work
picks functions from very different parts of the Pareto frontier, potentially clearly
prioritizing one subgroup over another (see Figure 1a for an example). In many
other instances, it also picks suboptimal functions, i.e., functions that do not
lie on the frontier, that may even harm one of the subgroups while strongly
benefiting the other (see Figure 1b). This highlights the risks (and shortcomings
of DLM) in not accounting for the multi-objective nature of the problem, as
it picks reward functions that are inefficient (i.e., dominated) and unfair (i.e.,
heavily favoring one clause over the other).

Another shortcoming of DLM are unintended utility shifts. Moving from the
default reward function to a reward function aligned with a given (prioritization)
prompt causes shifts within the distribution of resources and utility. Due to
correlations between features, this change might lead to unintended utility shifts
for features not specified in the prompt. Figure 2 shows an example of this
from our experiments. We present the utility feature distribution for the two
features income and education for two reward functions: The reward function
selected by DLM for the prompt “Prioritize agents with low income” (orange)
and the default reward (blue). While the utility generated by low-income agents
increases when moving from the default to the customized reward function, the
utility generated by highly educated agents decreases, a side-effect the end-user
might be unaware of and that might conflict with their allocation goals. In our
proposed approach, we are able to account for this issue by incorporating the
prevention of unintended utility shifts as a tradeoff dimension.

Thus, through the Social Choice Language Model, our goal is to create
a model that handles multiple tradeoffs posed by composite “multi-objective”
prompts in a principled, transparent, and customizable fashion and outputs a
single effective and fairly aligned global reward function.
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(a) Income feature (b) Education feature

Fig. 2: Utility feature distributions for default reward function (orange) and re-
ward function returned for prompt “Prioritize agents with low income” (blue) by
DLM baseline. x-axis depicts feature value and y-axis total utility generated by
agents with this value.

5 Social Choice Language Model (SCLM)

We propose a Social Choice Language Model to generate rewards from human
language composite preference prompts (see Figure 3 for a visualization). Sep-
arating the generation and selection of reward functions, the model consists of
two sequential components. The LLM-powered generator generates a set of can-
didate reward functions. Subsequently, taking a social-choice-inspired viewpoint,
the adjudicator selects a reward function from the pool to be returned to the user
in two steps: First, a scorer model computes an alignment score for each reward
function with each prioritization clause (i.e., we judge each reward function from
the perspective of all relevant “objectives”). Second, a user-defined social welfare
function aggregates these scores into a “winning” candidate reward function. By
selecting the social welfare function, the user can control the area of the Pareto
frontier from which reward functions get selected. While we remark that our
model can also be used to tackle multi-objective issues arising when designing
rewards in single-agent RL, the details of our components (e.g., the reflection
in the generator and the computation of alignment scores) are specific to the
multiagent nature of the RMAB problem.

5.1 Generator

Given a prompt, our generator creates a set of candidate reward functions (as
Python code) via a variant of evolutionary search following (6): We proceed in
multiple steps. First, inputting the problem description, feature descriptions and
the preference prompt, we ask an LLM to generate code for a reward function.
We repeat this query np times to obtain a set R of np candidate reward functions.
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Fig. 3: In step 1, preference prompt is passed to the generator, which performs
an evolutionary search to create a pool R of candidate reward functions. In step
2, these functions are passed to the adjudicator where a scorer model computes
the alignment scores. In step 3, a user-defined social welfare function selects a
reward function based on the alignment scores.

Afterwards, for each function R ∈ R we compute the utility feature distributions
of the policy Π(R) induced by the reward function R on the given RMAB
instance (via repeatedly simulating the policy on the instance). Then, the prompt
and the set of candidate reward functions together with the associated utility
feature distributions are passed to an LLM, which is asked to select the reward
function R′ from R best aligned with the prompt (15; 28). Now, we repeat
the whole process, this time including the selected policy R′ as a seed in the
reward function generation prompts. Once we have executed the process nr

times, we add all generated np · nr candidate reward functions R to the pool R
(see Appendix C.2 in the full paper (33) for details).

5.2 Adjudicator

The adjudicator selects a reward function from a given pool of candidate re-
ward functions returned by the generator. To handle complex tradeoffs arising
within composite prompts and resulting multi-objective optimization problem,
the adjudicator follows a social choice approach. Social choice is a discipline
at the intersection of economics, philosophy, and mathematics and concerned
with aggregating potentially contradicting preferences of set of voters into fair
compromise alternative from a given candidate set (4; 20). It thus provides a
theoretically grounded and methodology for balancing competing interests. In
our problem, we interpret reward functions as candidates and preference clauses
in the prompt as voters with their preferences over the candidates reflecting re-
ward function’s alignment with the clause. This view gives rise to the following
strategy: Given a prompt P = {p1, p2, . . . , pℓ}, we evaluate each reward func-
tion R ∈ R from the perspective of each preference clause pi by computing an
(alignment) score si(R). si(R) measures the alignment of Π(R) with preference
clause pi, i.e., how much the voter representing pi “likes” the candidate R.

In the following, in Section 5.2, we describe how the adjudicator selects the
reward function given the scores; in Section 5.2, we describe how scores get
computed; and in Section 5.2, we present a guarantee on the quality of the
selected reward function if computed scores are noisy.
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Selection via Social Welfare Function Social welfare functions select an
alternative based on input preferences of voters. The pros and cons of individual
social welfare functions have been extensively researched and debated in social
choice (4; 26). The generalized p-mean, fp(·) : Rl

>0 → R>0, is a rich class of
social welfare functions which we consider in this work. It is defined for a given
p ∈ (−∞, 1] and strictly positive vector s(R) = (s1(R), . . . , sl(R)) ∈ Rl

>0 as
follows:

fp(s(R)) =



mini∈[l] si(R) if p = −∞,1

l

∑
i∈[l]

si(R)p

1/p

if p ̸∈ {−∞, 0},

∏
i∈[l]

si(R)

1/l

if p = 0.

(1)

In our experiments, we consider the three arguably most popular social wel-
fare functions, which can be written as a generalized p-mean:

Utilitarian (p = 1) Return the reward function maximizing the sum of its
scores, i.e., argmaxR∈R

∑
i∈[ℓ] si(R).

Nash (p = 0) Return the reward function maximizing the product of its scores,
i.e., argmaxR∈R

∏
i∈[ℓ] si(R).

Egalitarian (p = −∞) Return the reward function maximizing its minimum
score, i.e., argmaxR∈R mini∈[ℓ] si(R).

Selecting the social welfare function gives us control over the tradeoffs between
objectives: By picking the Egalitarian function, we ensure that one clause will
not get prioritized over another. In contrast, the Utilitarian function prioritizes
the summed alignment, allowing for mismatches between clauses; the Nash func-
tion strikes a balance between the two functions.3 The adjudicator makes the
selection process more transparent, as the different objectives, the selection cri-
terion, and the performance of the candidate reward functions regarding the
objectives become explicit.

Computing Alignment Scores It remains to describe how the alignment
scores si(R) are computed. We present two general methods to compute align-
ment scores, which we will use for prioritization clauses. Subsequently, we discuss
two more customized methods for the prevention of unintended utility shifts or
drops in total generated utility.

3 Note that social welfare functions also allow for assigning a different importance to
clauses: The user could submit an importance score wi for each clause pi, which
can be easily incorporated in the social welfare function, e.g., the Utilitarian welfare
function becomes argmaxR∈R

∑
i∈[ℓ] wi · si(R).
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Simulator Scorer Model (SCLM-SIM) For each preference clause pi ∈ P , we
compute a reward function Ri aligned with pi by casting it as a singular prompt
to the DLM pipeline (see Appendix C.2 in the full paper (33)). For each R ∈ R,
we compute as si(R) the expected reward according to reward function Ri pro-
duced by policy Π(R) (again, we approximate this quantity by running multiple
simulations). Accordingly, si(R) quantifies the quality of the policy induced by
the candidate reward function R from the perspective of pi (as captured by Ri).
As the scale of the reward functions can vary significantly among preference
clauses, we normalize the scores by the performance of the default policy, i.e.,
we compute si(R)−si(R

∗)
si(R∗) .

LLM Scorer Model (SCLM-LLM) The Simulator Scorer Model assumes access to
reward functions capturing individual preference clauses well. If no well-aligned
reward functions can be obtained, the performance of SCLM-SIM can deterio-
rate because it can become noisy. Another disadvantage of SCLM-SIM is that
the scores in SCLM-SIM are all computed via simulation, which can become
computationally costly. Motivated by this, we propose a quicker and more flex-
ible LLM-based approach, where we prompt an LLM to rate the alignment of
a candidate reward function with a preference clause. In particular, for each
R ∈ R and pi ∈ P , we use a prompt that includes R, pi, and the utility feature
distributions produced by policy Π(R). We ask the LLM to rank how well R
aligns with the preference clause pi on a scale from 1 to 5 (see ?? for prompt
texts).

Preventing Unintended Utility Shifts and Utility Drop Aligning reward func-
tions to a prioritization prompt may cause (unintended) utility shifts in other
features (e.g., due to feature correlations, shifting utility to low-income benefi-
ciaries might shift it away from more educated ones). See Figure 2 for a con-
crete example. SCLM offers users the option to explicitly prevent these shifts by
adding additional clauses (“objectives”) to the prompt: Given a prompt P (e.g.,
the prompt from Example 1), for each feature not referenced in the prompt, the
user can add a new preference clause requesting a minimum shift in the utility
distribution of this feature (e.g., for Example 1 they could add “do not change
the utility distribution for feature C”). To compute the alignment score si(R)
between a reward function R and a clause pi=“minimize utility shift for feature
X”, we compare feature X’s utility distribution under the default policy with
its utility distribution under the policy Π(R). Specifically, we quantify the dif-
ference using the Earth mover’s distance (EMD) between the two distributions.
Afterward, we apply 0-1 normalization to all scores si(R)R∈R for prompt pi,
which are input to the social welfare function (along with the alignment scores
for the other clauses).

Another potential risk of aligning a reward function with a prioritization
prompt is that it can sharply decrease the summed utility generated by all agents:
The user might request the prioritization of a subpopulation that does not benefit
much from receiving a resource, leading to severe drops in the summed utility
generated by all agents. Users can address this issue in our model by adding a
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clause pi=“maximize the total generated utility” to the prompt. As the alignment
score si(R) of pi with some reward function R we compute the summed utility,
i.e., the total number of steps in which arms are in an active state, generated
by all agents under the policy Π(R) (computed via multiple simulations of the
policy on the given instance). We again apply 0-1 normalization to all scores
si(R)R∈R for prompt pi.

Error Bounds for Adjudicator’s Selection Even though we observe in our
experiments that the scorer models produce mostly accurate scores, the output
scores are oftentimes still a bit noisy. To measure how errors propagate through
the Social Choice Language Model and how they affect the final reward function
selection, we consider the following setup.

Suppose instead of observing the true score vector s(Rj) =
(s1(Rj), s2(Rj), ..., sl(Rj)), the Scorer Model (SCLM-SIM or SCLM-LLM)
returns a noisy score estimate s̃(Rj) with multiplicative noise α ∈ (0, 1]
satisfying

α · s(Rj) ≤ s̃(Rj) ≤
1

α
· s(Rj), ∀Rj ∈ R. (2)

Let R̃∗ = argmaxRj∈R fp(s̃(Rj)) be the best reward function under the gener-
alized p-mean function for the observed, noisy scores (R̃∗ will be returned by
SCLM); and R∗ = argmaxRj∈R fp(s(Rj)) be the best reward function under the
generalized p-mean function for the true, latent score. We define the (relative)
regret we encounter by choosing R̃∗ instead of R∗ as:

Relative Regret =
fp(s(R

∗))− fp(s(R̃
∗))

fp(s(R∗))
(3)

The relative regret measures the relative drop in p-mean welfare of the reward
function chosen by the adjudicator as compared to the optimal reward function.
We show that the relative regret degrades gracefully in the multiplicative error
parameter, highlighting that even in the presence of noise, SCLM selects good
reward functions with guarantees.

Proposition 1. The relative regret is bounded by 1− α2.

Proof sketch. We observe the monotonicity and positive homogeneity of the
generalized p-mean function applied to the input values. These properties allow
the application of function f to both sides of Inequality 2. Subsequently, using
the definition of R∗ and R̃∗, we derive the regret bound. For a complete proof,
see Appendix D in the full paper (33).

6 Experiments

We describe our testset (Section 6.1), the compared methods (Section 6.2), and
our experimental results both for dealing with composite prioritization prompts
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(Section 6.3) and additionally minimizing unintended side effects (Section 6.4).
Following the work of (6), which constitutes our most important baseline, we
use Gemini Pro (2) as the LLM in our experiments.

6.1 Dataset Description

ARMMAN (3) is a non-profit in India that operates large-scale Maternal and
Child Care Mobile Health programs for underserved communities. One of their
programs disseminates critical health information via weekly automated voice
messages. The goal of the NGO is to maximize beneficiaries’ engagement, i.e., the
number of messages they listen to. A limited number of beneficiaries are called
by health workers every week to boost engagement. The problem of planning
which beneficiaries to call has been modeled and solved as an RMAB, where the
good/bad state corresponds to a high/low weekly engagement of the beneficiary.
We use anonymized data from a quality improvement study conducted in Jan-
uary 2022 (34). For each beneficiary, we have access to their income, education,
and age level, which we use as our three features. Beneficiaries’ historic listener-
ship values are used to estimate their transition probabilities under the passive
action (17). One problem in estimating transition probabilities under the active
action is that due to the limited number of service calls made, such transitions
are rare. Thus, active transition probability estimates are noisy. To alleviate this
issue, we use the features and passive transition probabilities from ARMMAN
together with synthetically generated active transition probabilities. Finally, we
create three datasets, each consisting of five sampled RMAB instances with
N = 2100 arms, a budget of B = 210 and a time horizon of T = 12. The three
datasets differ in how much each feature impacts the effect of applying an active
action. In addition to the real-world domain, we also create three completely
synthetic domain datasets (see Appendix B.3 and B.4 in the full paper (33) for
more details on dataset generation).

Problem Instances Instances of our problem consist of two parts: A preference
prompt and an RMAB instance. We initially focus on prioritization prompts.
Specifically, for each feature X, we consider two different prioritization clauses
“Prioritize agents with low/high value of feature X”. This gives rise to 6 singular
prompts consisting of one prioritization clause, two for each feature. For compos-
ite prompts, we take all combinations of two features and the two prioritization
clauses for each feature (e.g. “Prioritize agents with high value of feature A and
also prioritize agents with low value of feature B”). This results in 3 · 4 = 12
composite prompts. For each domain, we run each prompt on the 15 RMAB
instances from the three datasets.

6.2 Models & Baselines

We analyze six different variants of SCLM differing in the used social welfare
function (Utilitarian, Egalitarian, Nash) and scorer model (Simulator or LLM),
e.g., we denote as SCLM-SIM-Egalitarian SCLM with the Simulator Scorer
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Model and the Egalitarian social welfare function. In our generator, we generate
4 candidate reward functions in each step and run 5 iterations to generate a total
of 20 candidate reward functions. In addition, we consider several LLM-focused
baselines (see Appendix F in the full paper (33) for detailed descriptions):

LLM-Zeroshot This baseline only queries the LLM once. It asks to return a
reward function aligned with the given preference prompt and provides the
problem and feature description as additional context in the prompt.

DLM This baseline implements the Decision-Language Model by Behari et al.
(6) (see Appendix C.2 in the full paper (33)).

DLM-PromptEngg This is a modified version of DLM where within the re-
flection prompt, we include examples for singular queries of how the LLM
should reason over the different reward function choices (see Appendix F in
the full paper (33)).

6.3 Results: Composite Prioritization Prompts

We analyze the performance on the 12 composite prompts described above which
request the prioritization of two subpopulations (see Appendix E.1 in the full
paper (33) for additional results).

Evaluation Metrics As our goal is to fulfill the preferences specified by the user
(in contrast to the classic goal of maximizing total utility), we need to quantify
the alignment of the returned reward function with the given prompt P to eval-
uate our models. Due to the composite, multi-objective nature of our prompts,
we start by measuring the alignment of the returned reward function R with
each prioritization clause pi ∈ P in a separate evaluation score ei(R). For this,
we need to quantify how well a given reward function prioritizes the subpopu-
lation specified in the prompt. However, as our prompts are written in human
language, these subpopulations are not precisely defined (as the prompts only
speak of agents with “high”/“low” value of some feature X). Notably, one could
think that the scores si(R) computed in our adjudicator could be used as our
evaluation scores ei(R), as they measure how well a reward R aligns with a pri-
oritization clause pi. However, this would create an unfair competitive advantage
for the SCLM compared to our baselines who do not have access to these scores.

Instead, we assume that the terms “low” and “high” in the input prompts
refer to the most extreme feature values. Let pi be some prompt prioritizing
agents with a high/low value of some feature X. As the evaluation score ei(R),
we compute the summed utility generated by the agents with highest/lowest
value of X under the policy Π(R) normalized by the utility generated by these
agents under the default policy Π(R∗).4 Reflecting the multi-objective nature of
our problem, we consider two metrics for measuring the alignment of a reward
R with a full composite prompt: sum and minimum of % change of the utility
4 In Appendix E.1 in the full paper (33), we also check how the results change if we

instead interpret “low”/“high” to refer to the lowest/highest two or three values. We
observe very similar trends.
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generated by the two prioritized groups under policy Π(R) compared to the
default policy, i.e., the sum (resp. minimum) of the evaluation scores for R.

(a) Synthetic domain: sum % change (left) and minimum of % change (right) in utility
for the two groups prioritized.

(b) Real-world domain: sum % change (left) and minimum of % change in utility for
the two groups prioritized.

Fig. 4: Results comparing the quality of reward design methods for composite
prioritization prompts. Results are averaged across 180 = 12 · 15 values: 12 com-
posite prompts on 15 RMAB instances (from 3 datasets). Error bars represent
std-error.

Results In Figure 4, we show the averaged results from the synthetic and real-
world domain. We depict the average summed and minimum alignment with the
two clauses of the composite prompt, i.e., the minimum/summed change in the
utility generated by the prioritized group of agents.

We start by focusing on SCLM with Simulator Scorer SCLM-SIM (green-
shaded bars), our strongest method. On both domains, SCLM-SIM significantly
outperforms all baselines for both minimum and summed % change independent
of whether the Utilitarian, Egalitarian or Nash social welfare function is chosen.
SCLM-SIM-Utilitarian outperforming the baselines for the minimum change and
SCLM-SIM-Egalitarian outperforming them for the summed change highlights
the advantages of the SCLM, as these objectives are not explicitly optimized
by the respective models, e.g., SCLM-SIM-Utilitarian aims at maximizing the
summed change and not the minimum one, but still performs well regarding
the minimum change. This indicates that SCLM independent of the chosen wel-
fare function does a better job at picking effective and aligned reward func-
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tions (on the Pareto front). Comparing SCLM-SIM-Utilitarian and SCLM-SIM-
Egalitarian, the two methods exhibit a big difference under the summed change
criterion, while the difference regarding the minimum change is much smaller.
Examining individual instances we find in Appendix E.1 in the full paper (33),
that both functions lead to very different selections on the instance level; un-
surprisingly, the Egalitarian method creates rewards that benefit both groups
in a more balanced fashion. For the Nash welfare function, we found that the
performance was similar, yet slightly inferior to the Utilitarian welfare function
in all relevant evaluation dimensions.

If we replace Simulation Scorer with LLM Scorer, performance of SCLM de-
creases, but is better than all of our three baselines. The difference between
LLM and Simulation Scorer highlights the advantage of the additional informa-
tion acquired through more complex and computationally expensive simulation
method. Regarding the performance of baselines, our DLM baseline with prompt
engineering DLM-PromptEngg improves slightly upon the results of DLM in
the synthetic domain, while in real-world domain, their performance is similar.
This suggests that prompt engineering itself is not sufficient to adequately deal
with the multi-objective nature of composite prompts; an external component
(like our adjudicator) is needed. Finally, LLM-zeroshot consistently performs the
worst, which highlights the non-triviality of reward design problem and the need
for a guided extensive search within reward function search space.

Table 1: Results comparing different reward function selection strategies, ag-
gregated across three real-world datasets. Higher summed % change in desired
feature(s) implies better alignment with prioritization clauses, whereas less un-
intended shift and less % drop in utility are better.

Method
Summed % Change in

Desired Feature(s)
Unintended

Shift

DLM-PrioritizationOnly 6.809±0.86 0.302±0.02

DLM-ExtendedPrompt-Fair -0.254±0.73 0.276±0.02

SCLM-PrioritizationOnly 13.131±0.86 0.316±0.02

SCLM-ExtendedPrompt-Fair 15.364±0.94 0.099±0.01

6.4 Addressing Fairness and Biases

As discussed in Section 5.2, we can also use our pipeline to prevent unin-
tended side-effects of aligning reward functions with prioritization clauses, i.e.,
(i) shifts in the utility feature distribution of features not included in the prompt,
(ii) drops in the total generated utility, and (iii) arbitrary weighted combinations
of the above two goals and additional preference clauses. We focus on 1 here and
relegate the results for 2 and 3, which paint a very similar picture, to Appendix
D.3 in the full paper (33).
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We analyze all 6 singular and 12 composite prioritization prompts (see Sec-
tion 6.1), where we add additional clauses to prevent shifts in the utility distri-
bution of all features not referenced in the prompt. We use the simulator scorer
with a Utilitarian social welfare function and call the resulting model SCLM-
ExtendedPrompt-Fair. As baselines, we consider DLM only prompted with the
prioritization clause(s) (called DLM-PrioritizationOnly) and DLM prompted
with the prioritization clause(s) and clause(s) together for a request for minimiz-
ing of utility shifts for the other features (called DLM-ExtendedPrompt-Fair).
We also consider SCLM-SIM-Utilaterian only prompted with the prioritization
clause(s) (called SCLM-PrioritizationOnly). See Appendix E in the full paper
(33) for more details on the prompts.

To compute the alignment with prioritization clauses, similar to Section 6.3,
we compute average change in utility generated by prioritized subpopulations.
To quantify unintended utility shifts, we compute the average Earth mover’s
distance between utility feature distribution under the candidate and default
reward function for each feature not included in one of the prioritization clauses.

Table 1 shows the results. Comparing DLM-PrioritizationOnly and DLM-
ExtendedPrompt-Fair, we find that adding additional objective to the prompt
does not result in a better performance for real-world domains. In contrast,
SCLM-ExtendedPrompt-Fair which incorporates unintended shifts in the selec-
tion chooses reward functions resulting in significantly higher utility increases
for prioritized subpopulations and significantly fewer unintended utility shifts.
The fact that SCLM performs advantageously for both (conflicting) objectives
highlights the quality of the pipeline and its capabilities to effectively address
multiple objectives (of different types). We see similar results in synthetic domain
(see Table 5 in the appendix in the full paper (33)).

7 Discussion

We present a customizable Social Choice Language Model to handle the multi-
objective nature of preference prompts in reward design for RMABs. We show-
case how methods from social choice can be used to improve the quality and
transparency of decision-making of LLM-based frameworks, as we present an
adjudicator component that makes the final decision from options generated by
the LLM. SCLM significantly improves the quality of the chosen reward func-
tions. We demonstrate that SCLM can not only handle composite prioritization
prompts but arbitrary prompts containing multiple objectives, e.g., balancing the
prioritization of subpopulations with the total utility generated by all agents. For
future work, SCLM can be applied to other problems from multiagent planning
and reinforcement learning. Further, SCLM can easily be extended to handle
multiple preference prompts specified by different users.
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