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ABSTRACT: The nonnormality of temperature probability distributions and the physics that drive it are important due
to their relationships to the frequency of extreme warm and cold events. Here we use a conditional mean framework to
explore how horizontal temperature advection and other physical processes work together to control the shape of daily
temperature distributions during 1979–2019 in the ERA5 dataset for both JJA and DJF. We demonstrate that the tempera-
ture distribution in the middle and high latitudes can largely be linearly explained by the conditional mean horizontal tem-
perature advection with the simple treatment of other processes as a Newtonian relaxation with a spatially variant
relaxation time scale and equilibrium temperature. We analyze the role of different transient and stationary components of
the horizontal temperature advection in affecting the shape of temperature distributions. The anomalous advection of the
stationary temperature gradient has a dominant effect in influencing temperature variance, while both that term and the
covariance between anomalous wind and anomalous temperature have significant effects on temperature skewness. While
this simple method works well over most of the ocean, the advection–temperature relationship is more complicated over
land. We classify land regions with different advection–temperature relationships under our framework, and find that for
both seasons the aforementioned linear relationship can explain ∼30% of land area, and can explain either the lower or
the upper half of temperature distributions in an additional ∼30% of land area. Identifying the regions where temperature
advection explains shapes of temperature distributions well will help us gain more confidence in understanding the future
change of temperature distributions and extreme events.

KEYWORDS: Advection; Atmospheric circulation; Dynamics; Climate change; Climate classification/regimes;
Temperature

1. Introduction

Although climate change is described in terms of global
mean warming (e.g., 2°C), its impacts depend on the local
changes to both the mean temperature and the temperature
distribution. Recent observations (McKinnon et al. 2016;
Rhines et al. 2017) and simulations (Tamarin-Brodsky et al.
2019, 2020) point out that temperature distributions are
changing with global warming. The probability distribution
function (PDF) of temperature is important for the frequency
of weather extremes and their response to climate change
(Huybers et al. 2014; Loikith and Neelin 2015; Ruff and Neelin
2012). Although in some cases the changes in global tempera-
ture extremes are well explained by a simple shift of the mean
value (Rhines and Huybers 2013), the potential role of different
moments of temperature PDFs on extreme events has recently

garnered greater attention (Alexander and Perkins 2013; Gar-
finkel and Harnik 2017; Gao et al. 2015; Schneider et al. 2015).

Due to the severe impact of extreme temperature events on
society and their potential change of frequency (Loikith and
Neelin 2019; Wang et al. 2017; Sheridan and Lee 2018), espe-
cially for the increasing probability for anomalous heat events
during summer in a warming climate (Perkins 2015), under-
standing of the physics behind the shape of temperature PDF
needs to be improved (Hoskins and Woollings 2015). To that
end, recent work has approached this question from a variety
of perspectives. Garfinkel and Harnik (2017) demonstrated the
role of horizontal temperature advection in generating non-
Gaussianity in a simple Lagrangian model. Consistent with
their finding, Linz et al. (2018) showed that similar skewness
could be generated in a globally 2D idealized model where
temperature is advected as a passive tracer stirred by stochastic
Rossby waves. Employing a Lagrangian feature tracking algo-
rithm, Tamarin-Brodsky et al. (2019) explored the effect of
warm and cold anomalies in shaping temperature PDFs and
explored how different physical processes related to these
anomalous weather systems influence temperature variability
in the Southern Hemisphere. The Lagrangian perspective has
been further applied to study Northern Hemisphere tempera-
ture variability in Tamarin-Brodsky et al. (2020) and a simple
theory on how temperature variance and skewness changes
are generated dynamically from mean temperature gradient
changes was developed.
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As advances have been made in linking regional and global
temperature PDFs to large-scale meteorological patterns
(Grotjahn et al. 2015; Loikith and Neelin 2019; Nakamura
and Huang 2018) and the associated horizontal temperature
advection as discussed above, some studies identified a variety
of factors controlling certain tails of temperature PDFs. For
example, in recent heatwave studies focusing on the warm tail
of temperature PDFs (Bieli et al. 2015; Buzan and Huber
2020; Horton et al. 2016; Quinting and Reeder 2017;
Zschenderlein et al. 2019), heatwaves in different regions
have been attributed to a combination of horizontal tempera-
ture advection, radiation, surface heat fluxes, moist heat pro-
cess, and subsidence. A wide spectrum of mechanisms—for
example, soil moisture feedbacks (Seneviratne et al. 2010),
quasi-resonant amplification of planetary waves (Petoukhov
et al. 2013), large-scale orography (Lutsko et al. 2019), and
Arctic warming (Barnes and Screen 2015; Coumou et al.
2015, 2018; Screen 2014)—also have the potential to influence
temperature PDFs and their future change.

Due to the variety of controlling factors, local-level knowl-
edge of the physical processes responsible for setting the
shape of the temperature PDF remains unclear. In other
words, how do different physical mechanisms quantitatively
affect a certain percentile of the temperature PDF at a certain
location? To answer this question, Linz et al. (2020) put for-
ward a conditional mean framework quantifying the balance
between large-scale temperature advection and all other pro-
cesses in setting the shape of the temperature PDF. They
demonstrated the effectiveness of the framework in examin-
ing and explaining the changing shapes of temperature PDFs
in the midlatitudes in an idealized aquaplanet model and
found that in midlatitudes the shape of temperature PDFs
could largely be explained by horizontal temperature advec-
tion while parameterizing all the other processes with a simple
Newtonian relaxation. Essentially, horizontal temperature
advection acts to amplify perturbations from the mean while
other processes act to damp perturbations from the mean.
The Eulerian essence of this conditional mean framework
also enables ready decomposition of the global horizontal
advection field into stationary and transient terms, so as to
resolve how different components of temperature gradient
and circulation pattern explain temperature PDFs as a func-
tion of temperature percentiles. While this framework leads
to interesting results with an idealized model, it is natural to
ask, “What happens in the real world?”. After all, the extreme
events on land may have wider impacts than the ocean situa-
tion simulated in the idealized aquaplanet model, and differ-
ent processes, like land–atmosphere interactions, zonally
asymmetric land regions, and large-scale orography, will give
more complexity to the physical processes controlling the
shape of temperature PDFs. As such, it is unclear whether
there are any regions that could be simply explained by hori-
zontal temperature advection.

In this paper, we employ the same conditional mean frame-
work as in Linz et al. (2020) to investigate how well the sim-
plified linear relationship between horizontal temperature
advection and the shape of the daily temperature PDF holds
in the ERA5 data. We concentrate on 850 hPa rather than the

surface, as this height has been commonly used in previous
studies (Garfinkel and Harnik 2017; Schneider et al. 2015;
Tamarin-Brodsky et al. 2019, 2020) and has been shown to be
a good representation of near-surface extreme temperature
events (Tamarin-Brodsky et al. 2020). We decompose hori-
zontal advection into mean and transient terms to understand
the dominant factors affecting different moments of tempera-
ture PDFs. Furthermore, we look beyond the simple frame-
work to also perform a cursory examination the role of
vertical processes (vertical advection and adiabatic processes)
and diabatic processes in driving the shape of temperature
PDFs on land.

The paper is organized as follows. In section 2, the data and
methods are introduced. We applied the conditional mean
framework to ERA5 data and present those results in section
3. Section 4 describes the effects of different transient and sta-
tionary components of horizontal temperature advection in
shaping temperature variance and skewness in the context of
the conditional mean framework. In section 5, we focus on
PDFs over land, using clustering analysis to identify different
regions according to the balance between conditional mean
temperature advection and other processes in shaping the
temperature PDF. Limitations of this study, a summary, and
conclusions are discussed in section 6.

2. Data and methods

a. Conditional mean framework

The conditional mean framework we are using to explain
temperature PDFs closely follows Linz et al. (2020), where it
effectively explained the midlatitude temperature PDFs in an
idealized aquaplanet model. Similar methods have also been
used to study extreme precipitation (Chen et al. 2019; Ma et al.
2020; Norris et al. 2019a,b). For completeness, a description
of it follows.

The temperature (T) tendency at a certain location can be
described by

T
t

5 2 v · ∇T2v
T
p

1 Ṫ , (1)

where v is the horizontal wind vector, (u, y), ∇T is the hori-
zontal temperature gradient, v is vertical velocity in pressure,
T/p is temperature gradient with pressure, and Ṫ is the total
derivative of temperature, which could be interpreted as the
influence of other processes like adiabatic processes, radia-
tion, and latent heat release. Note that in Linz et al. (2020),
the authors are using potential temperature u when introduc-
ing the theory, but are applying the theory to temperature
when conducting their analysis. To avoid any confusion, we
choose to directly introduce the theory in terms of tempera-
ture T. It is also worth pointing out that on a constant pres-
sure surface (850 hPa here), temperature and potential
temperature differ only by a constant: u5T 1000=850

( )R=cp . It
can also be proved that the vertical advection of potential
temperature 2vu/t equals the vertical transport term
〈v kT=p2T=p

( )〉Te of temperature, which is going to be
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further discussed in our section 5. The derivation in the cur-
rent study is equivalent to the version in Linz et al. (2020).
We choose to write a first-order Taylor approximation of Ṫ as

Ṫ ≈ 2
T2Teq

t
, (2)

which can be interpreted as a linear Newtonian relaxation
process toward a equilibrium temperature Teq with a charac-
teristic time of t. Using this approximation and also absorbing
the vertical part of temperature advection 2vT/p into the
Ṫ term, (we will examine this assumption in sections 3 and 5),
Eq. (1) can be idealized as a combination of horizontal advec-
tion driving the temperature tendency and a relaxation term
caused by all the other processes:

T
t

5 2 v · ∇T2
T2Teq

t
: (3)

An explanatory equation for temperature PDFs is derived
from Eq. (3) through calculating the conditional mean on the
percentile of temperature, that is,

〈
T
t

〉
Te

5 〈2 v · ∇T〉Te 2
〈T〉Te 2Teq

t
: (4)

Here, 〈X〉Te means the conditional mean of variable X at the
temperature PDF percentile e. Linz et al. (2020) show in their
Eqs. (3)–(6) that 〈T=t〉Te is equal to the trend of the temper-
ature at a certain percentile Te: 〈T=t〉Te 5Te=t. We also
find that the temperature tendency vanishes when condition-
ally averaged at each temperature percentile, since the accu-
mulation of temperature tendency at a fixed temperature
percentile over a long period will be negligible, if the long-term
trend is small. We inspect the long-term trend at 49 evenly dis-
tributed percentiles (2nd, 4th, … , 98th) using quantile regres-
sion (e.g., Koenker and Bassett 1978; Cade and Noon 2003) and
find that the magnitude of largest trend among all the grid points
and percentiles is smaller than 0.1 K yr21, or 3.2 3 1029 K s21,
while a typical magnitude of the conditional mean of horizontal
temperature advection is about 31025 K s21 (e.g., Fig. 2d; see
movie S1 in the online supplemental material). Thus we can
safely ignore the LHS of Eq. (4). (Note that we are not claiming
that the trend in temperature is negligible, but we are justifying
that it is reasonable to treat the period of study, 1979–2019, as a
single climate state in our current analysis and to ignore the
LHS.) Then we have

Te 5t · 〈2 v · ∇T〉Te 1Teq, (5)

where Te is the temperature at the eth percentile, Te5 〈T〉Te .
Equation (5) states that the temperature at a particular per-
centile can be linearly related to the conditional mean of hori-
zontal temperature advection at that temperature percentile.
Hereafter, this conditional average of temperature advection
term will be referred to as “conditional temperature
advection” following Linz et al. (2020). If observations exhibit
a linear relationship between temperature and conditional
temperature advection, we can interpret the slope of the lin-
ear relationship as t and the intercept as Teq. Significant

deviations from this linear relationship indicate the impor-
tance of processes other than conditional temperature advec-
tion in explaining the shape of the temperature distribution.
Generally, t and Teq need not be independent of the percen-
tile. If the first-order Taylor expansion [Eq. (2)] is effective
with the same or nearly the same t and Teq over the full distri-
bution, however, the temperature distribution would be
explained by conditional temperature advection. That is to
say that if other processes always act as a damping effect, they
cannot explain any movement of the temperature away from
the mean. Constant coefficients worked surprisingly well in
the idealized simulation reported in Linz et al. (2020) and will
be examined with reanalysis data in section 3.

When evaluating the conditional mean of temperature Te

and conditional temperature advection 〈2 v · ∇T〉Te , we divide
the temperature PDF evenly intoM percentile bins:

ei 5
100i
M1 1

, i5 1, :::,M: (6)

The conditional mean value at the eith temperature percentile
is evaluated as the average over the temperature percentile
range of [ei20.5, ei10.5] rather than just the event at the eith
percentile so as to acquire a relatively smooth distribution
function. It is interesting to point out that the premise behind
our conditional mean framework is the same as standard
composite methods: we are actually compositing horizontal
temperature advection into different bins according the per-
centile of temperature in order to see what is important for
temperature in that bin. In this paper, M is chosen as 49 to
strike a balance between the resolution of temperature PDF
and a large enough sample size to achieve reliable average
values. Other M values such as 19, 199, and 499 have also
been studied (not shown here) and do not qualitatively
change the results.

In sections 3 and 5, we apply a “local normalization” to the
conditional temperature advection 〈2v · ∇T〉Te or percentile
mean temperature Te. If there is no further specification,
we normalize the 49-point-vector of conditional temperature
advection or the 49-point-vector of percentile mean tempera-
ture at each grid point by first subtracting the mean and then
dividing by the standard deviation of the 49 values at that grid
point.

b. ERA5 data

The data used for this study come from the ERA5 dataset
(Hersbach et al. 2020) produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF). We use data
at 850-hPa level during 1979–2019, for temperature, horizon-
tal wind, and vertical velocity (v) fields. Temperature data at
825 and 875 hPa are also used when calculating the vertical
temperature gradient. Both JJA and DJF seasons are studied.
We use data at 0000, 0600, 1200, and 1800 UTC and average
them for each day to obtain the daily data for both tempera-
ture and advection data (derived from wind and temperature
fields). The raw daily data are used and no climatology is sub-
tracted considering that we are studying the original PDF of
temperature. We use the resolution of 0.25° 3 0.25° when
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conducting all calculations like computing temperature gradi-
ent; however, we present the data in all figures using a resolu-
tion of 1.25° 3 1.25°, by only picking a subset of the data.
Considering that some of the grid points will be under terrain
at certain points for 850 hPa, which will make the results less
meaningful, we choose to mask the grid points with land
height higher than 1400 m.

3. Linear fitting: The first-order approximation for
temperature PDFs

The conditional mean temperature advection 〈2v · ∇T〉Te

and the percentile mean of advection itself [denoted as
〈2v · ∇T〉 2 v·∇T( )e ] at 850 hPa for ERA5 data are separately
calculated to look at the conditional mean framework. Fig-
ures 1a–c show the changes of conditional temperature
advection 〈2v · ∇T〉Te across three different percentiles
(4%, 50%, 96%) during JJA. As we mentioned in section
2a, the conditional mean of horizontal temperature advec-
tion could be understood as a composite of the correspond-
ing horizontal advection when the temperature are in bins
of certain ranges (here the bins are 3%–5%, 49%–51%, and
95%–97%, respectively, of the whole temperature time
series at each grid point). Above most of the mid- to high-
latitude oceans in both hemispheres, there is clearly an
increase in conditional temperature advection when the per-
centile of temperature increases, which means that the con-
ditional horizontal temperature advection is positively
correlated with the temperature distribution at these grid
points. (Note that there could be negative values of condi-
tional temperature advection, so an increase could involve

changing from a negative value to a positive value.) This is
surprising because we can expect that above mid- to high-
latitude oceans the temperature advection should be a
major contributor to the temperature distribution at each
grid point. On the other hand, the relationship does not per-
fectly hold true above tropical regions and over the land,
which means the relationships between advection and tem-
perature distributions could be more complex. Figures 1d–f
show the percentile mean of temperature advection
〈2v · ∇T〉 2 v·∇T( )e across the same three percentiles, which
reflects the character of horizontal advection itself. The
value of 〈2v · ∇T〉 2 v·∇T( )e is directly calculated at each grid
point by first sorting the whole temperature time series and
then take averages in 2-percentile bins near the percentiles
we are focusing on (here the bins of temperature advection
being averaged are 3%–5%, 49%–51%, and 95%–97%,
respectively). We are showing Figs. 1d–f to stress that the
conditional mean temperature advection in Figs. 1a–c is not
the same as the distributions of advection itself. By defini-
tion, the percentile average advection 〈2 v · ∇T〉 2 v·∇T( )e
increases monotonically with the advection percentile. As
we expected, the conditional temperature advection
〈2v · ∇T〉Te (Figs. 1a–c) does not have any obvious relation-
ship with the PDF of temperature advection itself
〈2v · ∇T〉 2 v·∇T( )e (Figs. 1d–f).

A reduced major axis (RMA; e.g., Smith 2009) linear
regression is applied to 850-hPa JJA global percentile temper-
ature mean and conditional temperature advection with M 5

49 different temperature percentiles (as described in section
2) at each grid point to inspect the relationship in Eq. (5).
Figure 2a shows the Pearson correlation coefficient of the

FIG. 1. 850-hPA JJA (a)–(c) conditional temperature advection 〈2 v · ∇T〉Te (K s21) and (d)–(f) percentile mean of temperature advec-
tion 〈2 v · ∇T〉 2 v·∇T( )e (K s21) patterns based on ERA5 data over years 1979–2019 across different percentiles: (a),(d), 4th percentile,
(b),(e), 50th percentile, and (c),(f), 96th percentile.
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linear regression. Note that the regression itself is a test on
where conditional advection can explain the temperature dis-
tribution linearly. Where r is high, the relationship in Eq. (5)
as well as the Taylor expansion in Eq. (2) work well across all
percentiles; when r is not high or even negative, other pro-
cesses (e.g., adiabatic processes, radiation, and latent heat
release) have different effects at different percentiles, suggest-
ing that they are critical for shaping the distribution. In Fig.
2a there is a consistently high positive r pattern over a large
fraction of the globe, especially above the mid- to high lati-
tudes in the Northern Hemisphere and Southern Hemisphere
ocean. A visualization of the relationships between JJA tem-
perature and conditional temperature advection over differ-
ent latitudes, and also the difference between land and ocean,
is shown in Fig. 3, where locally normalized conditional tem-
perature advection and locally normalized conditional aver-
age temperature are aggregated in different regions and
shown in grid-cell-area-weighted scatterplots. (When calculat-
ing the grid-cell-area-weighted densities, we use 100 3 100
bins for each panel, and for each bin we calculate the sum of
the total areas of all grid cells where all the points in that bin
come from. Then the results are normalized by the size of the
bin to ensure that the densities are independent from the
scales of the bin. Thus, the units of the color bars are square
meters.) The difference between the top and bottom rows of

Fig. 3 shows that the linear relationship between temperature
and conditional temperature advection is better over the mid-
to high latitudes than over the tropics, which is true both
above ocean and land. The difference between the left and
right columns of Fig. 3 shows that the linearity is better above
ocean than above land. To demonstrate that the high r value
reflects a truly linear relationship between temperature and
conditional temperature advection, temperatures at different
percentiles are plotted against conditional temperature advec-
tion in Fig. 2d at certain locations marked as stars in Fig. 2a,
and there is no obvious deviation from linear where the fit is
quite good. However, certain areas with negative r values also
exist, which means that the simple uniform relaxation across
all temperature percentiles in Eq. (5) unsurprisingly does not
capture the complete physics of all the other processes shap-
ing the temperature PDF. This is especially true in the tropics,
where horizontal temperature advection is small. Near orog-
raphy, the horizontal temperature advection is also not the
dominant factor shaping the temperature distribution (e.g., in
Patagonia). In section 5, we will further discuss the nonlinear-
ity (i.e., the influence of other processes) in shaping tempera-
ture PDFs.

The relaxation time scale in Fig. 2b (obtained from the
slope of the regression) has the same pattern in the sign,
with the magnitude ranging from less than a day to more

a b c

220 240 260 280 300 320

K

-10 -5 0 5 10

days

� � � � � � � � �
-1 -0.5 0 0.5 1

d e f

Conditional temperature advection(K/s)

T
(K

)

10-5
-6 -4 -2 0 2 4 6 8

275

280

285

290

220 240 260 280 300 320

K

-10 -5 0 5 10

days

FIG. 2. (a)–(c) Reduced major axis linear regression results between 850-hPa JJA conditional temperature advection and temperature
based on ERA5 data. (a) Linear Pearson correlation coefficient r value. The stars shows locations chosen in (d). (b) Slope of linear fit:
relaxation time scale t (days). (c) Intercept of linear fit: equilibrium temperature Teq (K). (d) The scatterplots between temperature at dif-
ferent percentiles Te and conditional mean temperature advection 〈2 v · ∇T〉Te at the locations shown in (a). Colors of the points in the
scatterplots in (d) are chosen to be the same as colors of stars showing corresponding locations in (a). (e) The e-folding time scale of the
autocorrelation function for temperature time series at 850 hPa in JJA during 1979–2019 based on ERA5 data, tac in days. (f) Time-
averaged temperature in K calculated from temperature time series at 850 hPa in JJA during 1979–2019.
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than a week, somewhat consistent with synoptic time
scales. Figure 2c shows the equilibrium temperature
obtained from the intercept of the regression. There is a
meridional dependence of equilibrium temperature with
higher values near the tropical region and lower values
near the polar region. Land–sea contrast and patterns
related to orography are also evident. A previous study
found that the variance and skewness of midlatitude tem-
perature PDF could be generated in an idealized model
where temperature is advected nonlinearly as a passive
tracer with a Newtonian relaxation to the equilibrium tem-
perature (Linz et al. 2018), with a globally homogeneous
relaxation time scale t and zonally symmetric equilibrium
temperature Teq. The linear regression results in Figs. 2b
and 2c demonstrate that what happens in the real world is
largely in accordance with the idealized simulation, espe-
cially above midlatitude oceans.

The negative t values are not at first intuitive, and hence
we now explain how such a result comes about to explain
this. At a given time and location, the temperature will of

course fall in a certain percentile. The question is what will
cause the temperature to change to a different percentile.
This framework identifies where horizontal temperature
advection acts to bring the temperature away from the
mean toward more extreme values. Where the first-order
Taylor expansion is appropriate and t and Teq are constant
across percentiles, the combination of all the other pro-
cesses act together to oppose deviations from the mean
from developing into more extreme values in basically the
same way at every percentile. Obviously these processes are
still necessary for shaping the distribution, but their role
does not vary at the 90th versus the 10th percentile—they
are a simple linear damping. Where t is negative, instead
horizontal temperature advection is damping perturbations,
and the other processes affecting temperature must com-
pensate for this effect in order for the temperature to reach
a more extreme percentile.

To avoid any confusion, we would like to emphasize that
t is not interchangeable with any natural physical time scale
(such as the synoptic time scale or the radiative time scale)

FIG. 3. A visualization for the difference of the relationships between temperature and condi-
tional mean horizontal temperature advection over different regions. Scatterplots for locally nor-
malized conditional temperature advection vs locally normalized conditional average tempera-
ture with shading showing the grid-cell-area-weighted density (m2) of the points are plotted for
different regions. All the percentiles are shown together in this figure. Results are shown for (a)
above ocean, with the absolute value of latitude smaller than 23°; (b) above ocean, with the abso-
lute value of latitude larger than 23°; (c) above land, with the absolute value of latitude smaller
than 23°; and (d) above land, with the absolute value of latitude larger than 23°. The data are
weighted by the area of the grid cells where the data come from, to reflect the difference of the
size of the grid cells at different latitudes. Refer to the text for more details of the normalization,
and the calculation of the grid-cell-area-weighted densities.
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and Teq is also not interchangeable with the time-averaged
temperature. We demonstrate this more explicitly in Figs.
2e and 2f. To contrast between t and the autocorrelation
time scale of the temperature tac, we show the spatial distri-
bution of the e-folding autocorrelation time scale in Fig. 2e.
To obtain that time scale, we calculated the autocorrelation
coefficient separately for the JJA season in each year, with
the time lag from 6 h to 25 days. After averaging all the sea-
sonal autocorrelation functions from 1979 to 2019, we used
nonlinear least squares fitting method on it to obtain the e-
folding time scale. Although we can see similarity between
the autocorrelation time scale tac and the relaxation time
scale t under our conditional mean framework, the differ-
ence between these two variables is also significant. The
spatial distribution of time-averaged temperature Tmean is
shown in Fig. 2f. Similarities between Teq and Tmean can also
be observed (e.g., the high temperature region above Sahara
Desert and on the west coast of North America), but signifi-
cant differences also exist (e.g., the temperature patterns
between Teq and Tmean above tropical oceans are quite differ-
ent). This comparison shows that the Newtonian relaxation
parameterization is still simply a Taylor series expansion, and
its coefficients are not readily interpretable as something more
physically meaningful.

The same linear regression has also been applied to DJF
daily data during 1979–2019, as shown in Fig. 4. Similar linear
correlation coefficient r patterns as in JJA can be observed
(Fig. 4a), although clear differences from JJA do exist, espe-
cially above tropical oceans. Generally r is higher in the
Northern Hemisphere (especially above ocean) and lower in
the Southern Hemisphere (especially above land) than in
JJA, suggesting that temperature distributions are more
directly related to conditional temperature advection in the
winter hemisphere. Similar differences in the Newtonian
relaxation time scale t (Fig. 4b) can also be found, and t is
lower in the Northern Hemisphere and higher in the Southern
Hemisphere than in JJA. The equilibrium temperature Teq

(Fig. 4) also reflects seasonal differences between JJA and
DJF, with a lower equilibrium temperature in the winter
hemisphere and higher equilibrium temperature in the sum-
mer hemisphere. Since the conditional mean framework is
effective in explaining the relationship between temperature

and conditional temperature advection, in the mid- to high
latitudes, in the next section we focus on the role of different
transient and stationary components in shaping different
moments of temperature PDF, which has been a topic of
interest in recent studies (Garfinkel and Harnik 2017;
Linz et al. 2018; Tamarin-Brodsky et al. 2019).

4. How do different components of temperature
advection influence the variance and skewness of
temperature PDFs?

The horizontal temperature advection can decomposed
into transient and stationary terms as follows:

2 v · ∇T5 2 v̄ · ∇T̄ 2 v′ · ∇T̄ 2 v̄ · ∇T′ 2 v′ · ∇T′: (7)

Here, X̄ is the monthly average of variable X (i.e., the station-
ary part) andX′5X2 X̄ is the transient part. When perform-
ing the monthly average, we separately calculate a mean
value for each calendar month, and subtract it from that
month’s data to get X′. A few studies claim that temperature
standard deviation can be linked to 2 v′ · ∇T̄ (i.e., anomalous
advection of the background stationary temperature gradi-
ent), while the contribution of other terms is insignificant
(Schneider et al. 2015; Linz et al. 2018; Tamarin-Brodsky et al.
2019). Meanwhile, the nonlinear transient term, 2v′ · ∇T′,
has been shown to be critical for temperature skewness in the
Southern Hemisphere or zonally symmetric models (Garfin-
kel and Harnik 2017; Linz et al. 2018; Tamarin-Brodsky et al.
2019). To our best knowledge, the influence of horizontal
temperature advection on further higher-order moments
(e.g., kurtosis) has not been studied.

To quantify the influence of conditional advection on dif-
ferent moments of temperature, we use the following approxi-
mate equations based on the conditional mean method and
inspired by Tamarin-Brodsky et al. (2020). We define
2v · ∇T( )w0 as the warmer part of the horizontal temperature
advection2v · ∇T (i.e., the mean value of temperature advec-
tion on the condition that temperature T is larger than its
mean value) and define 2 v · ∇T( )c0 as the colder part of the
horizontal temperature advection 2v · ∇T (i.e., the mean
value of temperature advection on the condition that

FIG. 4. Reduced major axis linear regression results between 850-hPa DJF conditional temperature advection and temperature distribu-
tion based on ERA5 data. (a) Linear correlation coefficient r value. (b) Slope of linear fit: relaxation time scale t (days). (c) Intercept of
linear fit: equilibrium temperature Teq (K).
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temperature T is smaller than its mean value); we also define
2 v · ∇T( )T̄ as the value of horizontal temperature advection
on the condition that the temperature is exactly at its mean
value. If we also define 2v · ∇T( )w5 2 v · ∇T( )w02
2 v · ∇T( )T̄ , the amplitude of the mean horizontal tempera-
ture advection contributing to the warmer part of the temper-
ature PDF. Likewise, we define 2v · ∇T( )c5 2v · ∇T( )T̄ 2

2 v · ∇T( )c0, the amplitude of the mean horizontal tempera-
ture advection contributing to the colder part of the tempera-
ture PDF. The contribution of horizontal advection to
temperature variance and skewness can be estimated as

s2 v·∇T 5
1
2
3t3 2 v · ∇T( )w 1 2 v · ∇T( )c

[ ]
(8)

and

S2 v·∇T 5
t3 2 v · ∇T( )w 2 2 v · ∇T( )c

[ ]
sT

, (9)

respectively, where t is the same relaxation time scale, and sT

is the real standard deviation of temperature time series. A
more detailed explanation of these two equations can be
found in the appendix. Our equations are totally based on the
simplified expressions for variance and skewness in Tamarin-
Brodsky et al. (2020), where they are using the absolute aver-
age intensities of warm and cold anomalies identified from
their Lagrangian feature tracking method to estimate the

variance and skewness of temperature. Note that in Tamarin-
Brodsky et al. (2020) the intensities of warm and cold anoma-
lies and are always positive, whereas our (2v · ∇T)w and
(2v · ∇T)c here could have negative values where the correla-
tions between conditional advection and temperature are low.
Since Eqs. (8) and (9) are linear functions of conditional tem-
perature advection 2v · ∇T, they can also be directly applied
to the four different stationary and transient components of
conditional temperature advection shown in Eq. (7) to get the
contribution of these different terms to variance and skewness
of temperature PDFs.

We test the validity of these approximations, and these
results are shown in Figs. 5a,b (JJA) and Figs. 7a,b (DJF)
(standard deviation) and Figs. 6a,b (JJA) and Figs. 8a,b
(DJF) (skewness). We do not expect exact agreement
between the true temperature standard deviation or skewness
and the ones calculated in this way for two main reasons:
First, the linear relationship between temperature and tem-
perature advection holds best only in midlatitudes; Eqs. (8)
and (9) assume this linear relationship is always good [we are
essentially using the linear regression Eq. (5) to estimate the
contribution of advection to temperature distributions]. Sec-
ond, in our estimation we are using only a single value for the
warmer part of the distribution, and a single value for the
colder part of the distribution, to estimate the standard devia-
tion, thus implicitly assuming a two-point distribution in the
derivation of the method. This is an assumption made for

FIG. 5. 850-hPa JJA temperature standard deviation and influences of different advection components on it. (a) Temperature standard devi-
ation (K), (b) approximate influence of horizontal temperature advection on temperature standard deviation t 3 (1/2) 3 [(2v · ∇T)w 1

(2v · ∇T)c] (K) [the pattern correlation with (a) is 0.86], and contributions of the four components: (c) anomalous advection of sta-

tionary temperature gradient t3 1=2
( )

3 2 v′ · ∇T̄( )w1
[

2 v′ · ∇T̄( )c] (K), (d) covariance between anomalous wind and anomalous
temperature t3 1=2

( )
3 2 v′ · ∇T′( )w1 2 v′ · ∇T′( )c
[ ]

(K), (e) stationary advection of anomalous temperature gradient t3 1=2
( )

3

2 v̄ · ∇T′( )w1 2 v̄ · ∇T′( )c
[ ]

(K), and (f) stationary advection of stationary temperature gradient t3 1=2
( )

3 2 v̄ · ∇T̄( )w1
[

2 v̄ · ∇T̄( )c] (K).
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simplicity but the actual distribution is obviously not a two-
point distribution. [See our appendix, and also supplementary
information section 2 of Tamarin-Brodsky et al. (2020)]. Fig-
ure 5a (JJA) and Fig. 7a (DJF) show the true standard devia-
tion of 850-hPa temperature, and Fig. 5b (JJA) and Fig. 7b
(DJF) show the approximate contribution of horizontal tem-
perature advection to temperature standard deviation calcu-
lated from the conditional temperature advection using Eq.
(8). The spatial pattern of the approximate contribution of
temperature advection to the temperature standard deviation
is similar to the pattern of the real temperature standard devi-
ation, but the magnitude of the former is smaller. This is likely
due to our approximation method, as was just mentioned. For
the approximate contribution of 850-hPa horizontal tempera-
ture advection to temperature skewness, the results are some-
what noisy (e.g., the JJA result without smoothing is shown in
Fig. S1), mainly due to small-scale disturbances related to
anomalous temperature gradient ∇T′ (e.g., Figs. S1c,d for
JJA). Thus we smoothed the results for both JJA and DJF
spatially by using a 1.75° 3 1.75° simple moving average, and
the results are shown in Fig. 6 (JJA) and Fig. 8 (DJF). The
approximate skewness contribution of conditional tempera-
ture advection calculated by the approximate method [Fig. 6b
(JJA) and Fig. 8b (DJF)] also captures the spatial pattern of
temperature skewness [Fig. 6a (JJA) and Fig. 8a (DJF)]. The
consistency between the moments calculated directly from

temperature and those calculated using the linear approxima-
tions based on conditional temperature advection gives us
further confidence in applying the conditional mean framework
to study the influence of advection on temperature PDFs.

Recall that previous studies showed that the anomalous
advection of the stationary temperature gradient was key in
determining the standard deviation of temperature distribu-
tions (Schneider et al. 2015; Garfinkel and Harnik 2017; Linz
et al. 2018; Tamarin-Brodsky et al. 2019). In Figs. 5c–f (JJA)
and Figs. 7c–f (DJF), we show the breakdown between the dif-
ferent stationary and transient components, and we also find
that 2v′ · ∇T̄ is the most important. Note that the different
stationary and transient components of temperature advection
can have negative contributions to the temperature standard
deviation, for example, when the relaxation time scale t value
from the linear regression Eq. (5) is positive, but the condi-
tional means of a component of temperature advection have a
higher value when temperature is higher than its mean value
(the warmer part), and a lower value when temperature is
lower than its mean value [the colder part; see our Eq. (8)].
For the two terms related to anomalous temperature gradient
2 v̄ · ∇T′ [Fig. 5d (JJA) and Fig. 7d (DJF)] and2v′ · ∇T′ [Fig.
5e (JJA) and Fig. 7e (DJF)], the same patterns do exist, but
the overall contributions are relatively small. The contribution
of the stationary term v̄ · ∇T̄ [Fig. 5f (JJA) and Fig. 7f (DJF)]
is almost negligible, as expected.

FIG. 6. 850-hPa JJA temperature skewness and influences of different horizontal temperature advection components on it: (a) tempera-
ture skewness, (b) approximate influence of advection on temperature skewness t3 2 v · ∇T( )w2 2 v · ∇T( )c

[ ]{ }
=sT [the pattern correla-

tion with (a) is 0.36], and contributions of the four components: (c) anomalous advection of stationary temperature gradient
t3 2 v′ · ∇T̄( )w2 2 v′ · ∇T̄( )c

[ ]{ }
=sT , (d) covariance between anomalous wind and anomalous temperature t3 2 v′ · ∇T′( )w2

[{
2 v′ · ∇T′( )c]}=sT , (e) anomalous advection of stationary temperature gradient t3 2 v̄ · ∇T′( )w2 2 v̄ · ∇T′( )c

[ ]{ }
=sT , and (f) stationary

advection of stationary temperature gradient t3 2 v̄ · ∇T̄( )w2 2 v̄ · ∇T̄( )c
[ ]{ }

=sT . Note that (b)–(f) are smoothed by calculating the mean
value of all the neighboring grid points in the 1.75°3 1.75° areas.
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Our result for the different contributions of stationary
and transient terms to the skewness [Figs. 6c–f (JJA) and
Figs. 8c–f (DJF)] is somewhat more unexpected. We find
that both the 2v′ · ∇T̄ [Fig. 6c (JJA) and Fig. 8c (DJF)] and
2v′ · ∇T′ [Fig. 6d (JJA) and Fig. 8d (DJF)] terms contribute
significantly to the spatial pattern of the full advection term
[Fig. 6 (JJA) and Fig. 8 (DJF)]. As opposed to situations
with zonally symmetric temperature gradients focused upon
(Garfinkel and Harnik 2017; Linz et al. 2018; Tamarin-Brod-
sky et al. 2019), our result shows that although 2v′ · ∇T′

contributes to the skewness pattern, the temperature advec-
tion by anomalous transport of the stationary temperature
gradient 2 v′ · ∇T̄ plays an even more important role. The
other two terms [Fig. 6e,f (JJA) and Figs. 8e,f (DJF)] do not
have very clear large-scale patterns, although 2 v̄ · ∇T′ has
relatively large values in certain regions (e.g., off the west
coast of continents).

The fact that the linear advection term 2 v′ · ∇T̄ also con-
tributes to temperature skewness significantly is an interest-
ing result. Although it has been shown that with a zonally
symmetric background temperature gradient the linear
advection 2 v′ · ∇T̄ term could not generate temperature
skewness (Garfinkel and Harnik 2017; Linz et al. 2018), the
temperature gradient configuration in the real world could
still lead to significant contribution of the 2v′ · ∇T̄ term to
skewness. This result also supports Tamarin-Brodsky
et al.’s (2020) [see their equation for skewness between
their Eqs. (2) and (3)] and Garfinkel and Harnik’s (2017)
(see their second item in their section 6a) arguments that
the linear advection term could be important to skewness if
meridionally asymmetric temperature gradient already
exists. The land–sea contrast, large-scale orography, and

general circulation in real climate can give complexity to
the physics of temperature PDF. Considering that the
anomalous advection of stationary temperature gradient
term plays an important role in explaining both the stan-
dard deviation and skewness of temperature PDFs, we
explore the role of its meridional component 2y ′y T̄=y

( )
and zonal component 2y ′x T̄=x

( )
separately in Fig. S2

(only JJA data are analyzed as an example here). We find
that compared to the zonal component 2y ′x T̄=x

( )
, the

meridional component 2y ′y T̄=y
( )

plays an dominant role
in both explaining temperature standard deviation and
skewness. This result shows that meridional asymmetry of
temperature gradient is a more significant source of tem-
perature skewness than the zonally asymmetry, as was also
mentioned in Tamarin-Brodsky et al. (2020).

In summary, the theory in Eqs. (8) and (9) suggests that
temperature variance and skewness can be attributed to the
symmetry and asymmetry in conditional temperature advec-
tion between anomalous warm and cold events, respectively.
The symmetrical component in conditional temperature
advection is mostly explained by anomalous advection of sta-
tionary temperature gradient, but the asymmetrical compo-
nent is largely governed by anomalous advection of both
stationary and transient temperature gradients.

5. Examining the Newtonian relaxation approximation
above land

The linear relationship between conditional temperature
advection and the temperature PDF has been shown to be a
good first-order approximation, but we would like to go one

FIG. 7. As in Fig. 5, but for DJF. The pattern correlation between (a) and (b) is 0.87.
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step beyond that to see how robust it is and to explore the
role of other processes. Since the extremes happening on land
have the most important impact on human society, we narrow
down our scope to land and exclude the Antarctic. We
applied the k-means clustering analysis algorithm (e.g., Loi-
kith et al. 2013; Wilks 2011) on the combined vector (98-point
vector) of locally normalized conditional temperature advec-
tion and locally normalized conditional average temperature
at each grid point over land, and the results are shown as Fig.
9a (JJA) and Fig. 10a (DJF). Here we use the Euclidean dis-
tance function to calculate distances between clusters, and the
numbers of clusters are chosen as 6 for JJA and 7 for DJF. To
decide these numbers, we increased the numbers of clusters
by one per iteration, beginning at 3, until there are no sig-
nificant changes in the spatial patterns of the clustering
maps—that is, until there are no radical rearrangements of
clusters but simply splitting existing clusters into smaller
ones. The k-means11 algorithm (e.g., Arthur and Vassil-
vitskii 2006) is used for cluster center initialization. We rep-
licate the clustering process 100 times and choose the result
with the smallest total sum of distance. Note that when cal-
culating the clusters, we do not weight the grid cells by their
area. When we calculate the centroids for each cluster
both with and without weighting the data with the area of
the grid cells, we find that the difference between them is
negligible. The grid-cell-area-weighted results are shown in
Fig. 9b (JJA) and Fig. 10b (DJF), and the simple averaged
result is not shown here.

For JJA, as shown in Fig. 9, there are relatively consistent
linear relationships between conditional advection and tem-
peratures in clusters 1, 2, and 4, which cover more than 60%

of the area, and the positive linear correlations between con-
ditional temperature advection and percentile average tem-
perature in these three clusters are relatively significant. For
the first cluster (Fig. 9b) that linear relationship is good along
all percentiles, whereas in the second and fourth clusters there
are turning points beyond which the relationship no longer holds.
Compositing all the points in each clusters, we can find the turning
point for the second and fourth clusters is around the 50th percen-
tile; that is, the framework in Eq. (5) explains about half of the
temperature distributions with all other terms except the condi-
tional temperature advection acting as a simple damping. The pos-
itive linear relationship is also evident for the lower half of cluster
5 (Fig. 9b); however, temperature and conditional temperature
advection are anticorrelated. For the other two clusters covering
about 20% of total area, the percentile temperature average does
not change monotonically with conditional temperature advection,
which means that the conditional temperature advection cannot
explain the shape of the temperature distribution. The first-order
Taylor expansion with constant coefficients [Eq. (2)] clearly is not
appropriate here. The classification of the advection–temperature
relationships can also serve as a useful tool to understand how
temperature extremes can be related to different processes. For
example, extreme heat events at a location in cluster 1 or 4 can be
likely explained by horizontal temperature advection, while those
events at locations in cluster 2 or 3 are more likely caused by pro-
cesses other than horizontal advection.

Similar results for DJF are shown in Fig. 10, with the
largest three clusters covering more than 60% of the area
we are studying, where there are relatively significant posi-
tive correlations between conditional temperature advec-
tion and percentile average temperature. There are also

FIG. 8. As in Fig. 6, but for DJF. The pattern correlation between (a) and (b) is 0.34.
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turning points around the 50th percentile for clusters 2 and
3, which are similar to the behaviors of clusters 2 and 4 for
JJA, respectively. The linear clusters are also dominant
above midlatitudes. For the other four clusters, the Newto-
nian relaxation parameterization [Eq. (2)] also cannot
properly explain the relationships between the conditional
temperature advection and temperature distributions. It is
interesting that we see the linear clusters (clusters 1, 2, and
3) covers larger areas in the Northern Hemisphere, and
smaller areas in the Southern Hemisphere in DJF than
JJA, which reflects a shift of the advection–temperature
relationships with seasons. Indeed, we see the fully anti-
correlated cluster (cluster 3 in JJA, and cluster 5 in DJF)

also moves to the south in DJF. Considering the similarity
between the features of JJA and DJF clustering results
(Fig. 9 and Fig. 10, respectively), in the rest of this section
we choose to examine JJA as an example to further
explore the role of four different stationary and transient
components of conditional mean horizontal advections, as
well as the vertical transport and diabatic processes in dif-
ferent clusters.

To better interpret the role of the four different stationary
and transient components of conditional mean horizontal
temperature advection [discussed in section 4 and Eq. (7)] in
shaping temperature distributions in each cluster, each of the
four components is locally normalized (normalized at each

FIG. 9. A k-means clustering analysis of the combined vector of ERA5 850-hPa JJA tempera-
ture and conditional temperature advection data above land. (a) Spatial map of the clusters. (b)
Scatterplots (black-and-white points; the shading shows the grid-cell-area-weighted density of
points in m2, as in Fig. 3) of temperature vs conditional temperature advection at all the grid
points shown in Fig. 9a in the corresponding clusters, and the grid-cell-area-weighted centroids
(colored points, the color shows the percentile of temperature) of all the scatterplots in each clus-
ter. (Similar to the calculation of grid-cell-area-weighted densities for the scatterplots, when cal-
culating the centroids, the data are weighted by the areas of the grid cells where the data come
from). The labels show the relative total area coverage of each cluster.
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grid point through first subtracting the mean of the corre-
sponding term across the 49 conditional mean value, then
divided by the standard deviation of the 49 values of condi-
tional mean of the full horizontal temperature advection
term) and averaged across all the corresponding grid points in
each cluster (when doing the average, the data are weighted
by the area of the grid cell where they come from) and plotted
against the temperature across different percentiles in Fig. 11.
Note that although we would expect the sum of the four com-
ponents to be equal to the full horizontal temperature advec-
tion at each grid point, as shown in Eq. (7), this is not true in
Fig. 11 due to the normalization process and averaging. Figure
11 shows that the conditional mean of anomalous advection
of stationary temperature term 2v′ · ∇T̄ always has a positive

correlation with the temperature, which is consistent with the
findings of a couple of previous studies (Schneider et al. 2015;
Tamarin-Brodsky et al. 2019). The stationary advection of sta-
tionary temperature gradient term 2 v̄ · ∇T̄ across different
temperature percentiles is always small. However, the role of
the full conditional temperature advection is complicated by
the other two components, that is, the covariance between the
anomalous wind and anomalous temperature gradient 2v′ ·
∇T′ and the stationary advection of anomalous temperature
gradient 2v′ · ∇T′, whose relationships with the temperature
are different in different clusters.

To allow a somewhat deeper understanding of the
behavior of different components of advection, composites
of winds and temperatures are shown in Fig. 12a, for two

FIG. 10. As in Fig. 9, but for DJF.
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different locations (33°N, 88°W and 24°S, 120°E) chosen in
cluster 2 of Fig. 9. The relationships between temperature
and conditional temperature advection (and its four differ-
ent components) are shown in Fig. 12b, and we can confirm
that the behaviors of conditional temperature advection at
these chosen locations are qualitatively consistent with the
cluster two of Fig. 9. For the location in the southeast
United States (33°N, 88°W), at lower percentiles
(5th–10th) of temperature we can observe a very weak pos-
itive advection 〈2v · ∇T〉Te . Although the normalized result
in Fig. 12b shows a negative result, it does not necessarily
mean that the actual value is positive. The advection
〈2 v · ∇T〉Te keeps increasing from a temperature percentile
range of 5%–10% to a temperature percentile range of
47.5%–52.5%, and then to 90%–95%, but it can be
observed from Fig. 12b that the full advection increases far
more at the lower half of temperature distribution than the
upper half. Similarly, the anomalous advection of station-
ary temperature gradient 〈2v′ · ∇T̄〉Te increases from a
negative value to a positive value from a temperature per-
centile range of 5%–10% to 47.5%–52.5%, but does not
increase much from 47.5%–52.5% to 90%–95%. The
behavior of the anomalous advection of anomalous tem-
perature gradient 〈2v′ · ∇T′〉Te term is slightly different
from the centroid we get in Fig. 11 and here it keeps

increasing from the lower percentile to the upper percen-
tile. For the stationary advection of the anomalous temper-
ature gradient 〈2 v̄ · ∇T′〉Te , we see that the wind at the
chosen location is always in similar directions to the con-
tour, and thus 〈2 v̄ · ∇T′〉Te is always small. The stationary
advection of stationary temperature gradient 〈2 v̄ · ∇T̄〉Te

is not presented here, but it does not change much with
percentile and thus has small contribution to the tempera-
ture distribution. For the location in east Australia (24°S,
120°E), the behavior of different components of advection
in Fig. 12b are more similar to the centroid of cluster 2 in
Fig. 9. The behaviors of the full advection term 〈2v · ∇T〉Te

and the anomalous advection of stationary temperature
gradient 〈2v′ · ∇T̄〉Te are quite similar: both of them
increase from a temperature percentile range of 5%–10%
to 47.5%–52.5%, and then to 90%–95%, and increase
faster at the lower part than the upper part of the tempera-
ture PDFs. The anomalous advection of anomalous tem-
perature gradient 〈2v′ · ∇T′〉Te is small for the lower
percentiles of temperature (5th–10th), due to the relatively
small temperature gradient of the anomalous temperature
at this location. At middle percentiles of temperature
(47.5%–52.5%), 〈2v′ · ∇T̄〉Te is quite small, and at high
percentiles it brings cold advection again, to the tempera-
ture maximum; thus, the 〈2 v′ · ∇T′〉Te gives lower values at

FIG. 11. The relationships between normalized percentile mean temperature Te in JJA and normalized conditional mean of four station-
ary and transient components of horizontal temperature advection 〈2 v̄ · ∇T̄ 〉Te , 〈2 v̄ · ∇T′〉Te , 〈2 v′ · ∇T̄ 〉Te , and 〈2 v′ · ∇T′〉Te (normal-
ized at each location by subtracting the mean of each term across all percentiles, and then divided by the standard deviation of the full con-
ditional horizontal temperature advection term across all percentiles) averaged with area-weighting in each cluster shown in Fig. 9. The
area-weighted centroids shown in Fig. 9 are plotted here again as a reference in the colored points, with percentile indicated by the color.
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FIG. 12. (a) A composite of 850-hPa JJA stationary and transient winds in vectors and temperature [(v, T), (v′, T̄ ), (v′, T′), (v̄, T′)] in
contours around the locations indicated by the red dots, for temperature at percentile ranges of [5%–10%], [47.5%–52.5%], and
[90%–95%], respectively. Two locations (33°N, 88°W and 24°S, 120°E) from cluster 2 in Fig. 9 are chosen. (b) Scatterplots for the normal-
ized conditional temperature advection and normalized temperature at these locations. Here only 19 percentile bins ([2.5%–7.5%],
[7.5%–12.5%],… , [92.5%–97.5%]), instead of 49, are used to reduce noise. The color bar shows the percentiles for the full conditional tem-
perature advection terms 〈2v · ∇T〉Te . The temperature, wind, and advection calculated from the original data are smoothed to 1.5°3 1.5°
resolution when calculating the composites.
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both end of temperature distributions. Again, the
〈2 v̄ · ∇T′〉Te term is still small and the 〈2 v̄ · ∇T̄〉Te term
does not change much with percentile, so they have small
contributions to the temperature distribution. These two
points are in very different regions, but based on this clus-
tering analysis they should have similar behaviors, and
overall these composites suggest that is indeed the case.

We next investigate the role of the other processes parame-
terized by the Newtonian relaxation [the first-order Taylor
expansion in Eq. (2)]. Expanding the Ṫ term in Eq. (1) using
the first law of thermodynamics, we have

T
t

5 2 v · ∇T2v
T
p

1v
kT
p

1
J
cp

, (10)

where k 5 Rd/cp and J are the diabatic heating processes,
such as latent heat release, radiation, and heat fluxes from the
boundary layer. The comparison of Eqs. (10) and (3) shows
that the processes we have treated as a Newtonian relaxation
are the combination of the vertical advection, adiabatic
expansion, and diabatic processes [v(kT/p), 2v(T/p), and
J/cp, respectively]. Applying the conditional mean framework
to Eq. (10), we have
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Because 〈T=t〉Te ≈ 0 as has been discussed in section 2a, and
also taking Eq. (4) into account, Eq. (11) can be written as
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〈
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〉
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:

(12)

That is, the conditional temperature advection equals the neg-
ative of the conditional mean of the processes described by
the Newtonian relaxation (first-order Taylor expansion) in
Eq. (2), which is actually a combination of the negative of the
conditional mean of the combined vertical transport term
2 〈v kT=p2T=p

( )〉Te and the negative of the conditional
mean of the diabatic process 2 〈J=cp〉Te . Thus examining how
these processes change with the percentile mean of tempera-
ture Te can improve our understanding of how well they can
be described with the Newtonian relaxation, and how well the
temperature Te can be linearly explained by conditional tem-
perature advection 〈2v · ∇T〉Te .

Similar to Fig. 11, Fig. 13 shows the locally normalized
negative conditional mean vertical transport process
2 〈v kT=p2T=p

( )〉Te and negative conditional mean dia-
batic process 2 〈J=cp〉Te averaged across all the grid points in
each cluster (when doing the average, the data are also
weighted by the area of the grid cell where they come from,
similar to what we do for Fig. 11). Here v kT=p2T=p

( )
and

J/cp are normalized respectively at each grid point through
first subtracting the mean of the corresponding term across
the 49 conditional mean value, then divided by the standard
deviation of the 49 values of conditional mean of the full

FIG. 13. The relationships between normalized percentile mean temperature Te in JJA and normalized negative conditional mean vertical
processes and normalized negative conditional mean diabatic processes (normalized at each location by subtracting the mean of each term
across all percentiles, and then divided by the standard deviation of the full horizontal temperature advection term across all percentiles) aver-
aged with area-weighting in each cluster shown in Fig. 9. The grid-cell-area-weighted centroids are as in Fig. 11.
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horizontal temperature advection term. This normalization by
the standard deviation of the conditional temperature advec-
tion enables comparison of relative magnitudes of these dif-
ferent terms. When calculating 2 〈v kT=p2T=p

( )〉Te and
2 〈J=cp〉Te at each grid point, the 2 〈v kT=p2T=p

( )〉Te

term is directly calculated from the ERA5 data, and
2 〈J=cp〉Te at each grid point is calculated as the difference of
〈2 v · ∇T〉Te and 2 〈v kT=p2T=p

( )〉Te , as described in
Eq. (12). From Fig. 13, it can be observed that the negative
conditional mean of the vertical transportation process
2 〈v kT=p2T=p

( )〉Te has similar magnitude of changes
with the change of temperature Te as the negative
conditional mean of the diabatic term 2 〈J=cp〉Te . Note that
2 〈J=cp〉Te has positive and relatively linear relationships with
Te in all the clusters, while the relationship between
2 〈v kT=p2T=p

( )〉Te and Te is only relatively good in the
first. Thus we can come to the conclusion that comparing to
the diabatic processes J/cp, the vertical transport process
v(kT/p 2 T/p) plays a more complex role in both driving
the Ṫ term in Eq. (1) away from the Newtonian relaxation in
Eq. (2), and explaining the nonlinearity of the relationship
between conditional temperature advection 〈2 v · ∇T〉Te and
percentile mean temperature Te. A visualization on the
change of vertical transport 〈v kT=p2T=p

( )〉Te with percen-
tiles of temperature in JJA is shown in Fig. S3. We can see
that the vertical transport 〈v kT=p2T=p

( )〉Te indeed
decreases with the percentile of temperature above a large
portion of the grid points, which means it works more like a
relaxation force, driving the temperature anomalies back to
the equilibrium temperatures. However, exceptions can also
be found, such as in the deep tropics and over India, where
the vertical transport is positively correlated with the temper-
ature. These are also where the conditional temperature
advection is not positively correlated with temperature (clus-
ters 3, 5, and 6), and we hypothesize that significant negative
correlations may be related to the anticorrelation of condi-
tional mean vertical transport of temperature with the hori-
zontal divergence of the winds in a region with a small
temperature gradient.

6. Discussion and conclusions

In this paper, we have studied the balance between atmo-
spheric temperature advection and other physical processes
in shaping daily temperature PDFs based on the condi-
tional mean framework developed in Linz et al. (2020).
Linz et al. (2020) analyzed the physics setting the tempera-
ture PDF in idealized aquaplanet simulations and found
that in midlatitudes the majority of the shape of the PDF
can be explained by the conditional mean of horizontal
advection, with the linear parameterization of the other
processes constant across percentiles. Our current study
applies that framework to ERA5 data for both JJA and
DJF seasons, and we find the relationship claimed above in
Linz et al. (2020) still largely holds true. The linear correla-
tion between conditional temperature advection and per-
centile mean of temperature itself is relatively high,

especially above midlatitude oceans in the Southern Hemi-
sphere. The horizontal temperature advection does not
explain the shape of the temperature distribution near
orography, and this is consistent with the important role of
topography in affecting the nearby variance through
changes in the local thermal structure (e.g., Lutsko et al.
2019). Some of the disagreement may also be due to the
choice of looking at 850 hPa rather than the surface, and
while this framework could be useful for examining temper-
ature distributions near orography, we do not do so here. In
the deep tropics where the role of advection is expected to
be small, we see that horizontal temperature advection
does not explain the shape of temperature distribution.

The conditional mean framework has been further applied
to different components of the conditional temperature
advection to explore the role of different transient and sta-
tionary terms in influencing temperature variance and skew-
ness. Consistent with previous studies (Garfinkel and Harnik
2017; Schneider et al. 2015; Tamarin-Brodsky et al. 2019), we
find that the major term related to the variance of the temper-
ature PDF is the anomalous advection of the stationary tem-
perature gradient 2 v′ · ∇T̄ , thus supporting the mixing length
theory explaining the dynamical origin of temperature vari-
ance proposed in Schneider et al. (2015) and Tamarin-Brod-
sky et al. (2019). On the other hand, we find that both the
anomalous advection of stationary temperature gradient
2 v′ · ∇T̄ and the covariance between anomalous wind and
anomalous temperature 2v′ · ∇T′ play an important role for
temperature skewness. This is an interesting result and is con-
sistent with Tamarin-Brodsky et al.’s (2020) recent result for
Northern Hemisphere; although it is commonly agreed that
2v′ · ∇T′ is important for temperature skewness (Garfinkel
and Harnik 2017; Linz et al. 2018; Tamarin-Brodsky et al.
2019) with symmetric temperature gradients, we show that
the contribution of the 2v′ · ∇T̄ term is even more important
in the real world.

To understand in more detail where the linear relation-
ship between conditional temperature advection and tem-
perature holds true above land, we tested the robustness of
the assumption of treating all the physical processes other
than horizontal advection as a Newtonian relaxation by
identifying regions with qualitatively different advection–
temperature relationships using k-means clustering analysis
in both JJA and DJF. We find that for JJA 37% of the land
area can be well explained by the first-order Taylor expan-
sion (cluster 1), and this land is primarily in the midlati-
tudes, including most of eastern Europe and the eastern
half of the United States. For about another 30% of the
land area (clusters 2 and 4), such an approximation can
readily explain either the lower half or the upper half of the
temperature PDF. These clusters have less spatial coher-
ence than the first cluster, but the second cluster tends to be
mostly at the edge of the tropics, which is especially evident
in the Southern Hemisphere. The first and fourth clusters
are dominant in western Europe, suggesting that the shape
of the temperature distribution at the upper extreme end in
there is well explained by the horizontal temperature
advection. It is interesting to note that Bieli et al. (2015)
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and Zschenderlein et al. (2019) studied several different
regions and argue that the horizontal temperature advec-
tion is not the primary mechanism causing heat waves. We
find the regions that Zschenderlein et al. (2019) studied
fall into different clusters. Western Russia, the Iberian
Peninsula, and the British Isles fall mainly into clusters
1 and 4 where temperature advection does explain the
upper part of the distribution, and this is inconsistent with
their results. Scandinavia and southern Italy fall into clusters 2,
5, and 6, consistent with their results. The approaches in these
studies differ, and it is clear that regional heatwaves need fur-
ther study. For DJF, the first-order Taylor expansion also
works well in the largest cluster, which covers about 30% of
the total area; in the following two clusters, covering another
30% of the total area, either the lower half or the upper half
of the temperature PDF can be well explained. The linear clus-
ters are still dominant above the midlatitudes, and we can see
a shift of the linear clusters with season to the south from JJA
to DJF.

Considering the similarity between JJA and DJF, we
choose to take JJA as an example to explore the role of differ-
ent stationary components, as well as the role of vertical
transportation and diabatic processes in shaping temperature
PDFs. We find that except for cluster 1, the role of other phys-
ical processes—that is, vertical transport v kT=p2T=p

( )
and diabatic processes J/cp—cannot be sufficiently repre-
sented with the first-order Taylor expansion with constant
coefficients that we have expressed here as a Newtonian
relaxation. Our analysis shows that the vertical transport
v kT=p2T=p
( )

(vertical advection and adiabatic expansion)
plays a more complex role in driving the relationship between
conditional temperature advection 〈2v · ∇T〉Te and percentile
mean temperature Te away from linear. The diabatic process
J/cp, however, has a relatively more linear relationship with
temperature under the conditional mean framework and a
smaller influence on the robustness of the first-order Newto-
nian relaxation approximation. We also examine the relation-
ships of different stationary and transient components of
horizontal temperature advection 〈2 v · ∇T〉Te with percentile
mean temperature Te in the different clusters and find that
the conditional mean of anomalous advection of stationary
temperature gradient 〈2 v′ · ∇T̄〉Te has a positive correlation
with the temperature Te and the conditional mean stationary
advection of stationary temperature gradient term
〈2 v̄ · ∇T̄〉Te across different temperature percentiles is small.
The other two components, the conditional mean of anoma-
lous wind and anomalous temperature gradient 〈2v′ · ∇T′〉Te

and the conditional mean of the stationary advection of
anomalous temperature gradient 〈2 v̄ · ∇T′〉Te , have more
complex relationships with the temperature Te, which differ
from cluster to cluster.

We caution that none of the relationships we have identi-
fied here are obviously causal. We have not evaluated
lead–lag relationships or the specifics of the meteorology of
composites for the tails. This method, while informative, is descrip-
tive and needs to be considered in combination with
other approaches to understanding temperature distributions.

Untangling the roles of different physical processes in shaping
temperature distributions will help to predict how they will change
with climate change. Although the conditional mean framework
of Linz et al. (2020) is suitable to answer them, we have not
addressed the following two important questions in the current
study: How will climate change regulate the advection–tempera-
ture relationship? And how will the temperature PDF change
with the changes of all the different physical controlling processes?
We only focused on a single climate state in this study, but the
analysis can be applied to study the change of advection and tem-
perature PDFs between climate states (e.g., using comprehensive
climate model output), and this is the topic of ongoing work.
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APPENDIX

Derivation of the Approximate Contribution of
Horizontal Temperature Advection to Temperature

Variance and Skewness

Consider horizontal temperature advection, 2v ·∇T: define
(2v ·∇T)w0 as the warmer part, (i.e., the mean value of tem-
perature advection on the condition that temperature T is
larger than its mean value) and define (2v · ∇T)c0 as the
colder part (i.e., the mean value of temperature advection on
the condition that temperature T is smaller than its mean
value). Also define 2v · ∇T( )T̄ as the value of horizontal
temperature advection on the condition that the temperature
is at its mean value. Using Eq. (5), the contribution of advec-
tion to the warmer part of temperature PDF, Tw0 (i.e., the
mean value of temperature on that condition that T is larger
than T̄) and the colder part of temperature PDF Tc0 (i.e.,
the mean value of temperature on that condition that T is
smaller than T̄) could be expressed as

Tw0 2 T̄ 5t3 2 v · ∇T( )w0 2 2 v · ∇T( )T̄
[ ]

(A1)

and

Tc0 2 T̄ 5t3 2 v · ∇T( )w0 2 2 v · ∇T( )T̄
[ ]

, (A2)

respectively. If we define

Tw 5Tw0 2 T̄ and Tc 5 T̄ 2Tc0, (A3)

2 v · ∇T( )w 5 2 v · ∇T( )w0 2 2 v · ∇T( )T̄ , (A4)
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2 v · ∇T( )c 5 2 v · ∇T( )T̄ 2 2 v · ∇T( )c0, (A5)

according to Eqs. (1) and (2) in Tamarin-Brodsky et al.
(2020), we have

s2
2 v·∇T 5

1
2
3 Tw 1Tc( )

[ ]2
5

1
2
3t3 2 v · ∇T( )w 1 2 v · ∇T( )c

[ ]{ }2

(A6)

and

S2 v·∇T 5
Tw 2Tc

1
2 3 Tw 1Tc( ) 5

t3 2 v · ∇T( )w 2 2 v · ∇T( )c
[ ]

sT
:

(A7)

Here, t is the relaxation time scale, and sT is the real stan-
dard deviation of temperature time series. Note that our
interpretation for Tw and Tc is slightly different from the
original meaning in Tamarin-Brodsky et al. (2020), although
the validity of Eqs. (A6) and (A7) should remain the same.
In Tamarin-Brodsky et al. (2020), the definition of Tw and
Tc are the average absolute intensities of warm and cold
anomalies identified by their Lagrangian feature tracking
algorithm, and are always positive, whereas our (2v · ∇T)w
and (2v · ∇T)c here could have negative values where the
correlations between conditional advection and temperature
are low.
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