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ABSTRACT: Studying temperature probability distributions and the physical processes that shape them is important for
understanding extreme temperature events. Previous work has used a conditional mean temperature framework to reveal
whether horizontal temperature advection drives temperature to extreme or median values at a specific location as a
method to dynamically interpret temperature probability distributions. In this paper, we generalize this method to study
how other processes shape temperature probability distributions and explore the diverse effects of horizontal temperature
advection on temperature probability distributions at different locations and different temperature percentiles. We apply
this generalized method to several representative regions to demonstrate its use. We find that temperature advection drives
temperatures toward more extreme values over most land in the midlatitudes (i.e., cold air advection occurs during cold
anomalies and warm air advection occurs during warm anomalies). In contrast, we find that horizontal temperature advec-
tion dampens temperature anomalies in some coastal summer monsoon regions, where extreme temperatures result from
other processes, such as horizontal humidity advection and vertical temperature advection. By calculating the mean of pro-
cesses conditioned on the temperature percentile, this method enables composite analysis of processes that contribute to
events for all percentiles and a range of processes. We show examples of composites at different percentiles for certain pro-
cesses and regions to illustrate the conditional mean analysis. This general approach may benefit future studies related to
temperature probability distributions and extreme events.
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1. Introduction

Modern climate change not only increases the mean tem-
perature but also affects higher-order statistical moments
(like variance and skewness) and thus the overall shape of
temperature probability distributions (Hoskins and Woollings
2015; McKinnon et al. 2016; Rhines et al. 2017; Tamarin-
Brodsky et al. 2019). Extreme events like heat waves are
closely related to the shape of temperature probability distri-
butions (Ruff and Neelin 2012; Huybers et al. 2014; Loikith
and Neelin 2015; Perkins 2015). Therefore, it is important to
determine the physical processes that influence temperature
probability distributions and how they will change in a warm-
ing climate, so that we can better predict the likelihood,
impact, and trend of extreme events from a dynamical per-
spective. We are still far from a thorough understanding of
the physical processes that shape temperature probability dis-
tributions (Hoskins and Woollings 2015), though many ap-
proaches have been proposed recently to interpret observed

temperature probability distributions (Grotjahn et al. 2015;
Garfinkel and Harnik 2017; Linz et al. 2018; Tamarin-Brodsky
et al. 2019, 2020; Catalano et al. 2021).

One recent approach calculated the mean of horizontal
temperature advection at each temperature percentile at a
given location to determine whether horizontal temperature
advection drives temperature toward extreme values or back
toward the median at that location (Linz et al. 2020). This
analysis was done on data generated by an aquaplanet model,
and the authors concluded that horizontal temperature advec-
tion drives temperature toward extreme values at most places
on Earth outside the tropics, which could be interpreted by a
simple theory. However, aquaplanet models do not capture
many real-world phenomena due to their lack of realistic to-
pography, land–sea contrast, and land–atmosphere interac-
tions, so these results could not be directly applied to Earth’s
climate. Zhang et al. (2022) applied this method to reanalysis
data and found that the role of horizontal temperature advec-
tion is spatially heterogeneous: it drives temperature toward
extreme values in most places, but it also drives temperature
back toward median values in a few regions (especially coastal
monsoon regions). Both Linz et al. (2020) and Zhang et al.
(2022) found that the role of horizontal temperature advec-
tion can vary with temperature percentiles at a given location.
For example, it can drive temperature toward extreme values
when temperature is high and toward median values when
temperature is low in some places. The mechanisms control-
ling such diverse roles of horizontal temperature advection
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are likely also quite diverse. In addition to the horizontal tem-
perature advection, Zhang et al. (2022) studied how vertical
processes (like vertical temperature advection) affect local
temperature probability distributions, but they did not con-
sider the roles of other processes (like those related to humid-
ity) that can affect local temperature.

This article aims to generalize the original conditional
mean framework of temperature in Linz et al. (2020) in order
to study the roles of other processes. We use the framework
to address two questions: First, why does horizontal tempera-
ture advection play different roles at different locations and at
different temperature percentiles? Second, in addition to hor-
izontal temperature advection, how do other processes shape
temperature probability distributions?

The rest of the paper is organized as follows. In section 2
we review the original conditional mean temperature frame-
work of Linz et al. (2020) and generalize it in order to study
how different processes shape temperature probability distri-
butions. We also provide an explanation for interpreting this
more general treatment. In section 3 we present three case
studies to demonstrate how to apply the generalized method,
and we explain the diverse impacts of horizontal temperature
advection using composite analyses. We also explained the
roles of other processes. Finally, in section 4, we present con-
clusions, discussions, and potential extensions.

2. Method: The generalized conditional mean
temperature framework

Global warming is simultaneously increasing the global
mean temperature and changing the shape of local tempera-
ture probability distributions. Many studies have examined
extreme events in particular regions and how these events
have changed or are likely to change (Ruff and Neelin 2012;
Huybers et al. 2014; Loikith and Neelin 2015; Perkins 2015).
Analysis of composites of weather patterns that precede or
follow an “event” (defined however is most relevant to the
phenomenon of interest) can provide dynamical insights into
how those events come to be. This work and related studies
(Linz et al. 2020; Zhang et al. 2022) are motivated by the de-
sire to take this local detective work and make it more widely
applicable both geographically and with respect to what con-
stitutes an event. Accordingly, we examine all percentiles of
temperature at each location in our study (though we focus
on land), and we take the mean of the temperature tendencies
due to different processes at each of these percentiles (T e,
where e is the percentile). The conditional mean temperature
framework was first proposed in Linz et al. (2020) and then
used in Zhang et al. (2022) [a related framework was pre-
sented for precipitation in Chen et al. (2019), Norris et al.
(2019a,b), and Ma et al. (2020)]. We encourage the interested
reader to refer to Linz et al. (2020) for details of the condi-
tional mean framework used to examine the role of horizontal
temperature advection in driving extremes. Here, we present
an explanation of how to interpret these results and then fo-
cus on temperature advection before generalizing the method
to explore how other processes shape temperature probability
distributions.

a. A simplified presentation of the conditional
mean framework

Consider a case where temperature is only affected by two pro-
cesses, call themA andB. The temperature budget equation is

­T
­t

5 A 1 B: (1)

This balance applies instantaneously, and it also applies to the
average at a given percentile [see Linz et al. (2020)], so if we
use the notation h*iTe to represent the mean at a given percen-
tile e of temperature, we can also write the following balance:

­T
­t

〈 〉
Te

5 hAiTe 1 hBiTe : (2)

This can be rewritten to express the left-hand side as the rate
of change of the temperature at a given percentile:

­Te

­t
5 hAiTe 1 hBiTe : (3)

Since we are considering the temperature distributions to be
stationary in time, there is no time tendency at a particular per-
centile. At a given percentile, then, there is a balance between
A and B:

0 5 hAiTe 1 hBiTe : (4)

How can we make any inferences about causality in this case?
Each percentile of temperature has a balance of terms}
which of these is “driving” temperature anomalies toward
more extreme values and which is “damping” them toward
the median? To think about this, consider a particular event
that falls into, say, the 75th percentile T75, where it is getting
warmer. That means that right now

­T
­t

5 A 1 B . 0: (5)

A and B were balanced, but in order to get warmer, now A
has to get larger or B does. Which one is causing the tempera-
tures to get hotter? We return to the statistical perspective
and see what the balance is, statistically, when it is warmer. If
the conditional means of A and B look like the example
shown in Fig. 1a, hAiT 75 , hAiT 76 , so on average the contribu-
tion of A is even more positive at the 76th percentile than the
75th. At the 76th percentile, B is more negative, so B cannot
be doing the work of making the temperatures more extreme.
Therefore A drives the temperature from the 75th to the 76th
percentile. A more complicated example is shown in Fig. 1b. Now
if at a particular time, the temperature is at the 75th percentile
and it is getting warmer, hAiT 75 . hAiT 76 , but hBiT 75 , hBiT 76 ,
so now B is driving the warm extreme values (even though the
tendency due to B is actually a negative tendency). The behavior
changes over the distribution in this example also, so A drives
cold extremes, butB drives warm ones.

The simplest way to understand the role of different pro-
cesses in causing the shape of the temperature distribution
heuristically is to remember that a term with a positive linear
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slope (in Te versus tendency) for a certain range of percentiles
is driving temperatures toward more extreme values in that
range. One with a negative slope is acting to damp anomalies.
With that in mind, we will consider temperature advection
alone before moving on to other processes.

b. The role of horizontal temperature advection in
shaping temperature distributions

We start by looking at the horizontal temperature advec-
tion (2v ? =T), because this is the easiest term to understand.
At each grid point, we first calculate the conditional mean
temperature values Te, where Te represents temperature at
the eth percentile. Then we calculate the conditional mean
horizontal temperature advection h2v ?=TiTe when tempera-
ture is at Te. Notice that h2v ?=TiTe represents the condi-
tional mean horizontal temperature advection at the eth
temperature percentile, rather than the conditional mean
value at the advection percentile h2v ?=Ti(2v ?=T)e , which in
general are very different [see Fig. 1 in Zhang et al. (2022)].
The relationship between Te and h2v ?=TiTe shows how hori-
zontal temperature advection shapes the temperature proba-
bility distribution at that grid point.

Following Zhang et al. (2022), in this article we calculate
the conditional mean values on 49 different percentiles
(e5 2, 4,… , 98), and each conditional mean value is the aver-
age over temperature percentile range [e 2 0.5, e 1 0.5]. All
calculations are based on 6-hourly 850-hPa ERA5 reanalysis

data in boreal summer (JJA). We only focus on land, though
the approach is also applicable over ocean. Since we use data
on the 850-hPa pressure level, regions where atmospheric
pressure does not reach 850 hPa are ignored.

We then calculate the Pearson correlation between Te and
h2v ?=TiTe , corr(Te, h2v ?=TiTe ), to explore the relationship
between horizontal temperature advection and the local tem-
perature probability distribution. Figure 2a shows the global
distribution of corr(Te, h2v ?=TiTe ). The implication of
corr(Te, h2v ?=TiTe ) can be explained by idealized examples
in Fig. 2b: if corr(Te, h2v ?=TiTe )511 (the red line), there is
warm (cold) advection when temperature is high (low).
Therefore, horizontal temperature advection drives tem-
perature to extreme values by making hot (cold) days hot-
ter (colder). By contrast, the horizontal temperature
advection drives temperature back to the median value by
making hot (cold) days colder (hotter) in areas where
corr(Te, h2v ?=TiTe )521 (the blue line). Most places in
Fig. 2a have a significant positive correlation, while a few small
regions have a negative one. This is consistent with the result
in Zhang et al. (2022) (also based on ERA5 reanalysis data),
but slightly different from Linz et al. (2020) (based on data
generated by an idealized aquaplanet model) due to the lack
of land–sea contrast in the aquaplanet model.

Note that the sign of corr(Te, h2v ?=TiTe ) does not tell the en-
tire story, especially in the tropics and subtropics. For example, at
the Arabian Peninsula, the fact that corr(Te, h2v ?=TiTe )’11

FIG. 1. Two examples of the balance described in Eq. (4). (a) The two physical processes act consistently between
hot and cold percentiles. (b) A less intuitive example where the process that always acts as a negative tendency
(B) drives warmer extremes and the process that always acts as a positive tendency (A) drives cold extremes.
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in Fig. 2a tells us horizontal temperature advection drives tempera-
ture to extreme values, but we cannot say the hot (cold) extreme
temperatures result from warm (cold) advections, because the
Arabian Peninsula is among the hottest places on Earth in
JJA and hot temperatures there do not advect from other
hotter places. The conditional mean horizontal temperature
advection h2v ?=TiTe is negative at every Te at the Arabian
Peninsula, and more negative at low temperatures while
close to zero at high temperatures. As shown in Fig. 1b,
“horizontal temperature advection drives temperature to
extreme values” means “horizontal temperature advection in-
creases with temperature” but not necessarily means “warm
(cold) advection occurs at hot (cold) temperatures.” There-
fore, the correlation between conditional mean horizontal
temperature advection and temperature percentiles is thus a
quick way to check the general behavior in a region, but a
more detailed examination is sometimes necessary.

The fact that corr(Te, h2v ?=TiTe )’11 in many places can
be interpreted to mean that all other processes act as a linear
damping. We can take the Taylor approximation of the total
derivative of temperature,

Ṫ 5 a0 1 a1T 1 a2T
2 1 · · · (6)

and rewrite the equation to the first order as a Newtonian re-
laxation to an equilibrium temperature Teq,

Ṫ ’2
T 2 Teq

t
: (7)

Therefore, Teq 52a0/a1, with a positive relaxation time scale
t 521/a1 (t is similar to a relaxation time scale when positive
and is physically uninterpretable when negative).

Neglecting the vertical temperature advection 2v(­T/­p)
(considering it to be part of the relaxation term), we can re-
write the local temperature tendency equation as

­T
­t

52v ? =T 2
T 2 Teq

t
, (8)

and then calculate the conditional mean value of both sides of
the equation. The conditional mean local temperature ten-
dency can be neglected, as it is nonzero with global warming
but nevertheless far smaller than the other terms in the equa-
tion (see Zhang et al. 2022). We then get

Te 5 th2v ? =TiTe 1 Teq, (9)

which tells us that when the approximation in Eq. (7) is valid,
h2v ?=TiTe will be positively and linearly related to Te.
Therefore, horizontal temperature advection drives tem-
peratures to extreme values in the areas in Fig. 2 where
corr(Te, h2v ?=TiTe )’11, while other processes together
serve as a relaxation process driving temperatures back to
the median value.

Although t and Teq have been written this way in analogy
to a Newtonian relaxation, they cannot be understood in the
standard way. A positive t gives a sense of the time scale of
persistence of the temperature anomalies due to advection.
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FIG. 2. (a) The distribution of the Pearson correlation between 850-hPa JJA conditional mean horizontal temperature advection and
temperature [corr(Te, h2v ?=TiTe )] on land. Regions where the 850-hPa pressure level is under the surface are ignored. Grid points
whose correlation value meets the 5% confidence level in a shuffling test are shaded. In this map we mark two black squares, six green
squares, and two yellow squares. We will choose one representative region from each color to do a case study in section 3. (b) Idealized
examples when conditional mean horizontal temperature advection and temperature have a perfect linear relationship
Te 5 th2v ?=TiTe 1 Teq. (c)–(e) The corr(Te, h2v ?=TiTe ) in three representative regions marked by black, green, and yellow squares, re-
spectively. The dashed squares indicate subregions in which we will compute regional averages. We will do case studies in these three re-
gions in section 3.
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Notice that Teq Þ T50, and Teq is useful only in so much as the
sign of Teq 2 T50 will give a sense of the role of other processes
at T50 [if Teq is larger/smaller than T50, “other processes” 2

(T50 2 Teq)/t will be positive/negative and have a warming/
cooling effect at T′50]. The t , 0 is physically uninterpretable as
this simplified picture is not relevant when temperature advec-
tion is acting to damp anomalies (applying t and Teq fields de-
rived here in a dynamical core would not be meaningful and
would indeed be unstable). The way to use these values is as a
sanity check and, where t . 0, as a comparison of the strength
of other processes relative to temperature advection. Alterna-
tively, consider them to just be coefficients from a Taylor ex-
pansion that have been rewritten to have simpler units. They
are determined by doing a linear regression, and we label them
in Fig. 2b.

c. The roles of other processes in shaping temperature
distributions

In the regions where corr(Te, h2v ?=TiTe )’21 (highlighted
by blue color in Fig. 2a), processes other than the horizontal
temperature advection drive temperature to extreme values,
while the horizontal temperature advection drives tempera-
ture back to the median value. Most of these regions are
coastal summer monsoon regions (such as the six green
squares in Fig. 2a; please refer to appendix A for the definition
of monsoon region and Fig. A1 for a map), so we expect hu-
midity to play an important role in shaping their local temper-
ature distributions.

To test this, we can replace temperature T by equivalent po-
tential temperature ueq and see how conditional mean horizontal

ueq advection (calculated at different ueq percentiles) is related
to ueq. The ueq takes both temperature and humidity into consid-
eration, so differences between T and ueq can tell us aboout the
role of humidity in shaping temperature distributions. Equiva-
lent potential temperature is calculated by the following simpli-
fied formula (Stull 1988):

ueq 5 u 1
Ly

cp
q 5 T

p0
p

( )Rd/cp
1

Ly

cp
q, (10)

where T is temperature, u is potential temperature, q is spe-
cific humidity, Ly is the latent heat of vaporisation of water, cp
is the heat capacity of air, p0 5 1000 hPa, p5 850 hPa, and Rd

is the specific gas constant.
Figure 3a shows the global distribution of

corr(ueeq, h2v ?=ueqiueeq ), which is calculated using the same
data as Fig. 2a; therefore, a comparison of the correlations dis-
played in these figures can reveal the role of humidity in set-
ting local temperature distributions. In particular, regions with
positive correlations in Fig. 2a retain their positive correlation
in Fig. 3a (like west Siberia in Fig. 2c), while many regions
with negative correlations in Fig. 2a (especially coastal mon-
soon regions marked by green squares like Somalia and Kenya
in Fig. 2d) are positive in Fig. 3a, indicating a switch from a
damping role for temperature advection to amplifying one for
ueq advection. In those regions horizontal temperature and
moisture advection together cause ueq values to be more
extreme.

To show the roles of humidity related processes more ex-
plicitly, next we calculate the total derivative of ueq,
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FIG. 3. (a) The distribution of the Pearson correlation between 850-hPa JJA conditional mean horizontal ueq advection and ueq on land.
Regions where the 850-hPa pressure level is under the surface are ignored. Grid points whose correlation value meets the 5% confidence
level in a shuffling test are shaded. The squares are same as those in Fig. 2a. (b) Iidealized scatterplots when all terms have a perfect linear
relationship with Te. The sum of all terms is zero according to Eq. (13). (c)–(e) the corr(ueeq, h2v ?=ueqiueeq ) in three representative regions.
The dashed squares indicate subregions in which we will compute regional average.
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dueq
dt

5
­ueq
­t

1 v ? =ueq 1 v
­ueq
­p

, (11)

and expand this equation to separate temperature and humidity,

­ueq
­t

1
p0
p

( )Rd/cp (v ? =T) 1 Ly

cp
(v ? =q) 1 v

­

­p
p0
p

( )Rd/cp
T

[ ]

1 v
Ly

cp

­q
­p

5 R, (12)

where the residual term R5 dueq/dt incorporates other pro-
cesses that can change ueq, like radiation and sensible heat
flux. Note that R does not include latent heat flux, since ueq is
conserved in moist adiabatic processes.

Then we calculate the conditional mean value of both sides
in Eq. (12) at different temperature percentiles. Since the con-
ditional mean local ueq tendency can be ignored (the largest
trend is on the order of 0.1 K yr21, much smaller than advec-
tion terms), we get
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FIG. 4. The relationships between conditional mean temperature Te (averaged in the dashed squares in Figs. 2c–e) vs conditional mean
horizontal temperature advection (p0/p)Rd /cp h2v ?=TiTe (points with gradient color indicating percentile e), vertical temperature advection
(p0/p)Rd /cp h2v(­T/­p)1 v(kT/p)iTe (blue points), horizontal humidity advection (Ly /cp)h2v ?=qiTe (green points), vertical humidity ad-
vection (Ly /cp)h2v(­q/­p)iTe (red points), and residual term RTe (yellow points) averaged in those dashed squares in Figs. 2c–e.
(a) West Siberia; (b) Somalia and Kenya, east coast of equatorial Africa; and (c) south corner of Argentina. Note we have used the oppo-
site signs from Zhang et al. (2022, their Fig. 13).

TABLE 1. We apply the generalized conditional mean framework to 10 representative regions marked by squares in
Fig. 2a. Based on results in the table, they can be roughly divided into three classes (with different square colors). The first column shows
the locations of representative regions. The second column shows the signs of r(T)5 corr(Te, h2v ?=TiTe ). The third column shows the
signs of r(ueq)5 corr(ueeq, h2v ?=ueqiueeq ). The fourth column shows the classes that the regions belong to. The fifth column shows the
mechanisms of corr(Te, h2v ?=TiTe )’21 (why the horizontal temperature advection drives temperature to median value) in summer
(JJA), while corr(Te, h2v ?=TiTe )’11 is common hence not explained. The last column lists terms (e.g., Tadv means horizontal
temperature advection) that drive temperature to extreme values, and the term with the asterisk is the dominant one with larger
magnitude.

Region r(T) r(ueq) Class Why r(T) , 0 Driving term

Central Australia 1 1 1 } Tadv*, qvertical
West Siberia 1 1 1 } Tadv*, qvertical
Somalia, Kenya 2 1 2 Monsoon qadv*, Tvertical

Brazil east coast 2 1 2 Monsoon qadv*, Tvertical

India west coast 2 1 2 Monsoon qadv*, R
China south coast 2 1 2 Monsoon qadv*, Tvertical

Myanmar 2 1 2 Monsoon qadv*, R
U.S. Texas coast 2 1 2 Unknown qadv*
South Argentina 2 2 3 Topography Tvertical*, qadv
Central Africa 2 0 3 Topography qadv*, Tvertical
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p0
p

( )Rd/cp h2v ? =TiTe︸										︷︷										︸
1

1
Ly

cp
h2v ? =qiTe︸						︷︷						︸

2

1
p0
p

( )Rd/cp
2v

­T
­p

1 v
kT
p

〈 〉
Te︸															︷︷															︸

3

1
Ly

cp
2v

­q
­p

〈 〉
Te︸					︷︷					︸

4

1 RTe︸︷︷︸
5

5 0, (13)

where each term is averaged at a temperature percentile Te. We
will call the five terms in Eq. (13) conditional mean horizontal
temperature advection, horizontal humidity advection, vertical
temperature advection, vertical humidity advection, and a resid-
ual term, respectively. If one starts from the primitive T and q
equations and derives the moist static energy (MSE) budget,
one will get the same result [please refer to Eq. (10.3) in
Schneider and Sobel (2007)]. Later when we do composite anal-
ysis, we will omit the factors (p0/p)Rd/cp and Ly /cp for simplicity.

We can study the roles of these five terms by studying each
one’s relationship with conditional mean temperature Te. At
grid points where the result behaves like the idealized example

in Fig. 3b, the horizontal humidity advection and vertical tem-
perature advection drive temperature to extreme values, while
the horizontal temperature advection and the vertical humidity
advection drive temperature back to the median value. The re-
sidual term has a negligible effect. Zhang et al. (2022) did a simi-
lar diagnostic analysis, but they mainly focused on vertical
temperature advection h2v(­T/­p)1v(kT/p)iTe and did not
take humidity into consideration.

So far, we have generalized the original conditional mean
framework in Linz et al. (2020) and Zhang et al. (2022) to
study how processes other than the horizontal temperature
advection shape temperature probability distributions. Next,
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FIG. 5. The composite maps in west Siberia, Russia (Fig. 2c), at different temperature percentiles: (a) 2%, (b) 34%,
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temperature.
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we will apply the method to the three representative regions
shown in Figs. 2c–e as case studies.

3. Results

Figure 4 shows scatterplots of Te versus the five terms (con-
ditional mean value) in Eq. (13) in the three representative
regions (they represent three different classes) in Figs. 2c–e.
In this section we focus on these three representative regions
to study how horizontal temperature advection and other pro-
cesses shape local temperature probability distributions and
explain the diverse roles of horizontal temperature advection
in shaping local temperature probability distributions by com-
posite analysis. Results of other regions are summarized in
Table 1.

a. The role of horizontal temperature advection

First, we will examine the role of horizontal temperature
advection (2v ? =T) in setting the temperature distribution,
and explain its diverse roles in different regions by composite
analysis.

The first example is west Siberia, an inland plain in Fig. 2c,
which represents most regions where corr(Te, h2v ?=TiTe )’11.
[See Zhang et al. (2022) for a comparison of regions.] The points
with color gradient show horizontal temperature advection in
Fig. 4a with the color indicating the percentile. This region has a
cold (warm) horizontal temperature advection when temperature
is low (high), so the horizontal temperature advection drives tem-
perature to extreme values. To study the mechanism connecting
horizontal temperature advection to local temperature distribu-
tion, we create and analyze composite maps at different tempera-
ture percentiles.

Composite maps in Fig. 5 show how the horizontal temper-
ature advection (2v ? =T) drives temperature to the extreme
values: the direction of the temperature gradient =T does not
depend on temperature percentile Te (the south side is hotter
than the north side in each of the four maps, though the mag-
nitude of temperature gradient depends on temperature. See
Fig B1 in appendix B for details), but the direction of wind
vector v depends on Te. When temperature is low (Fig. 5a, on
cold days), the wind heads from north (cooler) to south
(warmer), creating cold temperature advection in the dashed

FIG. 6. The composite maps in Somalia and Kenya, the east coast of equatorial Africa (Fig. 2d), at different temper-
ature percentiles: (a) 2%, (b) 34%, (c) 66%, and (d) 98%. The solid black line is the coastline, the white lines are
elevation contours, and the dashed green line marks the subregion where we compute regional averages. The black
arrows represent conditional mean wind vectors, and the color indicates temperature.
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black square (2v ? =T , 0). By contrast, when temperature is
high at these points (Fig. 5d, on hot days), southerly winds
drive warm temperature advection (2v ? =T . 0). The other
two composite maps (Figs. 5b,c) are simply transitional states
between the extremes. Therefore, the horizontal temperature
advection (2v ? =T) tends to make hot days hotter and cold
days colder, thereby driving temperature to extreme values.
Figure 4a also shows that the vertical humidity advection has
a positive slope for the upper half of the distribution, so it
also contributes to warm extremes. This example is a simple
one that nevertheless corresponds to many regions across the
globe.

Our second case study is Somalia and Kenya, on the east
coast of equatorial Africa in Fig. 2d. This region and many
other tropical regions where corr(Te, h2v ?=TiTe )’21
(marked by green squares in Fig. 2a) are typical coastal

summer monsoon regions (Li and Zeng 2000; An et al. 2015),
which suggests that the coastal summer monsoon influences
the role of horizontal temperature advection in these regions.
[We use a monsoon index (Li and Zeng 2000) to define mon-
soon regions; details are in appendix A]. This analysis is only
done for boreal summer, so we cannot comment on
corr(Te, h2v ?=TiTe ) in these regions during other nonmon-
soonal seasons.

From the points with color gradient (which represents hori-
zontal temperature advection) in Fig. 4b we know that this re-
gion has warm (cold) horizontal temperature advection when
temperature is low (high). Composite maps in Fig. 6 show
that the coastal summer monsoon contributes to the negative
corr(Te, h2v ?=TiTe ) in Somalia and Kenya. The direction of
the wind vector v does not depend on temperature percentile
Te (v has the same directions in four maps in Fig. 6), because
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FIG. 7. The composite maps in the south corner of Argentina (Fig. 2e), at different temperature percentiles: (a) 2%,
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the prevailing background monsoon wind is from the ocean to
the land. Conversely, the direction of temperature gradient
=T depends on Te. When temperature is low (Fig. 6a, in cold
days), the ocean is warmer than the land (because of the
ocean’s higher heat capacity), so the sea breeze transports
warm air from the ocean to the land, resulting in the warm ad-
vection in the dashed green square (2v ? =T . 0). When tem-
perature is high (Fig. 6d, in hot days), the ocean is cooler than
the land and cold air is advected onto land by the prevailing
winds (2v ? =T , 0). The other two composite maps (Figs.
6b,c) are transitional states between the extremes. Therefore,
the horizontal temperature advection (2v ? =T) associated
with the coastal summer monsoon tends to make hot days
cooler and cold days warmer, thereby driving temperatures
back to the median values.

Our third case study is the south corner of Argentina (Pata-
gonia) in Fig. 2e, where corr(Te, h2v ?=TiTe )’21 but there
is not a coastal monsoon. The other region of this class is in
central Africa (as denoted by a yellow square in Fig. 2a).
Both of these are distinguished by substantial local topogra-
phy, which should play an important role in setting the shape
of temperature distributions (Lutsko et al. 2019). Unlike the
coastal monsoon regions, the horizontal temperature advec-
tion h2v ?=TiTe (points with color gradient) in Fig. 4c always
has a negative value: when temperature is high (low), the cold
advection is stronger (weaker). Therefore, the horizontal tem-
perature advection (2v ? =T) drives temperature back to me-
dian values, and it has a cooling effect at both high and low
temperatures.

The composite maps at different temperature percentiles
in Fig. 7 differ from those in Somalia and Kenya (Fig. 6).
Here, the wind direction depends on temperature percen-
tile Te, and the temperature distribution does not have
land–sea contrast. Figure 7 shows that the horizontal tem-
perature advection is actually a negative contribution at
every temperature percentile, with a stronger negative ten-
dency at the highest percentiles. This example shows that
the negative correlation does not show the entire story, as
at the coldest temperatures, horizontal temperature advec-
tion still has a negative tendency, thereby has a cooling
effect. As we mentioned earlier, the correlation between
conditional mean horizontal temperature advection and
temperature percentiles is a quick way to check the general
behavior in a region, but a more detailed examination is
sometimes necessary.

In Fig. 8 we explain the diverse roles of horizontal tempera-
ture advection in shaping local temperature probability distri-
bution at different places. In most inland regions (e.g., west
Siberia in the Northern Hemisphere Fig. 2c), the south is al-
ways warmer than the north. Northerly wind at low tempera-
tures cools the black box in Fig. 8a to lower temperatures,
while southerly wind at high temperatures warms the black
box in Fig. 8b to higher temperatures, so horizontal tempera-
ture advection drives temperature to extreme values (see
Fig. 5). By contrast, in most coastal monsoon regions (e.g.,
Somalia and Kenya at the east coast of equatoral Africa in
Fig. 2d), there is always sea breeze (because we are looking at
the conditional mean wind that filters out the local land–sea

circulation) in boreal summer. When temperature is low
(high), the ocean is warmer (cooler) than the land because
of higher heat capacity, resulting in warm (cold) advection
in the green box in Fig. 8c (Fig. 8d), so the horizontal
temperature advection drives temperature back to median
values (see Fig. 6). Nevertheless, there are also a few re-
gions with special topography (like south Argentina in
Fig. 2e) where the negative corr(Te, h2v ?=TiTe ) is not
caused by summer monsoon. There are some regions where
the slope of horizontal temperature advection changes
sign for different percentiles, but generally, temperature ad-
vection is well behaved so that the sign of the correlation
coefficient provides information over almost all of the
distribution.

b. The roles of other processes

Now we look back to Figs. 3 and 4 to study the roles of
other processes in shaping local temperature probability
distribution.

Considering ueq instead of T, the correlation turns from
negative to positive in Somalia and Kenya (Fig. 3d), but re-
mains approximately the same in west Siberia and south
Argentina (Figs. 3c,e). Such contrast shows that humidity
plays an important role in determining the sign of the correla-
tion in the monsoon (Somalia and Kenya) region, while it is
not important in the inland (west Siberia) or nonmonsoon
(Argentina) region. This is consistent with the results in
Figs. 2a and 3a, where we see that most coastal monsoon re-
gions with green squares have negative corr(Te, h2v ?=TiTe )
but positive corr(ueeq, h2v ?=ueqiueeq ).

We study the roles of different processes more explicitly by
the budget analysis in Fig. 4. In west Siberia (Fig. 4a), horizontal
temperature advection h2v ?=TiTe (points with color gradient),
and, to a lesser extent, vertical humidity advection (Ly /cp)
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FIG. 8. The schematic figure explaining the diverse roles of hori-
zontal temperature advection in shaping local temperature proba-
bility distribution at different places: (a) an inland region (in the
Northern Hemisphere), when temperature is low; (b) an inland
region, when temperature is high; (c) a monsoon region, when
temperature is low; and (d) a coastal monsoon region, when tem-
perature is high. The minus sign means cold advection, while the
plus sign means warm advection.
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h2v(­q/­p)iTe (red points) drive temperature to extreme values.
In Somalia and Kenya (Fig. 4b), horizontal humidity advection
(Ly /cp)h2v ?=qiTe (green points), and, to a lesser extent,
vertical temperature advection h2v(­T/­p)1v(kT/p)iTe (blue
points) drive temperature to extreme values. In south
corner of Argentina (Fig. 4c), vertical temperature advec-
tion (p0/p)Rd/cp h2v(­T/­p)1v(kT/p)iTe (blue points), and, to a
lesser extent, horizontal humidity advection (Ly /cp)h2v ?=qiTe

(green points) drive temperature to extreme values. A
summary of the same diagnostic analysis in other regions
(marked by squares in Fig. 2a) is shown in Table 1. Now we
analyze the roles of other processes by case studies.

1) THE ROLE OF HORIZONTAL HUMIDITY ADVECTION

We find that in lots of coastal monsoon regions (marked by
green squares in Fig. 2a), horizontal humidity advection, in-
stead of horizontal temperature advection, is the dominant
term that drives temperature to extreme values. Therefore,
we take Somalia and Kenya in Fig. 2d as an example to ex-
plain the role of horizontal humidity advection (it drives tem-
perature to extreme values, see the green points in Fig. 4b) in

detail by looking at humidity and wind composites at different
temperature percentiles.

First, we focus on specific humidity and wind composites.
Similar to Fig. 6, in Fig. 9 the direction of the wind vector v
does not depend on temperature percentile Te, because the
prevailing background wind is always from the ocean to the
land. Conversely, the direction of specific humidity gradient
=q depends on Te. When temperature is low, (Fig. 9a, in
cold days), the sea breeze transports dry air near the coast
to wetter inland regions, so (Ly /cp)h2v ?=qiTe , 0 in the
dashed green square; when temperature is high (Fig. 9d,
in hot days), the sea breeze transports wet air near the
coast to drier inland regions, so (Ly /cp)h2v ?=qiTe . 0 in
the dashed green square. The other two composite maps
(Figs. 9b,c) are transitional states between the extremes.
Therefore, horizontal humidity advection might drive temper-
ature to extreme values by affecting latent heat release from
condensation: At low temperatures dry advection reduces latent
heat release and has a cooling effect, while at high temperatures
moist advection increases latent heat release and has a warming
effect.

FIG. 9. The specific humidity and wind composite maps in Somalia and Kenya, the east coast of equatorial Africa
(Fig. 2d), at different temperature percentiles: (a) 2%, (b) 34%, (c) 66%, and (d) 98%. The solid black line is the
coastline, the white lines are elevation contours, and the dashed green line marks the subregion where we compute re-
gional averages. The black arrows represent conditional mean wind vectors, and the color indicates specific humidity.
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To see whether horizontal humidity advection drives tem-
perature to extreme values via latent heat release from con-
densation, we not only look at specific humidity (Fig. 9 above),
but also look at relative humidity (RH, Fig. 10 below). At low
temperatures (Fig. 10a), the highest RH in the subregion en-
closed by the green square is already 100%, so condensation
releases latent heat. The dry advection (Figs. 9a and 10a) re-
places the saturated moist air by dry air and reduces latent
heat release, so it has a cooling effect. However, at high tem-
peratures (Fig. 10d), RH in the green square or the source of
the advection are both far from 100%. Although moist advection
(Figs. 9d and 10d) makes the green square wetter, the air is not
saturated, so the moist advection does not increase latent heat re-
lease. Therefore, horizontal humidity advection has a cooling ef-
fect at low temperatures by reducing latent heat release, but has a
warming effect at high temperatures through other mechanisms at
Somalia and Kenya. We are not able to explain the latter right
now, and we leave this for future research.

Similar humidity and wind composite analysis can be done
in other representative regions. We find that in most coastal
monsoon regions (green squares in Fig. 2a), horizontal humidity

advection is the dominant factor driving temperature to extreme
values (see Table 1 for details), although the underlying mecha-
nisms might be different. That is why corr(Te, h2v ?=TiTe ), 0
(Fig. 2d) but corr(ueeq, h2v ?=ueqiueeq ). 0 (Fig. 3d) in coastal
monsoon regions.

2) THE ROLE OF THE RESIDUAL TERM

(DIABATIC HEATING)

Somalia and Kenya in Fig. 2d is also a good example to
study the role of the residual term. In Fig. 4, the residual
term RTe (yellow points) is presumed to be from diabatic
heating, which is dominated by radiation absorption at the
850-hPa pressure level. Figure 4b tells us that at Somalia
and Kenya the residual term RTe is large and positive at low
temperatures, while close to zero at high temperatures.
Therefore, numerically we would expect that radiation
absorption related to cloud cover has a significant warming
effect at low extremes but does not play an important role
at high extremes.

Figure 11 shows the cloud cover fraction in Somalia and
Kenya at different temperature percentiles. At low temperatures

FIG. 10. The relative humidity and wind composite maps in Somalia and Kenya, the east coast of equatorial Africa
(Fig. 2d), at different temperature percentiles: (a) 2%, (b) 34%, (c) 66%, and (d) 98%. The solid black line is the
coastline, the white lines are elevation contours, and the dashed green line marks the subregion where we compute re-
gional averages. The black arrows represent conditional mean wind vectors, and the color indicates relative humidity.
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(Fig. 11a), the cloud cover in the green square is anomalously
high. Low cloud at 850 hPa absorbs solar radiation and results in
a positive heating rate, so radiation absorption related to cloud
cover has a warming effect at low temperatures. At high
temperatures (Fig. 11d), the cloud cover in the green square
is close to zero, so the heating rate is very small and radia-
tion absorption does not affect temperature. Results from
Fig. 11 are consistent with our expectation above based on
Fig. 4b.

3) THE ROLE OF VERTICAL TEMPERATURE ADVECTION

Subsidence during summer is known to be important for
warm extremes. Now we use south Argentina as the example
to study the role of vertical temperature advection. Figure 4c
tells us that vertical temperature advection (blue points) has a
positive slope, so numerically it drives temperature to ex-
treme values, and seems to have a large warming effect at
high temperatures at the south corner of Argentina.

Figure 12 shows the horizontal and vertical velocity com-
posites in south Argentina at different temperature percen-
tiles. At low temperatures (Fig. 12a), the vertical velocity
in the yellow square is relatively small, and close to zero on

average. As a result, vertical temperature advection is small
at low temperatures. At high temperatures (Fig. 12d), the
yellow square is dominated by subsidence [vertical velocity
v5 dP/dt. 0]. Given that 2(­T/­p)1 (kT/p). 0 in this
region (figure not shown), vertical temperature advection
h2v(­T/­p)1v(kT/p)iTe is positive and has a significant
warming effect. Because the horizontal advection comes
from the Andes, we can conclude that adiabatic warming
from downslope winds off the Andes is a major contributor
to warm extremes in this region.

4. Conclusions and discussion

In this article we present a more general conditional mean
temperature framework to study how various processes shape
local temperature probability distributions. We also explore
the mechanisms underlying the diverse effects that horizontal
temperature advection can have on temperature probability
distributions at different locations and different temperature
percentiles. We then apply the generalized conditional mean
temperature framework and perform composite analyses in
several representative regions (marked by squares in Fig. 2a)

FIG. 11. The cloud cover fraction at Somalia and Kenya, the east coast of equatorial Africa (Fig. 2d), at different
temperature percentiles: (a) 2%, (b) 34%, (c) 66%, and (d) 98%. The solid black line is the coastline, the white lines
are elevation contours, and the dashed green line marks the subregion where we compute regional averages. The
color indicates cloud cover fraction.
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and present results of three case studies in section 3. We sum-
marize the results of all 10 case studies in Table 1.

Based on the results in Table 1, the 10 representative re-
gions can be roughly divided into three classes. We now com-
pare our results to the results from k-means clustering
analysis for all land area based on the relationship between
conditional mean temperature Te and horizontal temperature
advection h2v ?=TiTe (Zhang et al. 2022).

Class 1 in Table 1 features corr(Te, h2v ?=TiTe )’11, and
it belongs to cluster 1, the most common cluster in
Fig. 9 in Zhang et al. (2022). This class represents regions on
land where corr(Te, h2v ?=TiTe )’11, including central Aus-
tralia and west Siberia. In those regions the horizontal temper-
ature advection (2v ? =T) is the dominant term that drives
temperature to extreme values. In Linz et al.’s (2020) analysis

of temperature advection in an aquaplanet model, almost all
places outside the tropics behave like those in class 1.

Class 2 and class 3 in Table 1 feature corr(Te, h2v ?=TiTe )’
21, and they both belong to cluster 3 in Fig. 9 in Zhang et al.
(2022). We divide this cluster into two classes here because
horizontal temperature advection plays the same role in
shaping the temperature distribution in each region, but the
mechanism underlying this relationship differs bewteen the
two. Class 2 represents coastal summer monsoon regions,
where the horizontal temperature advection (2v ? =T) drives
temperature to median values. Humidity is important in
coastal monsoon regions, so corr(ueeq, 2hv ?=ueqiueeq )’11 for
this class. The conditional mean vertical temperature advection
h2v(­T/­p)1v(kT/p)iTe and horizontal humidity advection
(Ly /cp)h2v ?=qiTe drive temperature toward extreme values
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FIG. 12. The horizontal and vertical velocity v5 dP/dt composite maps in the south corner of Argentina (Fig. 2e),
at different temperature percentiles: (a) 2%, (b) 34%, (c) 66%, and (d) 98%. The solid black line is the coastline, and
the dashed yellow line marks the subregion where we compute regional averages. The black arrows represent hori-
zontal wind vectors, and the color indicates vertical velocity v5 dP/dt (positive means subsidence).
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in class 2 regions. Class 3 regions are not coastal summer
monsoon regions, but they are affected by substantial local
topography, where horizontal temperature advection (2v ? =T)
drives temperature to median values and other processes (such
as subsidence) drive temperature to extreme values.

The generalized conditional mean framework developed
here can be used in future studies to explore how different
processes shape temperature probability distributions. We
have used it in a series of case studies to examine diverse
roles of horizontal temperature advection in shaping tem-
perature probability distributions at different locations and
different temperature percentiles. In particular, this frame-
work can be useful for studying the temperature probability
distributions for extreme events. This method can be thought of
as a budget analysis or composite analysis for each temperature
percentile.

Furthermore, this conditional mean framework can be ap-
plied to other tracers besides temperature, like precipitation
(Chen et al. 2019; Norris et al. 2019a,b; Ma et al. 2020) or
trace gas concentration. In fact, it can be applied to any tracer
A that follows the tendency equation:

­A
­t

52y ?=A 1 Ȧ: (14)

Thus, one could apply this to medium- to long-lived trace
gases to see the relative role of chemistry or transport over a
range of pollution conditions.

Our application of the conditional mean framework to tem-
perature shows that the correlation between local tempera-
ture and horizontal temperature advection can reveal where
temperature advection amplifies or dampens temperature
anomalies. In regions where the correlation is approximately
11, the amplifying behavior is consistent with previous stud-
ies that found skewness in the temperature distribution result-
ing from eddy advection of temperature (Linz et al. 2018;
Tamarin-Brodsky et al. 2019; Garfinkel and Harnik 2017). We
spend much of this paper focused on a more detailed applica-
tion of the framework to examine the relationship between lo-
cal temperature and horizontal temperature advection in
regions that are less straightforward. In the coastal monsoon
regions, land–sea temperature contrasts and background
monsoon cause horizontal temperature advection to dampen
extreme values. In other regions, the role of horizontal tem-
perature advection is more complicated. In this study we fo-
cus on the season where less agreement is found (JJA), but of
course this analysis could be expanded to examine DJF. This
will not generally be applicable to shoulder seasons (MAM
and SON), because we explicitly assume a stationary tempera-
ture distribution, which will obviously not be the case for those
times. Overall, this method is an attempt to generalize the in-
sights gained from regional extreme event case studies to
global understanding of the full distribution. Last, we want to
clarify that our approach statistically implies causality rather

than examines the evolution of a particular event, and there is
a Lagrangian back trajectory method (Catalano et al. 2021)
that solves the latter problem better.

We have made the conditional mean budget terms avail-
able globally, and we hope this will be useful for under-
standing temperature distributions and how they might
change as the underlying processes shift with global
warming.
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APPENDIX A

The Global Monsoon Index

The monsoon can be defined in various ways depending
on an observer’s perspective (Trenberth et al. 2000; Qian
2000; Chang et al. 2000; Wang and Ding 2006, 2008; An et al.
2015). One of the most straightforward definitions is the
seasonality of the wind, which is an objective index of the
intensity and location of the monsoon (Li and Zeng 2000,
2002, 2003). We use this definition here both for its ease of
calculation and because it fits this study well: the wind direc-
tion contributes to negative corr(Te, h2 v ?=TiTe ) in coastal
monsoon regions (see section 3).

Li and Zeng (2000) proposed a global monsoon index
based on the seasonality of the wind called static normal-
ized seasonality (SNS):

d 5 2
|v1 2 v7|
|v1 1 v7|

2 2, (A1)

where v1 and v7 represent climatological wind in January
and July respectively.

The SNS monsoon index d has two features [as proved in
Li and Zeng (2000)]:

1) If we fix the magnitude of v1 and v7, d will be a strictly in-
creasing function of the angle a between v1 and v7.
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2) When a 5 908, d 5 0; when a . 908, d . 0; when a , 908,
d , 0.

Li and Zeng (2000) defined the monsoon regions globally
as regions where the SNS index d . 0 (where v1 and v7
have an angle a . 908). The threshold d . 0 (or a . 908)
is subjective, but if we use a . 1208 instead of a . 908, our
results only change slightly [see Fig. 1 in Li and Zeng
(2000)]; hence the definition is robust.

We repeat Li’s work and plot the global distribution of the
SNS monsoon index in Fig. A1, based on monthly average
ERA5 horizontal wind data on the 850-hPa pressure level.
According to Li’s definition, regions colored in red (d . 0)
in Fig. A1 are considered monsoon regions.

APPENDIX B

Temperature Gradients at Different Temperature
Percentiles

In the west Siberia case study, we found that the direction
of temperature gradient does not depend on temperature,
but the magnitude of temperature gradient might depend on
temperature. Here we briefly study the temperature depen-
dence of the magnitude of the horizontal temperature
gradient |=T|, at west Siberia.

From Fig. B1 we learn that |=T| depends on temperature.
The |=T| is larger at low temperatures but smaller at high
temperatures.

Monsoon Index

   0°    60°E  120°E  180°   120°W   60°W    0°  
  80°S 

  40°S 

   0°

  40°N 

  80°N 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

FIG. A1. The distribution of the global monsoon SNS index d, based on monthly average
ERA5 horizontal wind data at the 850-hPa pressure level. Regions where d . 0 are considered
monsoon regions. Here we copy the 10 squares in Fig. 2a. The coastal regions marked by the
six green squares are monsoon regions (d . 0). Most regions where corr(Te, h2 v ?=TiTe ), 0
(colored in blue in Fig. 2a) are monsoon regions (colored in red in this figure).
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FIG. B1. The magnitude of horizontal temperature gradient |=T| in west Siberia, Russia (Fig. 2c) at different tem-
perature percentiles: (a) 2%, (b) 34%, (c) 66%, and (d) 98%. The white lines are elevation contours, and the dashed
black line marks the subregion where we compute regional averages.
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