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As the novel coronavirus severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) continues to proliferate across the globe, it is a
struggle to predict and prevent its spread. The successes of mobility
interventions demonstrate how policies can help limit the
person-to-person interactions that are essential to infection. With
significant community spread, experts predict this virus will continue
to be a threat until safe and effective vaccines have been developed
andwidely deployed. We aim to understandmobility changes during
the first major quarantine period in the United States, measured via
mobile device tracking, by assessing how people changed their be-
havior in response to policies and to weather. Here, we show that
consistent national messaging was associated with consistent na-
tional behavioral change, regardless of local policy. Furthermore, al-
though human behavior did vary with outdoor air temperature,
these variations were not associated with variations in a proxy for
the rate of encounters between people. The independence of en-
counters and temperatures suggests that weather-related behavioral
changes will, in many cases, be of limited relevance for SARS-CoV-2
transmission dynamics. Both of these results are encouraging for the
potential of clear national messaging to help contain any future pan-
demics, and possibly to help contain COVID-19.
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On March 13, 2020, US President Donald Trump announced a
state of emergency and a ban on travel from 26 European

countries (1). Soon thereafter, a national stay-at-home guideline
was issued on March 16 (2). Every state announced school closures
between March 16 and March 23 (3), rendering March 21−22 the
first weekend within this school and workplace closure period.
Since response to the virus in the United States has been widely
politicized (4, 5), we examine how human behavior, reflected
through mobility changes, responded to policies that aimed to limit
person-to-person interactions (6). Because COVID-19 will remain
dangerous until safe and effective vaccines are widely distributed
(7), mobility interventions are crucial and have been successful in
other countries (8). Fig. 1A shows the timing of statewide policies
and of a variety of mobility changes. As a proxy for the number of
people who may have come face to face, potential encounter rate is
a mobility metric, measuring the number of devices that come
within 50 m of each other (9) (see more discussion inMaterials and
Methods). We compute the mobility changes by identifying change
points in the potential encounter rate time series from February 24
(the start of data availability) to May 22. Change points are iden-
tified by locating the times of greatest change and finding the
nearest local minima (see Materials and Methods). The grocery
visitation maxima (Fig. 1A, yellow) are derived from the grocery
and pharmacy visits of the Google Community Mobility Reports
(10), while all other mobility metrics are calculated from Unacast
(11) potential person-to-person encounter rates.
Within a few days of the March 13 presidential announcement,

every state in the nation had a peak in trips to the grocery store
and pharmacy (Fig. 1A, yellow). Following the issuance of a
national stay-at-home guideline and school closures, almost all
states achieved their maximum decrease in mobility (Fig. 1A,
red) on Saturday March 21, marking the effective beginning of a

stay-at-home period nationwide. Although many states delayed
implementing stay-at-home orders, there was near uniformity in
the beginning and ending of quarantine behavior across states.
The distinction between the nationally coherent timing of the
grocery peak (yellow) and encounter decrease (red) and the
scattershot timing of when state policies were put into place
(Fig. 1A, blue) is striking. Again, we note that there were nu-
merous factors at play at this time, with school closings being
particularly important. Therefore, this consistency in timing of
the quarantine start does not necessarily relate directly to the
national guidance. Indeed, inspection of mobility time series for
individual states suggests that, in many states, mobility was be-
ginning to decline prior to the national state of emergency and
stay-at-home guidelines.
On May 1, US national stay-at-home guidelines expired (12),

but schools and many workplaces remained closed (3). Never-
theless, there was nationally coherent timing of potential en-
counter increases (Fig. 1A, pink), in contrast to the varied timings
of state stay-at-home order expirations (Fig. 1A, cyan) and of state
reopening plan implementations (Fig. 1A, green). To further ex-
amine the national coherence of the potential encounter decrease
(red) and potential encounter increase (pink), we use county-level
Unacast potential encounter data. Out of 3,054 counties for which
Unacast had data, 1,881 counties had March 21 as the beginning
of quarantine behavior, and a total of 2,536 counties had its be-
ginning in the 3-d span of March 21−23, comprising 83% of the
total number of counties; 1,431 counties had May 2 as the end of
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quarantine behavior, and a total of 2,553 counties had April 30 to
May 2, a span of 3 d, also comprising 84% of total counties. As a
consistency check, similar results were obtained using the county-
level Cuebiq Mobility Index (13), a metric of distance traveled by
mobile devices.
To determine whether this degree of spatial coherence in

mobility changes is unusual for the United States, we employ the
same algorithm on a subsequent encounter rate time series of
equal length (June 1 to August 28) to test whether a similar

consistency is observed for any other dates. We find that the
most common date selected from these control series as the
“beginning of quarantine behavior” was June 29, with a fre-
quency of only 638 counties. In the 3-d span June 28−30, only
26% of counties “began quarantine,” substantially fewer than
during the actual quarantine beginning on March 21−22. Simi-
larly, the most common date designated as “end of quarantine
behavior” was August 6, with a frequency of only 766 counties
and with 38% of counties included in the surrounding 3-d span.
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Fig. 1. (A) Implementation of state policies and changes in mobility behavior, ordered by date of stay-at-home orders. Warm-colored circles are metrics
based on mobility: peaks in grocery visitation (yellow), beginning of quarantine based on mobility (red), timing when mobility reaches 30% of prepandemic
values (orange), and the end of quarantine based on mobility (pink). Cool-colored squares are policy implementations: date of implementation of
stay-at-home for each state (blue), date of expiration of stay-at-home (cyan), and date of implementation of reopening plans (green). Black lines are national
declarations: the announcement of a national state of emergency (dashed), and the start and end of national stay-at-home guidelines (solid). For details
about mobility metrics, see Materials and Methods. (B) Bar graph of county-level changes in mobility behavior, using real quarantine time series (red, pink)
and control time series (blue, cyan).
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These findings are illustrated in Fig. 1B, showing that the
state-level coherence of quarantine start and stop demonstrated
in Fig. 1A is visible even at the county level. The distributions of
the quarantine start and stop points in the spring do not overlap
and are quite sharply peaked, while the mobility change point
distributions computed from the summer control series are
broader and overlap.
While the timings of the dramatic encounter decreases and

increases are consistent, many states had already reached en-
counter rates that were 30% of their prepandemic values (Fig. 1A,
orange) before quarantine behaviors ceased (Fig. 1A, pink), sug-
gesting variability across states in people’s behaviors and en-
counters during the quarantine period. Most of these states
experienced a new surge in COVID-19 cases in July (14), con-
sistent with studies that argue that an early reopening led to this
new wave (15, 16). Dates of reaching 30% of prepandemic po-
tential encounter rate are not correlated with implementation
dates of reopening plans (R2 = 0.062) or with expirations of
stay-at-home orders (R2 = 0.049), which is further evidence that
mobility behaviors are substantially independent of state policies.
The consistency across mobility measures suggests the primacy of
national awareness and national guidelines over state policies in
determining human behavior.

How Did Mobility Change?
We explore how mobility changed over time in the United States
during spring 2020, and, as part of this analysis, we examine how
the average distance traveled (as a fractional change from a
location-specific baseline) and the encounter rates (as a change
from a national baseline) changed over time.
Encounter rates are computed based on the number of times

mobile devices approach each other to within a distance of 50 m
(see Materials and Methods). Although this range is substantially
larger than that over which the close personal contact believed to
be most relevant to COVID-19 spread takes place, we expect
even this coarse-resolution encounters metric to be more rele-
vant to disease spread than distance traveled—hence our interest
in discovering any functional relationship between these two
quantities.

We identify a compact, nonlinear relationship between the
distance traveled and the encounter rate, which is fitted to an
exponential curve,

Rate = a · exp(b ·Distance),
where a is a proportionality constant and b is a growth rate (see
Materials and Methods). The exponential relationship is sup-
ported by high R2 values across the states (see SI Appendix,
Fig. S1 for examples of the exponential fit, and see SI Appendix,
Fig. S2 for R2). In Fig. 2, we show the spatial distribution of these
two coefficients on the state level and their relationships with
population density on the county level (see SI Appendix, Fig. S3
for county coefficient maps and state population density scatter-
plots). There is a high correlation between a and the population
density, which follows naturally from the definition of encounter
rates (see Materials and Methods for details); the places that are
densely populated naturally have higher encounter rate values
compared to the national baseline, resulting in a higher coeffi-
cient a (R2 = 0.84).
In contrast, the coefficient b is fairly consistent across states,

with a mean of 3.40 and SD of 0.56 (county level: mean 3.10, SD
0.71); b has a significantly weaker correlation with population
density (R2 = 0.15 at the county level and 0.21 at the state level).
While this part of our analysis was conducted with data starting on
February 24 and ending on June 6, incorporating data through
July 15 shows that the exponential relationship holds well. The
exponential relationship may have implications for the choice of
functional form for any investigations of links between the more
commonly available distance traveled and disease spread. This
nonlinear relationship suggests that the initial decrease in distance
traveled (and associated strong drop in encounter rate) was due to
a preferential reduction in visits to places associated with relatively
high encounter rates.

Effects of Weather on Mobility
Having demonstrated the consistency of mobility behavior with
national policy and the spatial coherence of mobility changes
with time, we explore the impact of weather on mobility under

A
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D

Fig. 2. (A) Map of log10 of leading coefficient a and (B) map of coefficient b on the state level. In A, the value for Washington, DC (log10 a = 2.26) is not
shown. Scatter plots of coefficients at the county level are shown against the log10 of population density for log10 a in C and for b in D.
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stay-at-home conditions (March 23 to May 1). Since it is intui-
tively reasonable to think that people tend to engage in more
activities away from home in nicer weather, we want to under-
stand whether people maintain low encounter rates and continue
respecting policy under such conditions. Past work has shown a
weak effect of temperature on human mobility and behavior (17,
18), but other types of weather (e.g., rain) are more important
(19, 20). We aim to understand whether human mobility is
correlated with temperature under the COVID-19 stay-at-home
conditions.
For many respiratory illnesses, such as influenza (21) and the

endemic coronaviruses (22, 23), transmission has a strong seasonal
component, with a clear link to atmospheric conditions in the case
of influenza (24, 25). Although the wide range of weather condi-
tions in locations of COVID-19 outbreaks belies the possibility of
strong modulation of this initial occurrence of the disease, such
modulation is likely to impact recurrence if the susceptible pop-
ulation is decreased (26–28). Investigations of possible tempera-
ture and humidity effects on COVID-19 transmission have
produced conflicting results, with some studies showing no ap-
parent relationship (29, 30) and others suggesting decreased
transmission at warmer temperatures (31–33). Furthermore, a
single-city study found warmer temperatures and low precipitation
to be positively correlated with COVID-19 incidence, perhaps due
to disregard of stay-at-home orders in good weather (34). By
studying the relationship between weather conditions and mobil-
ity, we find no evidence for the hypothesized disregard of policy in
good weather.
We analyze the correlation of weather with park visitation and

encounter rate at the state level under stay-at-home conditions
(March 23 to May 1). Previous studies show that mobility and
encounter rates are suppressed on days with rainfall (19, 35).
Therefore, we omit rain days from our correlation calculation. We
high-pass filtered the weather and mobility time series to remove
seasonal trends (seeMaterials and Methods). Fig. 3 shows a weakly
positive correlation between temperature and park visitation but a
lack of correlation between temperature and encounter rate. In
other words, while people in some states change their behavior to
visit parks more when temperatures are higher, in line with pre-
vious work (16, 35), their potential encounter rates do not sig-
nificantly increase. Note that, because this analysis was performed
only for the quarantine time period and during a limited season,
the specific correlations cannot be easily extrapolated to other
times of year or social conditions. The significance of the corre-
lations is evaluated based on comparing the correlations with
state-specific null distributions of correlation values constructed
from the previous 70 y of weather data (see Materials and Methods
for details).
There are spatial variations in temperature correlation with

park visitation, which is positive in the northeast and central plains
states and negative in Alabama, Louisiana, and Florida, though
these correlations were not significant at the 90% level. The
spatial differences are plausibly due to warmer days being more
suitable for outdoor activity in the northern states but less suitable
in the southern states because warm days in the latter region are
excessively hot (or perhaps humid). While a parabolic fit could, in
principle, capture a threshold above which temperature is hot
enough to suppress outdoor activity, in practice, no region had a
temperature range large enough to reliably estimate this threshold
(36). In Fig. 3C, Florida exhibits a negative correlation between
temperature and encounters. Similar trends for correlations be-
tween temperature and encounters are observed on the county
level, which adds nuance to the overall picture of weak correla-
tions between temperature and encounters (SI Appendix, Fig. S4).
Note, however, that the magnitude of these correlations is typi-
cally quite low and rarely above 0.5 (the total variance explained is
up to 25%), and areas with a correlation above 0.5 are not densely

populated (population density less than 100 people per km2; SI
Appendix, Fig. S4).
It is reasonable to wonder whether the identification of many

states with significant temperature−mobility correlations is simply
an artifact of the large number of tests conducted and the exis-
tence of spatial and temporal autocorrelations in the weather data.
To address this multiple comparison problem, we also analyze
each of the 70 prepandemic years of weather data to determine
the number of states typically detected as showing “significant”
correlations between these earlier weather time series and the
2020 mobility data. These “significant” correlations are necessarily
coincidental, and the numbers of states with such correlations in
the prepandemic years therefore provide a baseline against which
the number of states with significant 2020 correlations can
be assessed.
Park visitation was significantly correlated with actual 2020

temperatures in 17 states, but its correlations with any previous year
of temperature data are significant in, at most, 10 states and typi-
cally 5 or fewer (Fig. 3B). In contrast, the number of states in which
the correlation between 2020 temperature and potential encounters
is significant (one) is well within the range of what could have
happened by chance in the absence of any causal effect. Correla-
tions with previous years of weather data often yield two or more
“significant” states (Fig. 3D). We thus conclude that our analyses
provide evidence for a real effect of temperature on park visitation,
but no evidence for an effect of temperature on potential encoun-
ters. (An additional statistical analysis yielding the same qualitative
conclusion is discussed in SI Appendix.)
The correlation between temperature and park visitation suggests

that, in many states, people visited parks more on relatively warm
days, but the lack of correlation between temperature and en-
counter rates shows that this change does not result in more po-
tential encounters, perhaps because interactions in parks constitute
a relatively small fraction of all human encounters. Therefore, un-
der US national policy guidelines in the early part of the pandemic,
human behavior was influenced by weather conditions but appar-
ently not in ways that limited adherence to social distancing
recommendations.

Conclusion
In this study, we have demonstrated that changes in human mo-
bility during the onset of the US COVID-19 pandemic were con-
sistent nationally despite large variations in state policies. Potential
person-to-person encounter rates were an exponentially increasing
function of distance traveled in most states and counties. The exit
from quarantine was almost uniformly seen within 1 d of the ex-
piration of the national stay-at-home guidelines, and the timing for
changes in mobility had almost no relation to the timing of changes
to local policy. The knowledge that people changed their behavior
more as a national unit than in response to state policies should be
useful to policy makers. Although a more tailored, local approach
might be preferred when different regions have significant differ-
ences in community spread, these results suggest that a uniform
national guideline may be more effective in altering behaviors.
In addition, we saw that, although temperature did impact be-

haviors (temperature and park visitation are correlated), it did not
impact risky behaviors (temperature and potential encounters are
not correlated). Despite anecdotes of people flocking to beaches
on unseasonably warm spring days and the concerns this brought
for the spread of COVID-19, our results show that there was no
detectable significant relationship between temperature and po-
tential encounters. Our weather results specifically apply to the
early period of the pandemic, and the correlations should not be
extrapolated more generally. The combination of weather results
implies that people did change their behaviors with the weather,
but not in an especially risky way. This is an encouraging sign for
adherence to future policies.
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Our results suggest that coherent national guidance could dra-
matically change people’s behavior again in the future, with the
potential to help contain virus transmission. This may not apply to
COVID-19, given the current highly politicized climate, but we
nevertheless expect this result will be useful to future pandemic
planning.

Materials and Methods
Policy Timing.Dates were collected for three types of state-level policy changes:
implementation and expiration of a stay-at-home order and implementation
of a reopening plan (Fig. 1). Multiple sources that gather information from
states’ executive orders and press releases were cross-checked (37–41). Gen-
erally, stay-at-home orders shut down nonessential businesses, permit nones-
sential employees to work from home, and encourage citizens to stay at home
at all times except for certain essential activities; some states mandate staying
at home, while others advise this action. The implementation date of a
stay-at-home order is defined to be its first effective date. The expiration date
of a stay-at-home order is the date on which it legally expired or was lifted,
inclusive of any continuous extension of such an order past its originally an-
nounced expiration date. However, any reimplementations of stay-at-home
orders in response to COVID-19 surges in July are not considered.

The date of implementation of a reopening plan is the first day on which
certain categories of nonessential businesses were permitted to reopen. For
states that explicitly announced a phased reopening plan, the implementation
date is the starting date of phase 1 of the plan. For states that do not have an
explicit reopening plan, the implementation date is generally the first day on
which nonessential businesses, such as restaurants and retail, were allowed to
operate at below-average capacity. Note that (by these definitions) some
states began reopening before their stay-at-home orders expired.

Unacast Mobility Data. With three measures based on data for 15 to 17 million
identifiers each day in the United States, aggregated data from Unacast have
provided important insights into understanding mobility patterns (11). Human
mobility is measured by using three proxies compared to a prepandemic pe-
riod: change in average distance traveled, change in rate of potential en-
counters, and change in nonessential visitation. (This last metric is used only as
a consistency check on Google Community Mobility Report data; see the next

subsection.) The baselines for calculating the change in average distance
traveled and nonessential visitation are day-of-week−dependent averages of
a prepandemic period (February 10 to March 8) specific to the state or county.

We expect potential encounter rate to be a better metric of disease
transmission efficiency than distance traveled, because COVID-19 is believed
to spread mainly via close contact with infected individuals. Potential en-
counter rate is calculated by observing the dwell locations of a sample of
mobile devices and counting the number of other devices that come within
50 m of each sample device during a period of an hour (9). Dwell locations
are defined as places where the device is traveling below a certain velocity
threshold, so as to remove potential encounters of people in separate ve-
hicles where they would not come into direct contact. Other situations like
traffic jams are also filtered to ensure only direct contacts are accounted for.
Since walkers do not pass the velocity threshold, potential encounters of
walkers are included. People coming into contact multiple times in a day are
only counted once.

The use of a rather large 50-m range to define an encounter suggests that
the Unacast potential encounter rate represents an upper bound on the rate
of genuinely disease transmission-relevant contact events. There is also some
evidence that contact rates measured at finer spatial resolutions (∼1.5 m) are
increasing functions of the numbers of people present in areas of larger
spatial extent (tens of meters) (42). This is consistent with the idea that the
Unacast potential encounter rates are informative about shorter-distance
contact events, although the extent to which transmission-relevant contact
patterns can be usefully inferred from data about colocation within tens of
meters remains a subject of research (42).

Unacast expresses its potential encounter rate data as a change relative to
a single (i.e., day-of-week−independent) prepandemic national average
(February 10 to March 8). Therefore a densely populated place like Wash-
ington, DC, reaches encounter rates of up to 300 in the prepandemic period,
while some states exhibit a very small range of encounter rates.

Unacast also provides population data on the state and county level, which
was used to calculate population density in conjunction with land area
data (43).

Google Community Mobility Report. Google’s Community Mobility Report dataset
documents volume of visits to six different categories of places: grocery and
pharmacy, parks, transit stations, retail and recreation, residential, and workplaces
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Fig. 3. (A) State-level observed correlation coefficients of temperature and park visitation. Both the temperature and the park visitation time series are high-
pass filtered before computing the correlations, and the significance of the observed correlations is determined via comparisons to null distributions of
correlations computed using prepandemic (1950−2019) weather data (seeMaterials and Methods for details). Single hatching is used to mark states for which
the correlations are significant at the 90% level (P < 0.1), while no hatching indicates significance at the 95% level (P < 0.05). (Cross hatching marks states that
are not significant at the 90% level [P > 0.1].) (B) Information about the number of states likely to exhibit spurious “significant” correlations in the absence of
any causal effect of temperature on park visitation. Red star indicates the number of states with significant observed (2020) correlations. Each blue bar
indicates the number of prepandemic years (1950−2019) in which the given number of states is (necessarily incorrectly) identified as having a significant
correlation between the prepandemic year’s temperature and 2020 park visitation (see Materials and Methods for details). (C and D) As in A and B but for
temperature−potential encounter rate correlations.
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(10). Numerical values are expressed as fractional changes from a prepandemic
baseline. The baseline varies by day of week, and, for each day of the week, is
defined as the median of the five realizations of that day that occurred in the
January 3 to February 6, 2020 period.

We cross-check corresponding metrics from Google and Unacast. Visita-
tion to retail and recreation is a form of nonessential visitation, and Unac-
ast’s nonessential visitation metric exhibits a tight linear relationship with
Google’s retail and recreation visitation metric, observed on the state level.
While parks were also nonessential destinations, their visitation rates were
more variable compared to other nonessential visitation categories, perhaps
because other nonessential activities were more strongly restricted. How-
ever, park visitation also exhibits a linear relationship with Unacast average
distance traveled, suggesting that travel to parks may be a major driver of
day-to-day variations in travel under quarantine.

Cuebiq Mobility Data. Aggregated mobility data are provided by Cuebiq, a lo-
cation intelligence and measurement platform. Through its Data for Good
program, Cuebiq provides access to aggregated mobility data for academic re-
search and humanitarian initiatives. These first-party data are collected from
anonymized users who have opted in to provide access to their location data
anonymously, through a general data protection regulation-compliant frame-
work. The data are then aggregated to the census block group level to provide
insights on changes in human mobility over time. Of the available Cuebiq data,
we used the Cuebiq Mobility Index, defined as the log10 of the median distance
traveled by all devices (13).

We conduct a consistency check on quarantine start mobility changes
(Fig. 1A, red) by using Cuebiq Mobility Index time series; out of 3,142
counties in the United States, 1,965 counties had March 21 as the beginning
of quarantine behavior and 715 counties had March 22, comprising 85% of
the total number of counties. This gives us further confidence in the na-
tionally coherent encounter decrease result.

Mobility Metrics. We examine mobility trends on both the state level and the
county level and calculate dates of key mobility changes. The grocery visi-
tation maxima (Fig. 1A, yellow) are the dates of the maxima in the grocery
and pharmacy visit category of the Google dataset, while all other mobility
change dates are calculated from the Unacast potential encounter rate data.
Quarantine starts (Fig. 1A, red) and stops (Fig. 1A, pink) are calculated in
MATLAB using the findchangepts function. For each time series of en-
counter rate, we use findchangepts to find two times at which the mean of
the time series changes most significantly (44). For each time series, we
observe a significant decrease in encounter rates and a significant increase in
encounter rates, corresponding to the period of going into quarantine and
reopening, respectively. Given these two change points, we then define the
start of the quarantine period as the last day of a period of continuous
mobility decrease that starts on or before the day of the first change point
(i.e., quarantine starts on the date of minimum encounter rates at the end of
this period of decrease). Similarly, the end of the quarantine period is de-
fined to be the first day of a period of continuous mobility increase that
ends on or after the day of the second change point (i.e., quarantine ends on
the date of minimum encounter rates at the beginning of reopening). As
stated above, we also apply the algorithm to the Cuebiq Mobility Index to
cross-check results for the beginning of quarantine on the county level.

This algorithm was robust to extensions of the encounter rate time series.
The same analysis on the full encounter rate time series through the end of
July yields exactly the same quarantine start dates. Similarly, quarantine stops
were the same for most of the states and exhibit the same consistency across
states on May 2. The time series extensions only affect the output of the
findchangepts function for the quarantine stops, and, even then, the diag-
nosed change points are only the first step of the algorithm’s selection of the
beginning and end of the quarantine period. Therefore, the exact outputs
of findchangepts are not central to the results and the analysis is robust to
any extensions in the time series.

The mobility 30% prepandemic metric (Fig. 1, orange) is defined as the
first day after the beginning of quarantine for which encounter rates reached
30% of the state’s prepandemic average encounter rate. While the 30% level
is chosen here, the analysis is robust to other levels of mobility as well. The
same analysis but using mobility 40% or 50% prepandemic metric yields
similar consistencies across states. The 30% level was appropriate because it
captures the significant variability of encounter rates between states during
the quarantine period while avoiding excessive influence from minor mobility
fluctuations, which was evident when examining a 20% prepandemic metric.

Exponential Relationship. The exponential fit is

Rate = a ·exp(b ·Distance),
where Distance is average distance traveled and Rate is a normalized en-
counter rate defined as the number of encounters (per square kilometer)
divided by the national prepandemic baseline.

The relationship between potential encounters and average distance
traveled was investigated on both the state level and the county level. While
Unacast generates data for almost all counties, we analyzed the relationship
only for counties with populations greater than 100,000. Counties with
smaller populations have relatively few encounters, and therefore their
encounter rate data are quite noisy, which makes it difficult to obtain
reasonable fits.

In addition to an exponential model, we also considered a quadratic fit of
the form

Rate = a · (Distance + b)2,
limiting the number of parameters to only two. This polynomial model yields
slightly worse, but similar, R2 values than those of the exponential model.
The fitted parameters of the polynomial model are also highly correlated
across states with those of the exponential model. Both may be plausible
and capture the highly nonlinear relationship between distance traveled
and encounter rate. We present the exponential model here because its
parameters are more physically meaningful.

Weather Data. The near-surface temperature and precipitation data used in
this study are taken from the ERA5 reanalysis product (45–47). ERA5, the
fifth generation of global atmospheric reanalysis from the European Centre
for Medium-Range Weather Forecasts, is available on a 0.25° horizontal grid
with a time resolution of 1 h. To define state-level daily average weather
conditions, we computed population-weighted spatial averages over each
state using 2020 estimated populations from a 1/24°-resolution version of
the Gridded Population of the World dataset (48) in a manner conceptually
similar to previous work (27). For our county-level analyses, we estimated
daily average weather conditions at the population centroid of each county.
The centroids are based on the 2010 US Census (49), and weather conditions
at the centroids were estimated as means over the four ERA5 grid boxes
centered closest to each centroid.

Weather andMobility Analysis. Sincemobility analysis suggested that stay-at-home
was practiced nationally from March 23 to May 1, we examine data for this 40-d
period. The correlation of temperature and park visitation from Google is
compared with the correlation of temperature and potential encounter rates
from Unacast. While park visitation does relate to average distance traveled,
park visitation best captures outdoor activities that experience the effect of
weather conditions.

Several details of the correlation calculations warrant further explanation.
Mobility is notably suppressed on rainy days, which we define as days
with >0.5 mm of precipitation. To isolate the relationship between tem-
perature and mobility, we omit these days from our correlation calculations.
In addition, it is possible that the signal of any causal relationship between
temperature and mobility could be masked by chance correlations between
seasonal trends in weather and non−weather-related multiweek trends in
mobility. In an attempt to avoid this problem, we high-pass filter the
weather and mobility time series before computing their correlations. The
high-pass filtering is done by subtracting 7-d running means from the time
series. Although deliberately introducing rain-related gaps to our time series
is acceptable (indeed, desirable) for the correlation calculations themselves,
continuous time series are required to compute the 7-d running means that
underlie the high-pass filtering. For the purpose of computing the 7-d run-
ning means (and this purpose only), we thus generate “filled” time series in
which the true rainy day data values are replaced by values linearly inter-
polated from the adjacent nonrainy days.

As is evident in Fig. 3 A and C, the observed correlations between tem-
perature and mobility metrics are generally not equal to zero. But, to credibly
interpret nonzero correlations as evidence of a causal relationship, additional
information is required about the range of correlation values likely to be
observed in the absence of such a relationship. To address this issue, we cor-
relate mobility data from March 23 to May 1, 2020 with ERA5 temperature
data from March 23 to May 1 of each of the 70 prepandemic years
(1950−2019). Clearly, there should not be a causal relationship between 2020
mobility variations and weather variations in previous years. Therefore, cor-
relations computed using the true 2020 temperature data should be of rela-
tively large magnitude (in comparison to their counterparts computed using
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pre-2020 temperatures) if they are to serve as convincing evidence of a causal
effect of temperature on mobility.

More specifically, for each state, we compute 70 of these null distribution
correlation values (i.e., one for each prepandemic year of ERA5 data). The
correlation procedure is generally the same as used with the actual 2020
temperature data, with one slight difference related to the exclusion of rainy
days. As in the 2020 correlation calculations, we exclude dates onwhich it was
raining in 2020, because we do not want our search for temperature effects
on mobility to be overwhelmed by rain effects. But, for each prepandemic
year, we also exclude dates on which it was raining in that particular pre-
pandemic year. We make this additional exclusion because the 2020 tem-
perature distributions used in our correlation calculations are implicitly
conditional on there being minimal rain (precisely because we chose to ex-
clude the 2020 rainy days from the 2020 correlation calculations), and we
thought it advisable to impose this same condition on the correlation cal-
culations for the prepandemic years.

We quantitatively compare each state’s true 2020 correlation values to the
null distribution of prepandemic values as follows: First, we apply Fisher’s Z
transform to the 70 prepandemic correlations and then use them to compute
the variance of a Gaussian probability distribution centered on zero. The lack of
causal connection between 2020 mobility variations and pre-2020 weather
variations makes it appropriate to assume that this parameterized form of our
null distribution is centered on zero. Annually repeating changes in weather
and mobility that could lead to substantially nonzero—but noncausal—
correlations should already have been removed by the high-pass filtering. After
generating these parametric null distributions, we use them to determine the
unusualness of the (suitably Z transformed) 2020 correlation values. We

consider a 2020 correlation value to be “significant” if it falls within the out-
ermost 5% of the relevant null distribution (i.e., beyond the 2.5 or 97.5
percentiles—in other words, a two-tailed test with a significance threshold of
P = 0.05).

Given that, for each mobility metric, we are performing 51 such signifi-
cance tests (one per state and Washington, DC), we must also consider the
possibility that some states might exhibit “significant” temperature−mobility
correlations purely by chance. To determine whether our 2020 results are
likely to be contaminated by such spurious correlations, we also use our
state-specific parametric null distributions to test the significance of the
correlations found for each of the 70 prepandemic years. For each of the
prepandemic years, we note how many states are incorrectly identified as
showing significant mobility−temperature correlations. Finally, we use the
resulting distributions of numbers of false significance identifications to
contextualize the actual numbers of states found to have “significant”
temperature−mobility correlations in 2020 (Fig. 3 B and D).

Data Availability. Data and scripts necessary to reproduce the figures are
available at https://doi.org/10.7910/DVN/XAK0DV. This archive of reduced data
also includes the Unacast state level potential encounter rate metric from 24
February 2020 to 6 June 2020, the MATLAB function used to identify quarantine
start and stop dates and additional information about when potential encounter
rates returned to 20%, 40%, and 50% of prepandemic levels. Researchers in-
terested in requesting the raw Unacast and Cuebiq mobility datasets should
consult the companies’ Websites (9, 11, 13). Unreduced forms of all other
datasets used in the paper are available online (10, 37–41, 43, 45, 46, 48, 49).
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