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Locomotion is the act and process of moving from place to place, which is fundamental

to the life history of all mobile organisms. While the field of biomechanics encom-

passes the study of the physical constraints of what animals are capable of, ecological

contexts require an integrated view that includes ecology and behavior. This chapter

provides an overview of some of the areas where locomotion and biomechanics of fish

movement interface with the rapidly evolving changes that humans impose on aquatic
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environments. These changes include fundamental alterations to the environment such

as altered flows, fragmentation of riverine habitats, and invasive species, but also direct

interactions that occur with capture fisheries. We explore each of these areas, consider-

ing both challenges and opportunities informed by the study of locomotion and biome-

chanics, emphasizing how this field can contribute to conservation of fishes in the

Anthropocene. We then turn to technology, where important advances are aiding in

our understanding of fish movement. In some cases those advances have themselves

led to novel technologies, where biomimetic robots and related devices offer novel

opportunities, both for conservation and for other pursuits.

1 Introduction

The study of fish locomotion and biomechanics presents humans with chal-

lenges and opportunities as we navigate the Anthropocene.a These challenges

include recognizing and mitigating anthropogenic influences such as habitat

quality, quantity, and access, and developing sustainable approaches to har-

vest fisheries. At the same time, technological advances have enabled humans

to better understand the mechanics of aquatic locomotion, providing both

challenges and opportunities for conservation and engineering. We begin this

chapter with a broad overview of fish swimming and biomechanics, identify-

ing both physiological and behavioral constraints that are particularly relevant

to management and conservation. We then describe some challenges confront-

ing fisheries managers and how they relate to locomotion, paying particular

attention to topics of habitat fragmentation, invasive species, and harvest fish-

eries. We conclude with a brief review of recent advances in biomimetic engi-

neering that may offer opportunities for developing sustainable approaches to

harvest fisheries and for informing the design of swimming machines and

other devices, which may themselves open opportunities for exploration and

greater understanding of the world in which we live (Fig. 1).

The way fish move through their environment has captured the imagina-

tion of researchers since at least the time of Aristotle (350BCE) (Aristotle,

1937). To propel themselves through water, fish must exert a force against a

medium that deforms continuously. This is in marked contrast to propulsion

on land where animals can push off a solid surface to move about. The ability

of fishes to move through the dense and viscous aquatic medium with such

apparent ease has been influential in stimulating both theory and experiments

in the field of fluid mechanics and hydrodynamics of fish locomotion

(Alexander, 1983; Lighthill, 1960, 1975; Vogel, 1981).

Fish achieve effective propulsion through a variety of mechanisms, with the

unifying characteristic of establishing pressure gradients along their fins and/or

aAnthropocene is a term used by scientists and nonscientists to highlight the concept that we are

living in a time when human activities have significant effects on the global environment. The

Anthropocene currently has no formal status in the Divisions of Geologic Time and is not recog-

nized by the USGS. Use of this term is informal.
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bodies, generating force on the surrounding fluid that determines their path of

motion. The amount of thrust produced and the efficiency of force transmission

is largely driven by body and fin morphology, coupled with skin, skeletal struc-

ture, muscular design, and composition (Shadwick and Gemballa, 2006). Most

species of fishes move primarily using their body and caudal fins (BCF) for

propulsion, while median and paired fins contribute greatly to body stability

and maneuvering during locomotion. Body undulation generates thrust through

a propulsive wave propagating along the body, which is characterized by wave

speed, wavelength, and amplitude of the lateral oscillation (Fig. 2).

The habitats occupied by fishes are hugely diverse, ranging in scale from

pan-global marine environments traversed by species like tunas and lamnid

sharks (Block, 2005; Block et al., 2001), to the interstitial spaces between

the gills of host species and other tiny spaces (Breault, 1991). This diversity

of habitats has led to a correspondingly dramatic diversity in both morphology

and swimming performance. In some cases, it may be possible to make gen-

eral predictions about the habitat a fish occupies and its ability to negotiate

FIG. 1 Conceptual relationships among movement, habitats, challenges, and opportunities asso-

ciated with the study of locomotion and biomechanics.
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certain environments, simply by viewing its external morphology (Webb,

1984, 2006). At the same time, though, diverse adaptations may be con-

strained by similar physical principles, leading to a surprising level of conver-

gence in kinematics across taxa when fish are performing similar tasks

(Di Santo et al., 2021).

There are exceptions to these patterns of diversification and convergence,

however. Some fish species have developed morphologies and behaviors that

allow them to interact with solid structures within their environments in ways

that promote movement or allow them to maintain position, e.g., by attaching

to a substrate or a host animal (examples include parasitic lamprey

FIG. 2 (A) Atlantic salmon swimming at 10 body lengths per second (BL s�1) in an open flume.

(B) Digitized midlines for one tailbeat (overlaid curves, ranging from blue (start of stride) to black

(end of stride)), and associated maximum lateral amplitude along the body, presented as propor-

tion of the body length from location 0 (head) to 1 (tail).
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(Petromyzon spp.; Beamish, 1980), remoras (family Echeneidae; Wang et al.,

2017), and many benthic species (Webb, 1984, 1989), which use the substrate

to escape rapid free-stream flows). Both the general patterns and these excep-

tions have important implications for how humans and fish will interact

during the Anthropocene.

While essential for understanding the mechanics of locomotion, movement

itself is not governed solely by external morphology and biomechanics. Other

aspects, such as internal structure and physiology, are equally relevant,

including vascular circulation (Farrell and Steffensen, 1987), aerobic capacity

(Brett, 1964), and the distribution and abundance of aerobic and anaerobic

muscle fibers (Jayne and Lauder, 1994; Rome, 1994).

The distribution and abundance of aerobic and anaerobic musculature has

important implications for locomotion, and for ecology in general. Fish spe-

cies that specialize in fast starts and sprinting tend to have proportionally

greater amounts of anaerobic muscle, while those that specialize in cruising

have more aerobic muscle (McLaughlin and Kramer, 1991). More aerobic

muscle requires greater blood flow and overall greater aerobic capacity, which

in turn allows those species to sustain greater swim speeds. Moreover, the

high metabolic demand of aerobic tissues can necessitate greater activity to

ensure sufficient resources are gathered to meet these demands (Brett and

Groves, 1979; Ware, 1975, 1980). Provided that sufficient oxygen and nutri-

ents are available to the fish, aerobically fueled swimming can be sustained

indefinitely. As we will see below, this has important implications for conser-

vation and management. When fish exceed their maximum sustained swim

speed (Ums; Table 1) they begin to recruit anaerobic metabolic pathways

and switch to using the generally more abundant white muscle fibers. This

is usually done incrementally, allowing fish to prolong their endurance by

interspersing bouts of anaerobic swimming with aerobic swimming (Brett,

1964; Peake and Farrell, 2004; Rome et al., 1992a). Thus, “prolonged” swim-

ming describes a narrow band of speeds at which both processes are important

in producing thrust. However, as speeds increase further the fish enters

“sprint” mode. Sometimes described as “burst” mode, this is powered almost

entirely by anaerobic processes and can be sustained only very briefly (the

actual limits vary by species, but 20s is a commonly described threshold;

Brett, 1964).

The existence of these three modes: “sustained,” “prolonged,” and “sprint”

has been documented for a wide variety of species (Beamish, 1978). Impor-

tantly, species that have greater aerobic capacity do not necessarily have

greater sprinting ability (Clark et al., 2013). This can be an important factor

limiting access to habitats: assumptions that less active species will be less

able to traverse barriers may be inaccurate, with potential consequences for

management.

Our understanding of swimming modes is influenced by the methods used

to measure and describe them. Maximum sustained speeds (Ums) are
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TABLE 1 Definitions, metrics, and indices describing fish locomotion—the

act and processes associated with moving from place to place, such as

swimming, jumping, walking, etc.

Term Definition, metrics, and indices Units

Ability Also Capability or Capacity: the physical and
physiological bounds describing the limits of what
an organism is capable

Endurance Time to fatigue (T) while executing
a given task such as swimming at a
constant speed (Us), described by
the relation ln(T)¼a+bUs

s or min j Us,
a, and b

Speed l Maximum sustainable swim
speed (Ums)

l Maximum speed sustained for a
fixed interval without fatigue,
typically 20–200min (Ucrit)

l Maximum attainable swim
speed (Umax)

BLs�1 or m s�1

Acceleration l Maximum acceleration (Aburst)
a BLs�2 or m s�2

Performance The effective execution of a task (e.g., traversing a
velocity challenge, avoiding capture, or accessing
refuge)

Distance/
Height

Maximum distance traveled (Dmax) BL or m

Success Probability of success Success
attempt�1

Success h�1

Motivation The inclination or willingness to perform a task
(e.g., move)

Attempt rate Number of attempts per time period
or proportion of a population
staging attempts per unit time

Attempts h�1

P(Attempts) h�1

Effort The amount of effort expended to
achieve a task

%T jUs

% Ums, Ucrit,
Umax, or Aburst

aNote that Uburst is a term that is often used to describe either fast start or sprint speeds (and even in
some cases prolonged speeds). We distinguish it here, as sprint and prolonged speeds are defined by
endurance relationships and cannot be represented by a single value.

6 Fish Physiology Volume 39A

ARTICLE IN PRESS



frequently estimated using a process whereby fish are confined within a

chamber or tunnel and subjected to flow speeds that increment steadily on a

fixed time interval (Brett, 1964). The speed at which fatigue begins to occur

within that time interval is hindcast and recorded as the “critical swim speed”

(Ucrit). When the time interval for each velocity increment is sufficiently long

(e.g., �200min) Ucrit serves as an estimate of Ums. This technique is excruci-

atingly slow, however, prompting most researchers to greatly shorten the time

intervals. A key consequence of this is that Ucrit becomes unreliable as an esti-

mate of Ums and may be biased by accumulation of anaerobic byproducts dur-

ing intervals that preceded the fatigue event (Hammer, 1995; Lee et al., 2003).

Prolonged (generally thought of as speeds >Ums that can be sustained for

>�20s) and sprint speeds (those that result in fatigue in < �20s) are typi-

cally estimated by rapidly increasing flow velocity to a desired test condition

and then holding that value constant until the fish fatigues. The relation

between flow velocity and endurance characterizes each of these modes.

One consequence of conducting these tests within confined chambers is

that fish tend to fatigue at speeds considerably lower than what occurs in more

natural settings (Castro-Santos et al., 2013; Tudorache et al., 2007, 2010).

Tests performed in larger channels and using volitional swimming against

high velocity flows have shown that many species of fish are capable of

swimming at speeds nearly double what previous studies had predicted, sug-

gesting that estimates of performance from the literature should be viewed

with skepticism (Castro-Santos, 2005; Castro-Santos et al., 2013).

1.1 Temperature and locomotion

Another important distinction between aerobic- and anaerobic-powered loco-

motion is the importance of temperature. Fish species occupy habitats with

temperatures ranging from <0 °C to >44 °C (Bargelloni et al., 1994; Kock,

2005; Lozano-Vilano and De La Maza-Benignos, 2017; Minckley and

Minckley, 1986). Most fish are ectotherms, and their metabolic rates vary pre-

dictably with temperature. At low temperatures, the scope for activity is

reduced and fish tend to be less active. Both basal metabolic rate and scope

increase with temperature; however, as temperatures exceed a certain critical

value the costs of maintenance increase, and scope declines. Hence, reduced

activity is common among fish exposed to temperatures that fall above or

below their thermal optima (Brett and Glass, 1973; Brett and Groves, 1979).

The effect of temperature on aerobic swim speeds is much greater than it

is on anaerobic speeds. In both cases, chemical reactions occur more rapidly

at warmer temperatures. This means that the rates of nutrient delivery, waste

removal, and rate of ATP production all increase, raising the potential for

power production, as well as the maximum contraction speeds of both red

and white muscles (Rome et al., 1992a,b; Wardle, 1975). The benefits of

increasing temperature change when thermal optima are exceeded, however:

Applied aspects of locomotion and biomechanics 7
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as temperatures continue to increase, so do maintenance metabolic costs (the

actual mechanisms and their relative importance remain a topic of some dis-

pute: Clarke and Fraser, 2004), and these costs add to costs of circulation,

etc., which in turn places a greater proportional demand on aerobic scope.

This is further aggravated by the fact that at higher temperatures the ability

of water to carry oxygen and carbon dioxide diminishes, reducing the effi-

ciency of gas transfer at the tissues and gills. At an upper critical limit, these

costs exceed the ability to maintain homeostasis. Thus at both high and low

temperatures, the ability to sustain aerobic swimming is compromised, and

fish switch to swimming using anaerobic muscle fibers (P€ortner et al., 2017).
The reasons for this transition are not entirely clear, although some expla-

nations appear likely. For one, anaerobic muscles use locally stored glycogen

to fuel ATP production and are therefore less dependent on the circulatory

system. Furthermore, the number of temperature-dependent reactions required

to produce ATP are reduced compared with aerobic metabolism, and with

fewer steps in the “supply chain” the overall effect of temperature on muscle

kinematics is reduced (Clarke and Fraser, 2004).

These and other factors contribute to a widely observed phenomenon,

whereby sustained swimming capacity is strongly influenced by temperature,

while sprinting is less so (Haro et al., 2004). An important caveat to this is

that recovery between bouts of sprinting does require aerobic processes, and

the time required to recover between sprinting bouts is also strongly influ-

enced by temperature (Bayse et al., 2019; Goerig and Castro-Santos, 2017;

Kieffer et al., 1994; Wilkie et al., 1997).

This does not mean that anaerobic swimming is unaffected by tempera-

ture, however. Fish commonly become sluggish, inactive or “semi-torpid”

when the water temperature is near the lower end of their limits (He, 2003;

Lagardère and Sureau, 1989; Woodhead, 1964). Temperature may also affect

the startle response and reaction to predators, fishing gear, etc. Muscle kinet-

ics are also affected, particularly at very cold temperatures: €Ozbilgin and

Wardle (2002) found that the escape reflex of Haddock (Melanogrammus
aeglefinus) in the North Sea was much lower at 7 °C compared with that at

12 °C, and attributed this change to reduced contraction speeds of white mus-

cle at colder temperatures. Other studies have indicated that this pattern is

widespread (Wardle, 1980; Yanase et al., 2007). Given the ongoing and

anticipated changes in temperatures during the Anthropocene further study

of the effects of temperature on swimming capacity will be useful for inform-

ing management decisions, with important implications for conservation and

effectiveness of fishing gears.

1.2 Ability vs performance

Taken together, morphology and physiology determine the limits of

“capacity” (Beamish, 1978), or what a given individual fish is capable of
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doing within its environment (Table 1). And the environmental context mat-

ters: metabolic rate and aerobic scope are strongly dependent on temperature;

efficiency of force transmission will vary with turbulence; buoyancy is

affected by depth, etc.

Importantly, though, ability is not synonymous with performance

(Table 1). Performance refers to how well an animal is able to achieve a cer-

tain task, and again, each task is context dependent. For example, ability to

escape an ambush predator may be governed by acceleration, maneuverabil-

ity, and maximum speed, while traversing a velocity barrier or escape from

pursuit or a fishing trawl may be governed by endurance or maximum sus-

tained speeds. If fish consistently optimize the application of their capabilities

to each discrete task with which they are confronted, then capacity and perfor-

mance would be equivalent, but this is not the case. Instead, an animal in its

environment must respond to multiple sensory inputs, its perception of risk, its

internal state (e.g., nutritional or reproductive status), and other factors, many

of which remain poorly understood.

Each of the issues reviewed above has relevance to various aspects of

conservation and management of fishes and fisheries and also to the opportu-

nities afforded to human engineers by improved understanding of principles,

constraints, and applications. Throughout, we do not limit our content to the

physiology of locomotion. Instead, we cast locomotion and movement in their

environmental and applied context, explicitly recognizing that these contexts

require that behavior not be decoupled from physiology. We therefore take

a holistic approach, integrating behavior and physiology, as occurs in nature.

2 Habitat quality and connectivity

2.1 Syndromes of the anthropocene

Access to adequate habitat is a fundamental metric of habitat quality and is an

essential requirement for healthy fish populations. Fish need to access suitable

habitats to complete the various stages of their life cycle (Schlosser, 1991).

Many factors may partially or completely impede fish movements, as well

as the distribution of suitable aquatic habitats. Some of these factors are

governed by physical attributes of the environments and locomotor capacity

of fishes, while others are linked to fish behavior and ecology.

Although this volume focuses on developments and projections of the

period beginning in the mid-20th Century, fundamental changes to aquatic

environments from anthropogenic activities long predate this (Hall et al.,

2011, 2012). Since 1950, however, fluvial and marine ecosystems have under-

gone accelerated changes resulting from human activities. Anthropogenic

features now pervade many landscapes worldwide, altering aquatic habitat

quality and connectivity. Global climate change is also modifying natural

processes and physical characteristics of both freshwater and marine

environments.

Applied aspects of locomotion and biomechanics 9
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The multiple facets of anthropogenic influences have been synthesized

under the term “syndromes” (Meybeck, 2003), which are not specific to a

few areas, but instead can be observed in many places around the globe. Each

syndrome has its own causes and symptoms, although there can be substantial

overlap between them. Below we examine some of these syndromes and how

they relate to the ability of fish to move through their environment.

2.1.1 Instability in physical properties of aquatic habitats

Global changes in the Earth’s climate due to human activities is currently

leading to increased temperatures in most aquatic habitats, along with a reduc-

tion in pH and an increase of hypoxic zones, especially in coastal waters

where organic matter and nutrients coming from runoff processes are present.

Many physiological processes in fish (e.g., growth, metabolic rate, locomotor

performance) are temperature- and oxygen-dependent. As a result of species’

different physiological tolerances and capacity for adaptation, a modification

to the thermal regime will affect overall species distribution. Changes in water

temperature may also influence fish behavior, influencing motivation to swim

(Bayse et al., 2019; Goerig and Castro-Santos, 2017), triggering migrations

(Otero et al., 2014), and altering attack rate during feeding events (Domenici

et al., 2019). Changes in the physical properties of aquatic environments are

thus likely to affect ecological processes, changing distribution of functional

habitats in time and space, and affecting the fish locomotor and sensory/neural

systems (Domenici et al., 2019). In addition to the thermal effects on swimming

ability and energetics described above, human infrastructures can create novel

opportunities for predation, creating barriers to movement and affecting popula-

tion dynamics (Agostinho et al., 2012; Alcott et al., 2020, 2021).

Changes in the physical properties of aquatic habitats are also often

associated with increased instability. In the marine environment, warming

temperatures may cause a reduction in ocean ice and a modification in the

ocean global circulation (Macdonald and Wunsch, 1996; Maximenko et al.,

2013), slowing down some currents and the redistribution of heat around

the globe. Resulting thermal barriers may be impenetrable for migratory fish

(Otero et al., 2014; Stich et al., 2015), and alteration in the ocean’s global

circulation may limit distribution of fish larvae that take advantage of ocean

currents for transportation (Kettle and Haines, 2006; Smith, 2012).

Altered thermal regimes in rivers coincide with occasional droughts and

associated heat waves, where rivers and lakes experience unusually low flow

or elevated water temperatures and reduced dissolved oxygen levels. This

may create unsuitable areas for fish (too shallow, too warm, too hypoxic,

etc.) and cause previously stable habitats to become more variable or intermit-

tent (Meybeck, 2003). This influences bioenergetics and can affect fitness

(Friedland et al., 1998, 2005; Lennox et al., 2018). The survival of fish

populations in these areas is then dependent on the existence of refuge

habitats (deep pools, cold groundwater seepages, colder tributaries) and
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the ability of fish to access them (Ebersole et al., 2020; Vander Vorste et al.,

2020). This ability relates to the species locomotor behavior and ability, but

also to the degree of fluvial heterogeneity and connectivity in the watershed

(Dugdale et al., 2015; Dzara et al., 2019). Access to these critical refuge

habitats (e.g., those necessary for short-term survival) can be as important

as access to spawning or breeding habitats for population viability

(Schlosser, 1991; Sedell et al., 1990).

2.1.2 Altered flow regimes in rivers

Large or frequent modifications in river flow are a common feature of the

Anthropocene epoch; almost two-thirds of world’s large rivers are regulated

in order to produce energy, control floods, or collect water for human con-

sumption or irrigation purposes, leading to temporal fluctuations and reduc-

tion in river flow (Grill et al., 2019). Fluctuations in flow caused by

pumped storage facilities and hydropower plants often have a repetitive tem-

poral component, the magnitude and frequency of which both influence

aquatic ecosystems. Water collection or diversion for irrigation may affect

the flow in a more stable way: a flow reduction of 50% or more leads to

“neoarheism,” where the river will partially or completely dry up, causing dis-

connections of the main channel from its delta or tributaries (Meybeck, 2003),

making it impossible for fish to move within the river system.

Both short-term fluctuations and reductions in flow affect aquatic ecosys-

tems and organisms living within them. Dams and fluctuations in discharge

influence sediment processes (erosion, transport, deposition) and temperature

regime, causing instability or chronic alterations to the physical properties of

aquatic habitats and their morphology (Capra et al., 2017). As a consequence,

specific habitats such as deep pools, sand or gravel bars, oxbow lakes, etc.

may become temporarily or permanently inaccessible, leading to a decrease

in heterogeneity of the riverscape (Agostinho et al., 2004; Freeman et al.,

2001). A reduction in river discharge may also create zones of difficult

passage such as shallow rapids and riffles, and impassable falls.

These alterations in flow regimes cause substantial changes to the mosaic

of riverine functional habitats (spawning, breeding, refuge, etc.), potentially

requiring species to move over longer distances to find adequate habitat.

Depending on the frequency and magnitude of the fluctuations, fish may have

to quickly modify their habitat selection, adapting to new features or relocat-

ing to suboptimal habitats, with associated effects on fitness (Capra et al.,

2017). Species and individuals with a higher inclination to move and greater

locomotor ability may exhibit higher resilience in hydropeaking rivers, creat-

ing traits-based selection in fish populations (Van Looy et al., 2019).

2.1.3 Fragmentation of riverine habitats

Although some river systems are naturally fragmented by features such as

waterfalls, rapids, or beaver dams, anthropogenic obstructions are now widely
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present in many watersheds. Dams and associated reservoirs built for irriga-

tion, flood control, or energy production purposes are some of the greatest

changes affecting river systems in the Anthropocene. Although dams existed

well before the beginning of this epoch (Hall et al., 2011, 2012), the rate of

construction of large dams peaked between 1960 and 70 and continues apace

today. The International Commission on Large Dams (ICOLD) and the Global

Georeferenced Database of Dams (GOODD database; Mulligan et al., 2020)

reported 58,000 large dams worldwide in 2020, with a total storage capacity

of 7000–8300km3, roughly one-sixth of the total annual discharge of all the

world’s rivers. However, smaller impoundments are even more widespread,

numbering nearly 16 million, and with another 8000km3 of combined storage

capacity (Lehner et al., 2011).

Dams are not the only kind of human-made obstruction in river systems,

however. Tide gates and dykes often restrict connectivity between estuarine

and freshwater environments (Alcott et al., 2021; Rillahan et al., 2021), and

the prevalence of these structures is expected to increase dramatically as

nations seek to protect critical infrastructure from rising seas in a context of

global climate change (De Vaate et al., 2003; Vincik, 2013; Wright

et al., 2016).

Even more prevalent are road-stream crossings, the vast majority of which

use culverts to pass flow. The Anthropocene has seen tremendous growth in

road construction worldwide: in the United States alone there are more than

6.5 million road-stream crossings (Wieferich, 2022), most of which are

believed to pose partial or complete barriers to migration. This pattern is also

evident elsewhere, including in developing countries (Makrakis et al., 2012),

and is probably the single greatest threat to habitat connectivity in riverine

systems worldwide (Grill et al., 2019; Park et al., 2008).

Anthropogenic river features such as dams, tide gates, and culverts have

the potential to delay fish movement rates in both the upstream and down-

stream direction (Alcott et al., 2021; Goerig et al., 2016; Nyqvist et al.,

2016) and create partial or complete barriers to fish movements for various

reasons: physical obstructions (e.g., a dam), disconnection in the channel con-

tinuity (e.g., a perched culvert), or hydraulic conditions exceeding the fish

swimming abilities. This restricts access to complementary and/or critical

habitats (e.g., spawning, breeding, or refuge habitats) for fish species and

may lead to adverse consequences on individual fitness, and ultimately on

population health and survival (Dudgeon, 2011; Fuller et al., 2015). Fragmen-

tation of riverine habitats can also confer benefits, for example, by reducing

rates of colonization by exotic invasive species (Zielinski et al., 2019).

2.2 Fish passage: Restoring connectivity of riverine systems

To mitigate the effects of dams, culverts, and other barriers, various engineer-

ing solutions have been developed. Culverts are usually made of metal,
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concrete, or plastic pipes, which are often narrower and smoother than the nat-

ural stream channel. This creates a constriction in the flow at the inlet and the

development of high velocities within the structure, which in turn may cause

erosion at the downstream outlet resulting in a “perched” culvert, with the

downstream end suspended above the streambed. The disconnection in

the channel continuity and excessive water velocities inside the culverts are

the two main causes of impeded fish movements. Fish passage through cul-

verts may be improved either by improving design or by retrofitting with

structures tailored to the behavior and ability of target species (Duguay

et al., 2018b; Park et al., 2008). If resources are available, methods that

require less modification of the streambed are favored, such as creation of

a stream-simulation culvert (Barnard et al., 2015; Gillespie et al., 2014) or

replacement by a bridge. However, the design or retrofitting of culverts

remains the most common option due to a lower cost. This may include

proper sizing and embedding of the culvert to reduce the slope and the degree

of flow constriction, as well as the inclusion of corrugations or baffles in the

structure to increase bottom roughness and hence slow down water velocities

and increase hydraulic heterogeneity (Duguay et al., 2018b; Feurich et al.,

2012; Hotchkiss and Frei, 2007; Wang and Chanson, 2018).

Dams, regardless of their function, generally pose impassable barriers to

most riverine fishes. The most drastic way to restore access to fluvial habitats

fragmented by dams is to remove the dams themselves. In some contexts,

such as aging dams constructed for mill operation or obsolete flow regulation

purposes, this is the most logical option. There is currently significant interest

in dam removal, frequently requiring extensive design and planning (includ-

ing the restoration of riverine geomorphic processes (Bellmore et al., 2019;

Ryan Bellmore et al., 2017; Wieferich et al., 2021)). Dam removal often

has positive effects on fish access to habitat (Hill et al., 2019; Hogg et al.,

2015; Magilligan et al., 2016), however, there can also be less desirable con-

sequences, for example, by favoring access to new habitat for invasive species

(McLaughlin et al., 2013; Stanley and Doyle, 2003). Sometimes the original

structures were placed at falls or similar barriers to movement: in such cases

removal may have negligible benefits for providing access; likewise, the

surrounding riverscape may have been so altered by the construction and

operation of the dam that simple removal fails to restore connectivity.

The dam removal movement coincides with countervailing demands to

increase hydropower production to replace fossil fuels. Thus, in many cases

dams are likely to persist despite their consequences on fish movements and

access to habitat, elevating the need for effective mitigating solutions. Fish-

ways are structures designed to provide a passage route, usually around a

dam or similar structure but are sometimes used to provide access past natural

barriers as well (Hatry et al., 2013). Although fishways are used to pass fish in

both upstream and downstream directions, the challenges and risks associated

with the two types differ, leading to distinct designs.
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For upstream passage, fishways must dissipate the hydraulic head (differ-

ence in water level between the headpond above a dam and the tailrace below

it). In the absence of roughness elements, this head translates swiftly to velo-

cities that are impassable to any species. Most upstream fishways dissipate

this head using either a series of baffles or weirs and pools. As water flows

down the fishway, the roughness elements impart friction and turbulence,

converting the potential energy of the initial head into heat and noise

(Castro-Santos and Haro, 2006; Clay, 1995).

The design of upstream fishways and technical culverts is predicated

largely on the anticipated swimming performance of the fish species it is

intended to pass. In practice, however, engineers typically use data on swim-

ming ability for these designs. This is because although data on swimming

ability are widely available in the literature, data on actual performance are

comparatively rare (Castro-Santos and Haro, 2006; Table 1). Additionally,

fishways often have areas with velocities that exceed maximum sustained

speeds, interspersed with pools where fish can recover between bouts of

anaerobic swimming. It is unclear, however, if these design criteria function

as intended for most species; this may be one factor that contributes to a wide-

spread failure of upstream fishways to pass fish effectively (Bunt et al., 2012,

2016; Noonan et al., 2012).

Ideally, fishways and culverts are designed using empirical data on endur-

ance and swimming performance of target species, for example, the maximal

distance a species can traverse under a range of flow velocities and environ-

mental conditions (Castro-Santos, 2004; Haro et al., 2004; Weaver, 1963).

The design of roughness elements in fishways and culverts may also benefit

from considering empirical data on fish kinematics, such as lateral body

amplitude during movement (Di Santo et al., 2021; Duguay et al., 2018a).

Another factor that likely contributes to passage success being poorer than

expected is that most swimming performance studies are conducted in envir-

onments where turbulence is deliberately minimized (Brett, 1964), while most

upstream fishways and culverts equipped with baffles or corrugations are spe-

cifically designed to dissipate energy through the generation of turbulence

(Duguay et al., 2018a,b). While we know of no standard guidance for turbu-

lence structure within fishways and culverts, there is broad recognition that

turbulence is important, prompting agencies to size pools and structures such

that they remain below specific thresholds of energy dissipation (sometimes

called the “energy dissipation factor” or EDF), which, depending on struc-

tures and species typically ranges from 25 to 240Wm�3 (Towler et al., 2015).

While EDF provides a measure of energy dissipation derived from first

principles, it does not provide details on the characteristics of the associated

turbulence. Turbulence is a generic term referring to temporal fluctuations

in flow velocity and direction. The characteristics of those fluctuations

vary widely, however. At its onset, turbulence comprises vortices (eddies)

that vary in intensity, periodicity, orientation, and scale (Lacey et al., 2012;
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Tritico and Cotel, 2010). In simple cases, these eddies can be highly

structured and reduce the energetic costs of fish locomotion (Liao, 2007;

Liao et al., 2003a,b). Although this has been demonstrated in laboratory set-

tings, conditions in the field are rarely as simple. Instead, particularly at high

flow velocities, eddies interact and create a highly chaotic structure that

reduces swimming efficiency and increases energetic costs (Enders et al.,

2003, 2005). Complicating matters further, turbulence does not arise sponta-

neously but instead is associated with structures, typically located on the

channel substrate (e.g., boulders, baffles, corrugations). In some cases, fish

can shelter behind these, occupying zones of low-velocity and turbulence

(Duguay et al., 2018b; Goerig et al., 2017; Wang and Chanson, 2018). This

can enable some individuals, particularly those with smaller body sizes, to tra-

verse otherwise impassable barriers (Goerig et al., 2016). This complexity

makes the study of turbulence in the context of swimming ability as challeng-

ing as it is important (Duguay et al., 2018b; Enders et al., 2017; Hinch and

Rand, 2000), and researchers have called for improved standardization of its

measurement in association with fish passage (Castro-Santos et al., 2009;

Lacey et al., 2012).

One solution to eliminating hydraulic conditions that exceed swimming

performance is to use mechanical means to lift the fish past a barrier. This

can take the form of a “fish lift,” a sort of elevator that attracts fish into a hop-

per, then raises them along with a volume of water to the headpond (or some-

times a trucking or similar transport facility), where they are then deposited

above the dam (Sprankle, 2005; Travade and Larinier, 2002). Alternatively,

navigation locks or specifically-designed fish locks use a similar approach,

simply regulating the water level within a chamber to allow passage without

requiring fish to ascend a channel volitionally (Júlio Júnior et al., 2009;

Travade and Larinier, 2002). While these methods can bypass the limitations

of swimming ability, they still require the fish to enter the structures volition-

ally and remain there while the operation is executed. Although once

contained within the structure swimming performance is no longer relevant,

conditions below these structures (particularly locks, which must discharge

large volumes of water) can be energetically costly. Because of this, passage

through locks tends to be poorer than through fishlifts (Finger et al., 2020;

Travade and Larinier, 2002). These structures may also create problematic

routes of passage for invasive species, as discussed further below.

Downstream fish passage presents engineers with a different suite of chal-

lenges. The original work to develop estimates of maximum sustained speeds

was intended to determine the maximum flow velocity that downstream

migrating salmon smolts could resist at the intakes of hydroelectric dams

and other water withdrawals (Brett, 1962, 1964). The thinking was that if

velocities could be maintained below Ums salmon would not volitionally pass

into the turbine intakes, giving them time to find an alternate and safe route of

passage.

Applied aspects of locomotion and biomechanics 15

ARTICLE IN PRESS



Because downstream migrants tend to follow the flow, downstream fish-

ways (often called bypasses) are typically placed close to the turbine intakes.

Extensive hydraulic and behavioral studies have shown that flow fields can be

manipulated to guide fish to safe passage routes (Bates and Vinsonhaler,

1957; Haefner and Bowen, 2002; Kynard and Horgan, 2001; Shepherd

et al., 2007). Then, by regulating the rate of flow acceleration, fish can be

enticed to enter these structures. When properly designed, these can entrain

fish beyond a point where they are no longer able to sprint out of the structure

(Adams et al., 2014; Haro et al., 1998; Kemp et al., 2005) and are conveyed in

a jet of water that discharges into a plunge pool of sufficient dimensions to

allow for rapid passage without injury (Castro-Santos et al., 2020; USFWS,

2019). Because downstream migrants tend to follow the flow, downstream

fishways typically require large discharge. This is inconvenient, because

recent work has shown that upstream fishways can be safe conduits for down-

stream passage, provided that fish can be enticed to enter them (Celestino

et al., 2019; Gutfreund et al., 2018), but actual usage is low (Pelicice and

Agostinho, 2012).

Despite the extensive efforts and expense applied to the development of

fishways and the design of culverts, the performance of these structures is

highly variable (Bunt et al., 2012, 2016), and they frequently fail to meet

management objectives. While it is common to attribute this to excessive

emphasis on a few anadromous species in their initial design, the interplay

between fish swimming behavior and ability likewise bears greater scrutiny.

The ability of fish to pass instream barriers in an upstream or downstream

direction depends on their locomotor ability, but also on various behavioral

aspects such as their motivation to approach, enter and pass a given structure,

as well as the strategies employed to navigate challenging hydraulic condi-

tions. The motivation, or willingness to swim (Table 1), can be captured by

quantifying the rates at which fish approach and attempt to enter fishways

or culverts (Castro-Santos, 2004; Goerig and Castro-Santos, 2017). These

rates may depend upon multiple biological (fish species and body size),

hydraulic (flow depth and velocity), and environmental factors (temperature,

time of day) (Goerig et al., 2020; Goerig and Castro-Santos, 2017;

Mensinger et al., 2021). Fish also use behavioral strategies to deal with chal-

lenging conditions. They may adopt an exploratory behavior at first then stage

repeated attempts to pass a barrier, in which case their probability of success

increases with the number of attempts (Castro-Santos, 2004, 2006). They may

also optimize their average groundspeed to maximize the distance traversed

(Castro-Santos, 2005), or take advantage of turbulence and heterogeneity in

hydraulics to select low-velocities areas and move forward without incurring

excessive energy costs (Goerig et al., 2017; Wang and Chanson, 2018). It is

therefore important to also consider locomotor behavior in fishway and cul-

vert design, and how behavior and ability are related to actual hydrodynamics

near and within fish passage structures.

16 Fish Physiology Volume 39A

ARTICLE IN PRESS



3 Invasive species in river systems

Industrialization, commerce, and transportation systems have provided

numerous and novel vectors for conveying species across what were once

impermeable barriers of elevation, distance, salinity, temperature, etc. While

some of these invasions are the consequence of deliberate introductions gone

astray (such as the introduction of Brown Trout (Salmo trutta) to North Amer-

ica, and Brook Trout (Salvelinus fontinalis) to Europe and western North

America (Rahel et al., 2008)), others were purely accidental, either via

escapement from aquaculture facilities (e.g., Bighead (Hypophthalmichthys
nobilis) and Silver Carp (H. molitrix) in the Mississippi drainage (Stokstad,

2003)), and in ballast water (Elskus et al., 2017; Treanor et al., 2017), etc.).

In some cases, multiple pathways interact, and the success of invasions is

mediated both by the vector of transmission and by habitat type and quantity

(freshwater habitats are much more vulnerable to invasion (Alcaraz et al.,

2005; Beletsky et al., 2017; Garcı́a-Berthou et al., 2005)).

Navigation has been a major catalyst for these invasions, both in the form

of ballast water, and via navigation locks. While ballast water vectors can be

mitigated by purging and replacing ballast tanks during transit and chemical

treatments (Elskus et al., 2017), this is not true of navigation locks. Locks

are pervasive throughout the rivers of the developed world, and have pro-

moted the invasions of Round Goby (Neogobius melanostomus) in the Rhine

(Roche et al., 2013), invasive carps in the Mississippi and bordering drainages

(Stokstad, 2010), and Sea Lamprey (Petromyzon marinus) into the Laurentian

Great Lakes (Zielinski et al., 2019), to name but a few examples. Novel tech-

nologies are in development to limit movements through these pathways,

although to date no measure has proven to be effective (Stokstad, 2003,

2010; Zielinski et al., 2019).

Once established, invasive species are exceedingly difficult to control,

let alone eradicate. One case in which control can be possible is when inva-

sive species are migratory, using discrete habitats for spawning and growth

(Behrens et al., 2017). In this situation, barriers that inhibit movement can

be constructed to prevent passage, interrupting key life history stages. In lotic

habitats, such efforts sometimes focus on swimming ability and behavior,

although these efforts are not always successful: interest in separating Brown

Trout and Brook Trout were frustrated by the striking similarity in swimming

ability between these two species (Castro-Santos et al., 2013). In the case of

Sea Lamprey in the Great Lakes, however, considerable success was achieved

by constructing hundreds of barriers on surrounding tributaries.

These barriers were designed to prevent invasive Sea Lamprey from pass-

ing, but at sufficiently low heights that highly-valued salmonids were able to

pass (Zielinski et al., 2019). This was facilitated by both the ability and pro-

pensity of salmonids to leap over obstacles. There was an unintended conse-

quence, however: many non-leaping native species also migrate between the
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lakes and rivers to spawn and for other activities important to their life his-

tory, and these barriers have obstructed these movements (McLaughlin

et al., 2013). Current solutions to this dilemma include trap-and-sort facilities,

where lamprey are culled from fishways and native species are allowed to

proceed upstream (Pratt et al., 2009).

Owing to the overall poor performance of fishways at passing native spe-

cies, this solution has been deemed inadequate, and significant efforts are

underway to develop fishways that selectively block Sea Lamprey while

allowing native species to pass (Fig. 3; Zielinski et al., 2019; http://www.

glfc.org/fishpass.php).

Owing to their unique morphology, Sea Lamprey are thought to have

reduced swimming ability compared with native species. This suggests that

a simple velocity barrier might be a successful approach to selective passage,

at least for some strong swimming species (Fig. 4).

However, lamprey have a secret weapon: their sucking disc, used to attach

to their prey and for constructing spawning redds, is also an efficient tool for

ascending zones of high-velocity flow (Fig. 3). During attachment, the only

actual work being performed is the maintenance of sufficient suction to pre-

vent the fish from being dislodged. In this way, they are able to recover from

bouts of sprinting and, when ready, to execute another burst of swimming

(Castro-Santos et al., 2019). By incrementally sprinting and attaching to a

range of substrates they are able to ascend challenges that are impassable

by almost any other species (Moser et al., 2011).

This unique ability can be countered by lining channels with a substrate

that inhibits attachment. Some studies have shown that this is a promising line

of research, although definitive solutions remain elusive (Castro-Santos et al.,

2019; McCauley, 1996; Zielinski et al., 2019), and other approaches will be

needed for smaller-bodied and weaker-swimming species. Nevertheless, these

and similar efforts hold promise for helping to limit access to key habitats and

facilitating control. Lessons learned from lamprey may hold clues for the con-

trol of other species with related abilities, such as Round Goby (Voegtle et al.,

2002; Webb, 1989).

4 Capture fisheries

4.1 The biomechanical foundation of fish capture

Global fisheries production was 178.5 million tons in 2018, with 96.4 million

tons from capture fisheries (FAO, 2020). Fish are an important source of

nutrition for many countries, providing 3.3 billion people globally with 20%

of their animal protein intake in 2018 (FAO, 2020). Fish capture is an essen-

tial activity in many nations, especially in coastal and island nations, with a

large variety of fishing gears and operational methods, and these uses are

likely to continue (He et al., 2021a).
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FIG. 3 FishPass design drawing and lamprey attached to the wall of an experimental flume. Upper and lower-left panels: the FishPass is a multinational collab-

oration to develop structures that will selectively pass a range of native fish while obstructing Sea Lamprey. The ultimate intent is to use intrinsic differences in

morphology, capacity, and behavior to separate and remove invasive Sea Lamprey while permitting free passage to native species. The design will allow use of

free-swimming fish in a field-like setting, while allowing sufficient control to conduct experiments as they pass through the three phases of fish passage:

(a) discovery of (or approach to) a potential passage route; (b) entry into the passage structure; and (c) passage through the structure itself. Each of these steps

offers an opportunity for failure: passage is only possible by sequentially completing all three phases (Castro-Santos and Haro, 2010; Silva et al., 2018).

Lower-right panel: a Sea Lamprey attached to a plexiglass wall in a flume in high-velocity flow (photo by E. Goerig, USGS).
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Given the importance of both commercial and subsistence fishing, it is

becoming increasingly important for managers to regulate both the species

and sizes captured by fishing gears. In many cases, it is important to selec-

tively target a given size and species in order to optimize future recruitment

(Beverton and Holt, 1957). The required selectivity is often not matched by

gear performance, however, and vast quantities of fishes and other organisms

are unintentionally captured as bycatch and then discarded at sea, often with

serious ecological and social consequences (Harrington et al., 2005). Because

of this, as well as owing to the associated benefits to the fishers themselves,

extensive efforts are underway to improve efficiency and selectivity of fishing

gears (Hasselman et al., 2016; He et al., 2021b; Valdemarsen, 2001).

Fishing gears are designed based on the behavior and locomotion ability of

target species, and more recently, that of unwanted bycatch species and pro-

tected species. Fish locomotion is an important factor in the design and oper-

ation of the active gear to catch or release fish, such as trawls, purse seines,

and dredges (He, 1993; Wardle, 1986). For passive gears such as gillnets

and longlines, swimming activity determines the range of their fishing area,

which also directly impacts capture efficiency (He, 2003).
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FIG. 4 Comparative sprinting (red) and prolonged (dark blue) endurance curves for a range of spe-

cies from five orders: Cypriniformes (Iberian barbel (Luciobarbus bocagei), straight-mouthed nase

(Pseudochondrostoma duriense), and white sucker (Catostomus commersoni), solid lines); Clupei-

formes (American shad (Alosa sapidissima), Alewife (A. phseudoharengus), and Blueback Herring

(A. aestivalis), dash-dot lines); Perciformes (Walleye (Sander vitreum) and Striped Bass (Morone

saxatilis), long-dashed lines); Salmoniformes (Brook Trout (Salvelinus fontinalis) and Brown Trout

(Salmo trutta), short-dashed lines); and Petromyzontiformes (Sea Lamprey (Petromyzon marinus),

dotted line) (Castro-Santos, 2005; Castro-Santos et al., 2013; Sanz-Ronda et al., 2015; Zielinski

et al., 2019) . Sea Lamprey have comparatively poor endurance, but their ability to attach to surfaces

(Fig. 3) enables them to recover from fatigue without being swept downstream in strong currents.
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Fishing is the interaction of fish and fishing gear in a physical environ-

ment. Environmental conditions affect biology, ecology, and physiology of

fish, which governs fish reaction to fishing gears, as well as their ability to

escape from them. Environmental conditions also directly impact the type

of fishing gear that can be operated. Successful fish capture is managed by

using the appropriate fishing gear to catch the intended fish (species and size)

at the appropriate time and place (Fig. 5).

4.1.1 Fish capture by trawls: The role of fish locomotion

Understanding fish biomechanics, especially swimming ability and behavior,

is crucial in active fishing gears that chase or surround fish for capture, but

it is also important for passive fishing gears that rely on fishes’ movement

into the gear. Here, we take the single boat bottom otter trawl (He et al.,

2021a,b; called “otter trawl” or simply “trawl” hereafter), one of the most

common active gear types, as an example on how swimming behavior and

ability thread the entire capture process from the time the fish is aware of

the approaching trawl to the time it is either retained in the codend or has

escaped from the trawl. Fig. 6 illustrates the capture process of fish by a trawl.

The trawl as well as its influenced area is divided into five zones where fish

may behave differently during the capture process.

FIG. 5 Three pillars for fish capture. Successful fish capture is about using the right fishing gear

to catch the right fish (species and size) at the right time and place.
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Zone 1 is the pre-trawl zone, which could extend forward for more than a

kilometer from the otter boards. Depending on the type of seabed and the

design of the trawl, noises generated by the otter board hitting rocks on the sea-

bed and from the propellor of the trawler can be heard by fish far earlier than

the fish can see the trawl. Using stationary hydrophones, Winger (2004) demon-

strated that Atlantic Cod (Gadus morhua) responded to a survey trawl vessel at

1500m by slowing their swimming speed to near zero. Acoustic stimuli from

the trawler and its trawl may thus raise awareness in the fish, which may look

for possible dangers well before the trawl becomes visible (Wardle, 1986).

Zone 2 includes the area from the otter boards to the wingends. For many

fish trawls, especially trawls for flatfish, long cables (sweeps and bridles) con-

nect the boards and the wingends to increase the horizontal distance between

boards (called door spread). Bridles usually refer to two or more cables that

extend from top and lower wingends. They are joined together and connect

to the sweep.

Fish often react to moving oblique cables by swimming away from them

and are herded toward the path of the trawl. The angle between the cable

and the towing direction is called the sweep angle (α in Fig. 7), while the

FIG. 6 Typical swimming behavior of fish when approaching and being herded inside an otter

trawl. Zone 1 is the pre-trawl zone where fish are alerted of an approaching otter trawl through

acoustic and visual stimuli from the trawl. Zone 2 is the herding zone where fish are herded by

sweeps and bridles toward the mouth of trawl between the wings. Fish are typically moving away

from the towed oblique rope toward the center of the trawl path. The shaded area trialing the otter

board are sand clouds. Zone 3 is the concentration zone where fish are concentrated toward the

center of the trawl, and turn and swim with the trawl. Zone 4 is the trawl body that gradually nar-

rows and guides fish toward the codend. Zone 5 is the codend, which is often preceded with an

“extension piece.” Fish are accumulated in the codend where turbulence and motion of the codend

stimulate fish to attempt to escape through the meshes.
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angle between the direction of fish avoidance behavior and the cable is the

avoidance angle (β in Fig. 7). For fish at Position 1 (ahead of the path of

the bridles, but outside of the capture zone defined by the wings, Fig. 7) to

be herded into the capture zone, they have to swim the distance (d in

Fig. 7) from Position 1 to Position 3 within the time period when the wingend

moves forward the distance (D) from Position 2 to Position 3. Swimming

speed required (Us) is related to angles α and β, and to the towing speed of

the trawl (UTr). The endurance time (Table 1) required for a fish to be herded

into the trawl path (Tesc) is related to α, β, UTr, as well as to the position of the

fish along the length of the cable when fish starts to react (L).

Us ¼ UTr
sin αð Þ
sin βð Þ (1)

Tesc ¼ L
UTr

sin βð Þ
sin β � αð Þ (2)

Towing speed of the trawl and sweep angle directly affect the swimming

speed required for herding. Simulations from Eqs. 1 and 2 with a trawl towing

speed of 1.5m/s and reaction distance of 100m from the wingend are plotted

FIG. 7 Fish reaction to sweeps and bridles of a bottom otter trawl. (A) A fish at Position 1 has to

be capable of swimming to Position 3 before the wingend moves from Position 2 to 3 for it to be

herded into the path of the trawl between the wings. (B) Avoidance angle of fish. Typically, round-

fish have a larger range of avoidance angles (β) than flatfish which are usually at around 90 degrees.
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in Fig. 8. Typically, the lowest swimming speed required is when the fish

avoids the trawl by swimming directly away from the cable (β¼90°), but
the changes in the required swimming speed are minimal from 60° to 120°
(shaded zone, Fig. 8). Larger and smaller avoidance angles require higher

swimming speeds for fish to be herded into the trawl path; if a fish is not

capable of doing so, it will be overtaken by the sweep and not herded.

Sweep angles (⍺) of otter trawls are typically between 10° and 20°. Large
sweep angles require fish to swim faster to be herded into the trawl path,

which may prove inefficient for catching some fish. Sweep angle >20° was

found to reduce catch of Cod and Haddock (Strange, 1984), indicating the

importance of matching design and mechanics of the fishing gear with biome-

chanics of the target fish species.

Fish reacting to longer sweeps are required to swim longer to get away

from the cable and into the path of the trawl, which may be challenging for

FIG. 8 Swimming speed and endurance required for fish to be herded into the path of trawl as

related to sweep angle and avoidance angle for fish that react to a cable towed at 1.5m/s at 100m

from the wingend.
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species with lower swimming endurance. As swimming endurance is related

to the length of fish (He and Wardle, 1988), among other factors, longer

sweeps may result in the catch of more large fish and fewer small fish. Indeed,

Engås and Godø (1989) found that longer sweeps resulted in a higher propor-

tion of large Atlantic Cod and Haddock in survey trawls.

Avoidance angles of roundfish (with fusiform or laterally compressed

shape) such as Atlantic Cod, Haddock (Melanogrammus aeglefinus) and Pol-

lock (Pollachius virens) are more variable than those of flatfish, which are

more consistent and closer to 90° (Fig. 7). Through underwater telemetry,

researchers in Scotland found that Haddock approached and avoided the

sweep at larger and more varied angles and at greater distance from the cable

(SOAFD, 1998). Flatfish often react at a very short distance from the cable,

exhibiting a swim-and-rest behavior, as being periodically “chased” by the

approaching cable (Wardle, 1986; Winger et al., 2010).

Zone 3 (Fig. 6) includes the area between the wings and under the square

(overhang) of the trawl, just ahead of the groundgear, which contacts the sea-

bed. Fish arriving at Zone 3 typically start to turn and swim with the trawl,

with flatfish swimming much closer to the groundgear. The swimming ability

of the fish and the towing speed of the trawl strongly influence the duration

that fish swim with the trawl in that area.

The variation in swimming ability with body size and species has impor-

tant implications for selective fishing (He and Wardle, 1988; Wardle, 1977;

Wardle and He, 1988). For example, 40cm-long Saithe (also called Pollock,

Pollachius virens) can swim for 6min at 1.5m/s before being captured by a

trawl, while Haddock, Whiting (Merlangius merlangus), and Atlantic Cod

of similar sizes could only maintain that speed for 2.5, 1 and 0.5min, respec-

tively. By comparison, endurance of smaller individuals of these species was

<1min at the same towing speed of 1.5m/s (Main and Sangster, 1981).

Atlantic Mackerel (Scomber scombrus, 35–45cm in length), being a fast

swimmer, was observed swimming forward and escaping from the groundfish

trawl towed at 1.5m/s (Main and Sangster, 1981). Midwater trawls targeting

Atlantic Mackerel are typically towed much faster, ranging from 1.9 to

2.3m/s. Even at these high speeds, Mackerel (34cm) were swimming for

30 to 58min with a midwater trawl as observed by an underwater camera sys-

tem (Rosen and Holst, 2013). By comparison, in the laboratory, Atlantic

Mackerel of similar size were able to swim at 1.5m/s for 60min and at

1.8m/s for 10min (He and Wardle, 1988). It must be pointed out that obser-

vations at sea of fish swimming speed and duration are opportunistic and

often lack precise details of fish size and physiological status (e.g., the level

of exhaustion).

Subtle changes in towing speed can make important differences in capture

efficiency. Some species will maintain a position just ahead of a trawl and

evade capture. To respond to this behavior, a fishing strategy called “power

take-off” is sometimes practiced to catch the unexhausted fish by increasing
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the towing speed at the end of the tow. Conversely, towing speed may be

reduced before hauling to avoid catching stronger-swimming fish.

Zone 4 includes the body of the trawl net (Fig. 6), where fish are gradually

funneled within the reduced diameter of the net. Fish that have given up

swimming in front of groundgear may swim toward the codend, but they

may also orient forward again as space becomes narrower. Longer nets can

better guide fish toward the codend with less meshing of fish in the net.

Zone 5 is the codend of the trawl where fish are accumulated (Fig. 6).

A codend with accumulated catch can block the water flow and create turbu-

lence within the codend. Fish arriving in the codend may start to swim again,

at slower swimming speed due to the bucket effect created by the codend with

fish. Fish may also attempt to swim out through the open meshes, which may

cause scale loss or injuries due to contact with the mesh. He (1993) modeled

escape probability of fish through a codend mesh under different towing

speeds, mesh sizes, and water temperatures, revealing a higher probability

for fish to escape without contacting the netting when the codend has a large

mesh size, the towing speed is low, and in areas with warmer waters.

4.2 The role of fish biomechanics in reducing bycatch
and discards: A case study

While the definition of bycatch varies among jurisdictions, it generally refers

to “the catch of organisms that are not targeted” (Perez Roda et al., 2019).

Tropical shrimp trawls in the Gulf of Mexico faced bycatch of sea turtles

and juveniles of important commercial fish species such as Red Snapper (Lut-
janus campechamus). While sea turtle bycatch was significantly reduced

through the testing and introduction of various turtle excluder devices

(TEDs, also called trawl efficiency devices) in the 1980s and 90s (Jenkins,

2012; Watson et al., 1999), fish bycatch persisted. Researchers in the Gulf

of Mexico have conducted a series of studies on topics ranging from behavior

of relevant species to gear designs to reduce fish bycatch in shrimp trawls in

the last 30 years. The effort led to the development of several types of bycatch

reduction devices (BRDs), such as the fisheye, the extended funnel, and the

Jones/Davis device (Watson et al., 1999). This case study describes the pro-

cess and results of the development of the nested cylinder bycatch reduction

device (NCBRD), designed to reduce red snapper bycatch through under-

standing of its biomechanics, especially swimming behavior and ability.

Underwater observations of red snapper found that fish would seek areas

of low flow near the bycatch reduction device (BRD), which may provide

opportunity for fish to escape from the opening of the device, but very few

fish escaped during steady towing of the trawl (Engås et al., 1999). However,

as the trawl was slowed during hauling, significant active escape occurred.

Due to variabilities in haulback procedures, the rate of bycatch reduction

varied among vessels. Understanding the mechanism of fish escape and means

to induce fish to escape was thus proposed (Engås et al., 1999).
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To further understand swimming behavior of red snapper, Engås and

Foster (2002) conducted a laboratory study to examine the effect of

“inclined” water flow. When the recirculating swimming tunnel was horizon-

tal, red snapper 9.7–14.4cm in length maintained a specific position (called

bull’s eye) while swimming steadily against a flow velocity of 3 body lengths

per second (BLs�1) for 10min. When the swimming tunnel was tilted (as

much as 45°), many fish were not able to maintain the same position and

instead showed erratic swimming behavior such as moving up, down and

sideways, demonstrating the potential of utilizing inclined water flows to

develop more selective devices (Engås and Foster, 2002).

Critical swimming speed (Ucrit) of red snapper was measured in laboratory

at various times of the year, showing a peak in October; importantly, diel period

(day and night) did not affect swimming performance (Parsons and Foster,

2007). However, when exposed to a vortex generating bycatch reduction

device, significantly larger percentage of fish escaped during the day (higher

luminosity) than during the night. Moreover, when light was provided in the

test tank (e.g., using a green Cyalume light stick or blue-green LED light), all

fish escaped within a short period of time, with the intensity of light negatively

correlated to the time they took to escape (Parsons et al., 2012). This indicates

that illumination during nighttime trawling can be an effective way to stimulate

escape behavior of bycatch species (Parsons and Foster, 2007).

Parsons and Foster (2007) also tested the preference of illuminated and uni-

lluminated area in a water tunnel. They found that all fish chose the darker side

of the swimming tunnel, indicating negative phototactic response. This provides

additional evidence that fish behavior could be partly controlled by manipulat-

ing illumination, especially for shrimp trawls in the Gulf of Mexico, where

most fishing operations are conducted at night (Parsons and Foster, 2007).

Based on the above and other research, Parsons and his colleagues

designed a BRD called nested cylinder bycatch reduction device (NCBRD),

as illustrated in Fig. 9 (Parsons and Foster, 2015; Parsons et al., 2012). The

NCBRD modifies the flow in the area outside of the inner section and pro-

vides illumination at the exit from the mesh sock, allowing Red Snappers to

turn and escape. The targeted shrimp species, which have inferior swimming

ability than Red Snapper, are pushed to the codend. This design reduced red

snapper bycatch by as much as 50% (Parsons and Foster, 2015).

5 Fisheries management and enhancement

5.1 Fisheries surveys

Bottom trawls are the most common fishing gear for fisheries surveys, but

pelagic trawls, gillnets, longlines, and pots are also used. Acoustic devices

such as echo sounders are used for surveying schooling fish in pelagic envi-

ronment. In rivers and streams, electrofishing is also used for surveys. More

recently, stationary underwater cameras are used to survey coastal and reef

fish. While most of these survey methods may be affected by fish behavior,
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especially locomotory habits, we offer the following examples to illustrate

how fish biomechanics, especially swimming behavior can affect outcome

of fisheries surveys.

5.1.1 Tow duration of bottom trawl surveys

Tow duration of bottom trawl surveys is usually between 15 and 60min. Evi-

dence had previously been interpreted as indicating there was no effect of tow

duration on catch per unit effort (CPUE: Godø et al., 1990; Walsh, 1991;

Wieland and Storr-Paulsen, 2006). More recent data challenge this view:

Sala (2018) found an effect of tow duration on CPUE as well as the size of

fish, comparing 30 and 60min tows. This likely occurs because of the relation

between swimming performance and body size: larger fish may not become

exhausted when swimming at the mouth of trawl if their endurance exceeds

tow duration. It is thus possible that large fish may be underrepresented when

the tow duration of a survey trawl is short. Effect of tow duration on CPUE

and size distribution of the catch may be species specific, and more informa-

tion may help to better-inform design of bottom trawl surveys.

5.1.2 Encountering probability of fish with passive survey gears

Catch by passive gears (also called stationary gear, or fixed gear) such as gill-

nets, longlines, and pots rely on the movement of fish which accidentally

FIG. 9 Schematic drawing of the nested cylinder bycatch reduction device (NCBRD) designed for

the Gulf of Mexico and Southeast US shrimp trawl fisheries. The flow-blocking cone reduces flow

in the area outside of the inner cylinder. The rear of the exit area is illuminated (yellow). Red

snappers turn at the exit area of the mesh sock and seek the low-flow and darkened area, leading

to escape in the area between the cone and the out cylinder where there is no netting. Shrimps with

poor swimming ability are pushed to the codend. Redrawn based on Parsons et al. (2012) and

Parsons and Foster (2015).
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swim into gillnets, or are attracted to bait in longlines and pots. For gillnets,

the faster a fish moves, the more likely the fish will encounter the net, both

because of the volume of water encountered (Løkkeborg et al., 2010, 2014;

Rudstam et al., 1984), and because of the associated reduction in response

time (Engas and Lokkeborg, 1994). Therefore, incorporating probability and

speed of fish encountering fixed gear will improve understanding of gear effi-

ciency and hence more accurate stock assessment (Lennox et al., 2017).

5.1.3 Active space in passive survey gears

“Active space” of a passive fishing gear is the potential area within which the

fish may be captured by the gear (McQuinn et al., 1988). It is related to the

swimming speed of fish and soak time of the gear (the duration the gear is

deployed). The effectiveness of these gears varies with season, and it is likely

to change as habitats change in response to a warming climate. For example,

He (2003) modeled the active space of a gillnet for catching Winter Flounder

(Pseudopleuronectes americanus) and found that active space would be more

than 7 times greater at 4.4 °C than that at �1.2 °C for a gillnet set for 12h,

owing to increased activity of winter flounder at the higher water temperature.

Similarly, active gears may become less effective in historically colder

regions if the species there become more active and swim with greater endur-

ance at higher temperatures, although such changes may be offset by changes

in habitat use. Regardless, temperature-related changes in fish activity and

swimming ability are likely to result in changes in vulnerability to both active

and passive fishing gears, with associated implications for fish capture, stock

assessment surveys and management.

5.2 Stock enhancement

Above we describe various approaches to restoring populations impacted by

human activities, whether through fragmentation, habitat alteration, fishing,

etc. Often, though, it is necessary to supplement populations in the field

and/or to maintain broodstock to safeguard existing genetic diversity. To this

end, fish hatcheries have served a vital role for more than a century

(Anonymous, 1872, 1877; Clift, 1872). The development of dams and tar-

geted harvest of migratory species, particularly in North America during the

18th and 19th centuries were recognized as important causes of declines in

many species. This context, combined with the opening of vast territories of

what became public lands and waters prompted significant public investment

in the artificial propagation and stocking of both native and non-native species

into freshwater lakes and streams (Anonymous, 1877).

The captive rearing of fish has a much deeper history; however, aquacul-

ture has been an important food source for humans for millenia. The earliest

records of aquaculture for food production come from China in 3500BCE;

where by the 1980s 2.7 million hectares of freshwater surface area were
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dedicated to aquaculture for food production (FAO, 1983). The importance of

aquaculture continues to grow and will likely remain one of the most impor-

tant sources of human dietary protein (Teletchea and Fontaine, 2014).

As with many species raised in captivity, freedom of movement and exer-

cise has benefits, both for the health of individual fish and for the quality of

the final product, whether it be destined for restoration of wild populations

or for food markets. When compared with fish raised under lentic conditions,

a range of species subjected to flows on the order of 1BLs�1 show increased

feed conversion rate, improved growth rates, better fin condition, added mass

and changed composition of both red and white muscle, increases in number

of dermal layers, and improved shelf life. Not surprisingly, some species show

improved survival and fitness, as well as more natural movement patterns

when subsequently released to the wild following exercise regimes

(Davison, 1997; Jobling et al., 1993; Jørgensen and Jobling, 1993).

6 Biomimetic engineering for fish conservation
in the anthropocene

One pervasive problem that has impeded development of effective conserva-

tion strategies is the difficulty of observing live fish in their native (or inva-

sive) habitat. Physiology is often studied using in vitro methods, or as

mentioned above, on whole animals constrained in artificial environments that

prevent them from performing behaviors and tasks most relevant to their lived

reality.

Advances in telemetry, particularly over the past four decades, have dramat-

ically improved our ability to monitor both large- and small-scale movements

of free-ranging animals (Monan, 1985; Monan et al., 1975). Development of

large, fixed receiver arrays have promoted an increasing number of studies,

offering insights into habitat use, effects of human activities, etc. (Krueger

et al., 2018).

Characteristics of local environments, and the sheer vastness of aquatic

ecosystems can make such methods impractical, however, and technologies

are rapidly evolving that will expand the scope of monitoring. One class of

devices that is yielding insights is automated drones. Aerial drones, for exam-

ple, have allowed surveys of land animals and their movements in locations

and over distances that are difficult if not impossible to achieve for human

observers (Inman et al., 2019; Schlossberg et al., 2016). Drones are also used

in studies of bird migration and behavior (Canal and Negro, 2018; Marinov

et al., 2016), and are indispensable for habitat surveys, especially in inacces-

sible areas. These concepts have recently been expanded to the marine envi-

ronment. Restrictions on survey crews owing to the Covid-19 pandemic

created an opportunity to deploy unmanned drones to survey large tracts of

ocean for fisheries surveys that had previously only been performed by

human-crewed vessels, and similar efforts are ongoing around the world
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(De Robertis et al., 2021). In addition to performing autonomous surveys,

such devices also offer opportunities to observe fish in their environment

and their response to things like fishing gears, promising to greatly improve

our understanding of the mechanical underpinnings of gear efficiency,

bycatch, and other challenges.

Nevertheless, technological progress in fish conservation biology is lack-

ing for reasons that must include the many challenges involved in operating

mechanical systems underwater, difficulty with vision and acoustic communi-

cation in aquatic environments, and the inability of most current robotic sys-

tems to function with the speed, independence, and maneuverability needed to

operate in often challenging high-velocity or turbulent waters.

These challenges, as well as the general benefits that come from physical

and quantitative modeling have prompted many researchers to turn to fish bio-

mechanics and functional morphology for inspiration, with some of the more

remarkable devices currently being deployed incorporating design concepts

inspired by biological systems (Whitt et al., 2020). The development of

fish-inspired robotic systems coupled with currently available technologies

such as electronic tags and drones promises to greatly improve our ability to

both understand and conserve fish populations in the near future. In addition,

unexpected benefits can arise for the analysis of fish biology from mechanical

and robotic perspectives. Advances such as the use of fish-skin-like skin cov-

erings to enhance propulsion through the water by both human swimmers and

ships, and new vehicles that can navigate complex hydraulic and structural

environments at depth are examples of benefits that can result from the study

of fish locomotion. In this section, we first summarize the current state of

fish-inspired robotic platforms that could be further developed to contribute

to fish conservation physiology, and then we describe several specific areas

where technological approaches are beginning to make particularly valuable

contributions.

6.1 Fish robotics: Current state of the art

Many, if not most, fish-inspired robotic systems are small, low speed plat-

forms that are designed as laboratory-based “scientific demonstrators” con-

structed to better understand the basic physics of aquatic propulsion (Lauder

et al., 2012; Moored et al., 2011). Some of these laboratory systems use sim-

ple actuation to drive a flexible surface that has been used to understand the

effect of body flexibility, tail shape, and stiffness on swimming speed and

efficiency (Fig. 10; Lauder and Tangorra, 2015; Van Buren et al., 2017,

2019). One advantage of such experimental platforms, in addition to their rel-

ative simplicity, is their utility for exploring a large parameter space of move-

ment and quantifying the effect of swimming objects to uncover how

undulatory wave-like swimming motions affect speed and efficiency (Hertel,

1966; Lauder and Tangorra, 2015; Smits, 2019).
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Another class of laboratory fish-like robotic systems uses mechanical pro-

totypes of fish fins, modeled explicitly on fish anatomy, to explore how fins

generate propulsive forces (Fig. 10). Such studies have included the design

and analysis of both pectoral fin and caudal fin robots for propulsion and

maneuvering (Esposito et al., 2012; Gottlieb et al., 2010; Tangorra et al.,

2011). While progress has been made incorporating these fish fin-like actua-

tors into a whole fish robot, such systems have so far been confined to the lab-

oratory. Using highly simplified fin models based on airfoil shapes attached to

FIG. 10 Current fish robotic systems range from simple flexible plastic models of fish bodies

and fins actuated at the leading edge (A) (Matthews and Lauder, 2021) to platforms designed to

investigate the function of dorsal, anal, and caudal fins with individually controllable fin rays

(B and C: Esposito et al., 2012; Mignano et al., 2019). Whole fish laboratory robotic platforms

(D and E) (Wen et al., 2018; Zhu et al., 2019) allow study of the body bending and thrust produc-

tion during both steady swimming and acceleration behaviors. Katzschmann et al. (2018) designed

a free-swimming fish robot (F) for marine reef environments that is controllable remotely by

a diver.

32 Fish Physiology Volume 39A

ARTICLE IN PRESS



a rigid “body” has allowed free-swimming robotic systems to perform well in

a swimming pool (Long et al., 2006), but to date such platforms have not been

deployed in the field under their own power.

One fish-like robotic system that has been deployed in the field is the SoFi

system described by (Katzschmann et al., 2018) who developed a robotic fish

using flexible (soft) actuators powered by a hydraulic mechanism. Their

explicit goal was to design a robot that could function in marine environments

for coral reef exploration (Fig. 10F), and they used acoustic communication

from a hand-held controller operated by a nearby diver to control robot trajec-

tory. The SoFi robot is capable of generating tail beat frequencies of up to

1.4Hz and average swimming speeds of 23.5cm/s or 0.5 body lengths/s,

and the SoFi robot of Katzschmann et al. (2018) represents the most

fish-like, controllable, and field-deployable robotic platform developed so far.

One final area of research interest in the design of biomimetic fish-like

swimming systems focuses on the skin and specialized surface structures that

could enhance swimming performance. Fish exhibit a remarkable diversity of

skin surface structures with an array of scale types and textures ranging from

shark skin denticles with tooth-like structures that protrude above the epider-

mis to the scales of ray-finned fishes that possess an enormous variety of

ridges, protrusions, and ornamentation (Fig. 11; Reif, 1985; Wainwright and

Lauder, 2018; Whitear, 1970). The textured surfaces of fishes most likely

have many functions, but the skin surface almost certainly plays a hydrody-

namic role in swimming (Lauder et al., 2016). The most common premise

of fish skin research is that the surface ornamentation and mucus layer (on

bony fishes) reduce drag forces and the cost of transport. By creating a

smooth body surface both pressure and friction drag forces could be reduced.

For shark skin denticles, experiments on both pieces of skin and biomimetic

3D printed denticle arrays (Fig. 11), moved in a swimming motion by a

robotic controller, have shown that the surface texture can both reduce drag

and also increase thrust by altering the structure and strength of vortices gen-

erated by the tail (Oeffner and Lauder, 2012; Wen et al., 2014, 2015). Studies

of airfoils printed with a shark denticle surface have also shown that lift can

be enhanced and drag reduced: increasing the lift: drag ratio that is critical

to high-performance wing-like function (Domel et al., 2018). To date, biomi-

metic fish skin has not been applied to freely-swimming robotic systems, but

advances in manufacturing technology in the near future may allow applica-

tion of biomimetic skin to fish robots in the field and contribute to improved

locomotor function.

Understanding the physical biology of aquatic propulsion offers multiple

benefits and opportunities. The process of developing mechanical systems

helps us to understand the forces and dynamics that fish experience in their

daily lives, which itself can aid in prioritizing conservation actions. At the

same time, though, humans also benefit, potentially developing machines that

can traverse challenging environments for a variety of applications such as

inspecting infrastructure in hazardous environments.
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Despite progress over the last 15 years in the development of a variety of

fish-like robotic systems, swimming performance still lags far behind that of

fishes, and there are several areas in particular where improvements could

be achieved. Better implementation of swimming kinematics derived from

FIG. 11 Fish skin surfaces and biomimetic models. (A) Body surface scales of a bluegill sunfish

(Lepomis macrochrius) and an isolated ctenoid scale (B; Lauder et al., 2016). (C) Nose denticles

from a smooth dogfish shark, (Mustelus canis; Ankhelyi et al., 2018), and lateral body denticles

(D) covering the skin of a bonnethead shark (Sphyrna tiburo; Oeffner and Lauder, 2012). Biomi-

metic 3D-printed shark denticles attached to the leading edge of an airfoil (E) both improve lift

and reduce drag (Domel et al., 2018), while testing a flexible membrane printed with an array

of 3D-printed shark denticles (F) improved swimming performance (Wen et al., 2014).
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fishes would likely result in improved swimming speed and maneuverability,

as would better streamlining and use of more fish-like body shapes. Robotic

systems are often programmed with wave-like movements to generate body

undulation without reference to published data on fish kinematics. Many fish

species employ very similar body wave motions (Lauder, 2006; Lauder and

Tytell, 2006;) which can be implemented into robotic systems to improve

swimming performance. Autonomy is a more challenging problem as both

power consumption by the robot and communication with a remote controller

are difficult problems to solve in underwater locomotion, but improvements in

battery technology, artificial intelligence, and machine learning promise to

greatly extend the range and autonomy of future fish-like robots.

6.2 Technology for fish conservation biology

Although there are many limitations to current free-swimming fish robotic

technology, there are a number of other technological developments that

are now being employed to provide insight into fish biology and aid in conser-

vation that are complementary to ongoing robotic research. As mentioned

above, drones and airplane tracking are being used to observe and quantify

migrating fish populations. In shallow clear waters, aerial observation plat-

forms allow measurement of fish swimming kinematics and speeds, and inter-

individual spacing and arrangement that avoids the difficulties of attempting

to monitor these variables underwater. For example, Kajiura and Tellman

(2016) and Porter et al. (2020) have used drones and an airplane to track

blacktip shark movements (Carcharhinus limbatus) in clear shallows off the

Florida coast.

Second, AUV (autonomous underwater vehicle) and ROV (remote under-

water vehicle) technology is being used to better understand the physical envi-

ronment of fishes and to conduct surveys of fish populations (Stoner et al.,

2008; Sward et al., 2019). Recent AUV and ROV deployments in the deep

sea have led to remarkable discoveries of fish behavior and occurrence: there

is no substitute for visual observation and video recordings which are invalu-

able for documenting novel behaviors (Lundsten et al., 2009; Reisenbichler

et al., 2016). Using currently available technology, considerable progress

can be made in understanding fish behavior in the field while ongoing devel-

opment needed to obtain deployable fish-like robots occurs (Bo et al., 2014;

Love et al., 2020).

Third, rapid increases in the development of electronic tags have tremen-

dously expanded our knowledge of fish behavior and been largely responsible

for the explosion of studies in the field of movement ecology. The challenges

of following fish with mechanical devices can be avoided by simply attaching

a tracking system to the fish itself. Tags range from relatively simple passive

integrated transponder (PIT) tags (Castro-Santos et al., 1996; Mahapatra et al.,

2001; Saboret et al., 2021) to increasingly sophisticated tags that report depth,

temperature, body position, and motion using inertial measurement units
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(IMUs), often with onboard video cameras that provide direct evidence of

behavioral interactions and body motion (Block, 2005; Gleiss et al., 2019;

Kohler and Turner, 2001).

Finally, future developments in machine vision and image processing will

likely enable automated identification and assessment of fish species and

movements when sensors are deployed in marine and freshwater habitats.

Using pre-programmed three-dimensional data on a diversity of fish shapes

and swimming kinematics, it should be possible to develop automatic

vision-based screening methods that can discriminate among species at fish

counting fences or selective barriers.

In combination with rapid development of the many different technologi-

cal systems that will enhance our understanding of fish behavior, better under-

standing of the physical environments in which fish live and the development

of new high-performance fish-like robots, when available, promise to greatly

expand our understanding of fish biology and knowledge of how fish respond

to human-designed systems like trawls, nets, and passage barriers. In the near

future, new robotic systems will enable us to “swim with the fishes” and

directly observe how fish respond to, associate with, and avoid both natural

and artificial components of their environment.

7 Conclusions

The Anthropocene is a time of unprecedented change. These changes have

been particularly acute in aquatic environments. Freshwater biodiversity is

seriously imperiled (Dudgeon et al., 2006; Reid et al., 2019), and biomass

of marine fisheries is at a fraction of what it was just a century ago

(Christensen et al., 2014; Pauly et al., 2002). The ability of fish to move will

influence their ability to adapt to these changes, and our understanding of both

their abilities and limits will profoundly influence the development of effec-

tive management solutions. Technological innovations continue to offer

improvements in our ability to understand the ecology, physiology, and

behavior of fishes, and how these things interact with a changing environ-

ment. In the process of developing these advances, we are also learning more

about what the natural world has to teach us, and this is particularly true of

understanding how fish move through their environment. Some of that infor-

mation will inform improved management, but in other cases we see advances

in technology that are entirely independent of conservation interests. As we

navigate this new age, the ability to move through this evolving environment

will determine the outcomes for fish populations and humans alike.
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